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Abstract. For a family of special affine plane curves, it is shown that their
embeddings in the affine plane are unique up to automorphisms of the affine
plane. Examples are also given for which the embedding is not unique. We
also discuss the Lin-Zaidenberg estimate of the number of singular points of
an irreducible curve in terms of its rank. Formulas concerning the rank of the
curve lead to an alternate simpler version of the proof of the Epimorphism
Theorem.

1. Introduction

Let f = f(X,Y ) be a nonconstant bivariate polynomial with coefficients in an
algebraically closed field k of characteristic zero. The following very remarkable
result about the affine plane curve f = 0 was obtained by Lin and Zaidenberg
[LZ1] by using complex analysis. It was reproved by Neumann and Rudolph [NeR]
by topological methods.

Lin-Zaidenberg Theorem (1.1). If C : f(X,Y ) = 0 is an irreducible affine
plane curve of genus zero having only one place at infinity, such that all the sin-
gularities of C are unibranch, and C does have at least one singularity at finite
distance, then C is equivalent to Y n −Xm = 0 for some integers n > 1 < m with
GCD(n,m) = 1.

We will, as usual, call the residue class ring k[X,Y ]/(f) the coordinate ring of
the curve C : f = 0. Recall that the curve C is irreducible if its coordinate ring is
an integral domain, or equivalently if its equation is irreducible. For an irreducible
curve C, recall that the quotient field of the coordinate ring of C is termed its
function field.

Recall that f (i.e., the curve f = 0) has only one place at infinity means
that it is irreducible and further that its coordinate ring is contained in all except
one DVR (= discrete valuation ring) of its function field (over k). By genus of the
curve f we will mean the genus of its function field.

Note that then the phrase “f has genus zero and only one place at infin-
ity” is equivalent to “f is irreducible in k[X,Y ] and f(u(T ), v(T )) = 0 for some
(u(T ), v(T )) ∈ k[T ]2 \ k2”.
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Also recall that a singularity of f (at finite distance) is a point (a, b) ∈ k2 such
that f(a, b) = fX(a, b) = fY (a, b) = 0. Moreover, this singularity is unibranch
means f(X + a, Y + b) is irreducible in the (formal) power series ring k[[X,Y ]].

Recall that g ∈ k[X,Y ] is equivalent to f means g = τ(f) for some k-
automorphism τ of k[X,Y ]. Likewise, g is said to be isomorphic to f if the
residue class rings k[X,Y ]/(g) and k[X,Y ]/(f) are k-isomorphic. Finally, f has a
unique embedding means every g which is isomorphic to f is equivalent to f .

Now here is an immediate corollary of the above theorem.

Corollary (1.2). If f = Y n−Xm, where n > 1 < m are integers with GCD(n,m)
= 1, then f has a unique embedding.

In Section 2, for the case when n and m are prime numbers, we shall generalize
(1.2) by proving the following:

Uniqueness Theorem (1.3). If f = Y n−Xm+
∑
in+jm<mn aijX

iY j with aij ∈
k, where n 6= m are prime numbers, then f has only one place at infinity and f has
a unique embedding.

In Section 3, for the case when n (or m) is not a prime number, we shall prove
the following:

Nonuniqueness Theorem (1.4). If n > 1 < m are integers with GCD(n,m) = 1
such that n is not a prime number, then it is possible to construct a curve defined
by f = Y n−Xm +

∑
in+jm<mn aijX

iY j with aij ∈ k, such that f has one place at

infinity but at least two (nonequivalent) embeddings.

In Section 4, we shall give a high-school version of (1.1), and in Section 5, we
shall discuss the Lin-Zaidenberg conjecture generalizing it. Finally, in Section 6,
we give a more detailed explanation of the conjecture. Thereby we obtain alternate
simpler proofs of the Epimorphism Theorem and some of the arguments in the
Lin-Zaidenberg Theorem.

2. Uniqueness

We now give a proof of the Uniqueness Theorem (1.3).
First, we need to discuss the concept of equivalence of embeddings in greater de-

tail. Given a curve f with one place at infinity, we have the degree-semigroup
Γ(f) associated with it, which is simply defined by Γ(f) = {−v(h)|0 6= h ∈
coordinate ring of f}. The Expansion Techniques in [Ab2] give a standard gener-
ation of this semigroup by a δ-sequence δ0 = −v(x), δ1 = −v(y), . . . , δh. Actually,
in [Ab2] the equivalent sequence −δi = ri is discussed. The theory therein further
constructs a standard g-sequence—a sequence of approximate roots of f—such that
δi = −v(gi). If among the first two numbers δ0, δ1 one divides the other, then by
exchanging X,Y if necessary, we may assume that δ1 = bδ0. It is easy to see that
an automorphism of the form X ′ = X,Y ′ = y+ cXb will cause a reduction in δ1 for
a unique c ∈ k. Repeating this as often as needed, we may assume that neither of
δ0, δ1 divides the other or y = 0. The latter degenerate case is described by setting
h = 0 and we say that δ1 is −∞ or undefined. The situation after the reduction is
described by saying that (δ0, δ1) is nonprincipal, or equivalently the δ-sequence is
nonprincipal.
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Thus, it is clearly enough to discuss when two embeddings with nonprincipal
δ-sequences are equivalent. A complete answer is known by ([AbS]) which states
that the equivalence class is completely determined by the GCD of δ0, δ1.

In particular, to show uniqueness of the embedding, it is enough to show that
any embedding has the same δ0, δ1, up to a possible transposition.

To prove that f has one place at infinity, we need the following:

Irreducibility Criterion. Assume that n = degY f(X,Y ) 6≡ 0 mod char k and
f(X,Y ) is monic in Y . Then f(X,Y ) has one place at infinity iff there is a “test
series ” u(τ) ∈ k((τ)) such that

ordτf(τ−n, u(τ)) > sh(−n, u(τ)).

Moreover, given any series passing this test, there is a “root” y(τ) (usually called
the Newton-Puiseux series of f) satisfying:

f(τ−n, y(τ)) = 0 and ordτ (y(τ) − u(τ)) > mh(−n, u(τ)).

This is reproduced from [SaS] and we will follow the notation therein. A more
detailed discussion of the criterion is found in [Ab2] and [Ab3].

In our case, we use the test series u(τ) = τ−m. For this series, the number of
characteristic terms h = 1 and sh = s1 = −mn. Evidently,

ordτf(τ−n, u(τ)) = min{−jn− im|ai,j 6= 0} > −mn

and we get that f has one place at infinity. Moreover, from the last part of the
criterion we deduce that the degree-semigroup of f must be generated by the δ-
sequence (n,m) (since the g-sequence is simply (X,Y ) here).

Finally, we show uniqueness. Recall that an element of a semigroup is termed
primitive if it is not a sum of two nonzero elements of the semigroup. The prime
numbers n,m in the semigroup are clearly primitive by the topic “Primitivity of
Generators” in 6.3.1 [SaS]. The topic “Prime Numbers in a Planar Semigroup”
following it shows that the only possible nonprincipal δ-sequences generating the
degree-semigroup of f are (n,m) or (m,n). Thus, we have uniqueness of embeddings
as explained above. The proof can also be deduced by the results from [Ab2].

3. Nonuniqueness

We give a proof of the Nonuniqueness Theorem (1.4).
Write n = ab where a, b are both positive integers bigger than 1. Consider

the curve defined by g = (Y a − Xm)b − Y . From the irreducibility criterion, it
is easily seen that the curve g = 0 has one place at infinity. (Use a test series
τ−mb(1 + 1

aτ
m(ab−1)).)

Set x, y, z = ya−xm to be the residue class images of X,Y, Y a−Xm respectively
modulo g. It is easy to verify that the orders at the unique valuation v at infinity
must satisfy v(x) = −ab = −n, v(y) = −mb, v(z) = −m. Moreover, by definition,
the coordinate ring of g = 0 is generated by x, y. Since y = zb modulo g, the ring
k[x, y] is obviously contained in k[x, z]. Since the reverse inclusion k[x, z] ⊂ k[x, y]
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is obvious, we get that the coordinate ring of g is obviously generated by x, z as
well.

The minimal equation satisfied by x, z is obviously z = zab − xm. Thus the
degree-semigroup is generated by two different δ-sequences (n,mb,m) and (n,m).
Since the GCD of δ0, δ1 is respectively b, 1 by the equivalence criterion in [AbS], we
deduce that the embeddings are not equivalent!

4. High-School version

Let (n,m) be the bidegree of (u(T ), v(T )) ∈ k[T ]2 \ k2, i.e., let n and m be the
degrees of u(T ) and v(T ) respectively. The resulting polynomial curve parametrized
by X = u(T ), Y = v(T ) has one place at infinity and hence we can arrange the
bidegrees to be nonprincipal as explained above. Here it is easier to show the
process explicitly thus:

Note that if n or m is not an integer, then (n,m) is nonprincipal by convention.
In view of this, since the degree of the zero polynomial is −∞, we see that if either
u or v is zero, then (n,m) is nonprincipal.

If m divides n, then we can get a reduction in the bidegree by replacing (u, v)
by ((u/U)− (v/V )n/m) where U and V are the coefficients of Tn and Tm in u and
v respectively. Repeating this a finite number of times we can arrange matters so
that the bidegree is nonprincipal. Therefore (cf. [Ab1] and [AbS]) we see that (1.1)
is equivalent to the following:

High-School Version of Lin-Zaidenberg Theorem (4.1). Given any u(T ) =

Tn +
∑n−1
i=0 uiT

i with ui ∈ k and v(T ) = Tm +
∑m−1
j=0 vjT

j with vj ∈ k, where

1 < n < m are integers with m 6≡ 0 (mod n), we have the following.
(4.1.1) If GCD(n,m) 6= 1, then (u(t1), v(t1)) = (u(t2), v(t2)) for some t1 6= t2 in

k.
(4.1.2) Suppose that GCD(n,m) = 1, u0 = u1 = 0 and vj = 0 for all non-

negative integers j < m with j ≡ 0 (mod n). If (u(T ), v(T )) 6= (Tn, Tm), then
(u(t1), v(t1)) = (u(t2), v(t2)) for some t1 6= t2 in k.

5. Conjecture

Assuming that f is irreducible, let g be the genus of f . Let P1, . . . , Ps be the
singularities of f (at finite distance) labelled so that upon letting qi be the number
of branches at Pi we have qi = 1 for 1 ≤ i ≤ s′ and qi > 1 for s′ < i ≤ s. Set
q =

∑
s′<i≤s(qi − 1). Let V∞ be the branches of f at infinity. Set q∞ = (card

V∞) − 1, and recall that the rank r of f is defined by putting r = 2g + q + q∞.
(This terminology is motivated by the fact that, in case k = C, r is the rank of
the first homology group H1(f).) To generalize a part of (1.1), Lin and Zaidenberg
[LZ2] have formulated the following :

Lin-Zaidenberg Conjecture (5.1). s ≤ 2r + 1.

(The coefficient 2 is missing from [LZ2] due to a printing mistake which was
corrected in [LZ3].)

Supporting calculations. Now we present some calculations in support of the
Lin-Zaidenberg Conjecture (5.1).

Assume that f is monic of degree n > 1 in Y . For every branch v of f , at finite
distance or infinity, let e(v) denote the ramification exponent of v over k(X). Let
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v1, . . . , vs′ , . . . , vd′ , . . . , vd be the ramified branches of f at finite distance labelled
so that the centers of v1, . . . , vs′ are at the unibranch singularities P1, . . . , Ps′ re-
spectively. Moreover, v1, . . . , vd′ are exactly all the singular branches of f at finite
distance.

Let
ε =

∑
s′<i≤s

(qi − 2), δ =
∑

1≤i≤d
(e(vi)− 2) and θ = d− s′.

Then clearly:

Lemma (5.2). ε, δ, θ are nonnegative integers.

We have the equations:

q =
∑

s′<i≤s
(qi − 1) = (s− s′) +

∑
s′<i≤s

(qi − 2) = s− s′ + ε,

∑
1≤i≤d

[e(vi)− 1] =
∑

1≤i≤d
[e(vi)− 2] + d = δ + s′ + θ

and ∑
v∈V∞

[e(v)− 1] = n− q∞ − 1,

where V∞ denotes the set of branches at infinity.
By Riemann-Hurwitz we have

2g = 2− 2n+
∑

1≤i≤d
[e(vi)− 1] +

∑
v∈V∞

[e(v)− 1] = 1− n+ δ + s′ + θ − q∞,

and hence by adding q + q∞ + n− 1 to both sides we get:

Lemma (5.3). r + n− 1 = s+ ε+ δ + θ.

By (5.2) and (5.3) we get:

Lemma (5.4). If n ≤ r + 2, then (5.1) is correct.

By (5.4) we see that:

Proposition (5.5). If n ≤ 4 and g 6= 0, then (5.1) is correct.

By (1.1) and (5.4) we see that:

Proposition (5.6). If n ≤ 3, then (5.1) is correct.

Here is an obvious lemma.

Lemma (5.7). We consider the usual hyperelliptic curve. Thus, let f = Y 2 −∏h
i=1(Y −αi)ei , where α1, . . . , αh are pairwise distinct elements in k and e1, . . . , eh

are positive integers. Further assume that the factors are arranged so that the
e1, . . . , eµ are odd integers bigger than 1, eµ+1, . . . , eν are all equal to 1 and
eν+1, . . . , eh are all even integers.

Also, assume that
∑h
i=1 ei is an odd integer (this is equivalent to ν being odd).

Then by standard calculations, we see that f has only one place at infinity, its
genus equals (ν − 1)/2, its number of unibranch singularities equals µ, and its
number of nonunibranch singularities equals h− ν. Thus the value of r is h+µ− 1
and the number s of finite singular points is h.

The above lemma shows that
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Proposition (5.8). If f = Y n − p(X) with p(X) ∈ k[X ] of odd degree, then
s ≤ r + 1. Moreover this bound cannot be improved.

Remark (5.9). It is natural to ask if (5.1) can be strengthened to s ≤ r+ 1 at least
when f has only one place at infinity. However, the following example shows the
answer to be negative.

Consider the curve parametrized by x = t3 − 3t, y = t4 − 2t2. The equation
f comes out to be x4 − y3 + 6x2y − 2x2 + 6y2 − 9y. The curve has one place at
infinity and must have 3 singularities at finite distance. Two of them are unibranch
corresponding to t = ±1, and the third is a node corresponding to t = ±

√
3. Thus

r = 1 and s = 3, showing the need for the factor 2 in the conjecture. This example
is a variant of one due to Lin with two places (valuations) at infinity.

6. Another interpretation of the rank

We shall assume the notation introduced at the beginning of Section 5. We will
write r(f) for r to emphasize its dependence on f . In the beginning, we need not
assume f to be irreducible, but we need to insure that the partial derivatives fx
and fy do not have a common factor, or, in other words f has only a finite number
of critical points.

It is possible to argue that by a general linear change of coordinates, we may
arrange fy to be irreducible. For technical convenience, we will also arrange f to
be monic in y. Consider the plane curve defined by fy and consider the divisor

induced by the rational function fx/f on fy. Note that the derivation d
dx modulo

fy when applied to f gives fx. So the value of fx/f at any valuation v can also be
found to be the difference v(df)− v(dx) − v(f).

We calculate the degree of its various components as follows.

First, the sum of the degrees at finite points P outside the curve defined by f
coincides with the degree of the intersection cycle of fx and fy in the affine plane
outside the curve f and we denote it by J∗(f).

Next, we list all the valuations of fy at infinity as w1, . . . , wd and consider three
different sets V−, V+, V0, defined as those wi where wi(f) is respectively negative,
positive, zero. Note that due to the monicness of f (and hence fy), we have wi(x) <
0 for all i. It is easy to calculate the value wi(fx/f) by wi(df) − wi(dx) − wi(f).
Let ti be a uniformizing parameter at wi.

For wi ∈ V+∪V− it is clear that we get wi(f)−wi(ti)−(wi(x)−wi(ti))−wi(f) =
−wi(x).

On the other hand, for wi ∈ V0 we get wi(df) + wi(ti) − wi(x). If ci ∈ k is the
unique element so that wi(f + ci) > 0, then it is easy to see that wi(f + ci) =
wi(df) + wi(ti).

Adding up, we get the contribution at infinity to be

−
d∑
1

wi(x) +
∑
wi∈V0

wi(f + ci).

Denoting the second sum by e(f), we get the total contribution to be n−1+e(f).

To interpret e(f), we next prove:
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Lemma (6.1). Assume that f and hence fy are monic in y, and write

Resy(f + λ, fy) = φ(λ, x) = P0(λ)xN + . . . lower terms.

For each root aj of P0(λ) let Nj = N − degx(φ(aj , x)). Then

e(f) =
∑

{aj= some ci}
Nj.

For proof we note that a general translate f + c of f has no zeros at infinity,
and hence the degree of its polar divisor coincides with N . For a special translate,
the degree of the finite intersection of fy and f + c drops by exactly the amount of
zeros picked up at infinity, so for each aj we get the total drop Nj equal to∑

{i|ci=aj}
wi(f + ci),

hence the result.
A polynomial f is said to be good at infinity if e(f + c) = 0 for a general

c. Any curve f with one place (valuation) at infinity is easily seen to be good at
infinity, since the x-degree of the discriminant Resy(f +λ, fy) is independent of the
value of λ. This can be looked up in most of the treatments of the Epimorphism
Theorem; specifically, we cite ([Ab1], Chapter 7 or [Ab2], Chapter III). Indeed, its
calculation is built into all inductive steps of the proof. Thus, the polynomial P0(λ)
must reduce to a nonzero constant, without any roots. It follows that the set V0

must be empty, leading to e(f) = 0.
Note that, in either case e(f) ≥ 0.
Next, we calculate the contribution from finite points lying on the curve f . At

any such point P let xP = x + b1, where b1 ∈ k is the unique choice for which xP
vanishes at P . Similarly, we choose the other local parameter yP = y + b2 with
b2 ∈ k. Let f1(xP , yP ) = f(x, y) be the local expansion of f at P .

Let the valuations of fy centered at P form the set VP . For any valuation u ∈ VP ,
we clearly have u(f) > 0 by assumption and so by a calculation similar to the one
above, we get

u(fx/f) = u(df)− u(dx) − u(f) = −u(tP )− (u(xp)− u(tP )) = −u(xP ).

Adding up over all u ∈ VP we get the contribution at P to be −〈fy, xP 〉, where
〈fy, xP 〉 denotes the local intersection multiplicity of fy, xP at P . Now we calculate
the intersection multiplicity as the order of fy modulo xP . Thus 〈fy, xP 〉 is clearly
equal to ordyP (f1y(0, yP )), which is clearly equal to ordyP (f1(0, yP ))−1 = 〈f, xP 〉−
1.

Thus, the contribution at the point P comes out to be 1 − 〈f, xP 〉P . Using the
fact that the degree of the divisor of fx/f must be zero, we get

J∗(f) + (n− 1 + e(f)) +
∑
P

(1− 〈f, xP 〉) = 0,

where, as explained above, the sum is over all points P on the curve f . We rewrite
this as:

J∗(f) = 1− n+ e(f) +
∑
P

(〈f, xP 〉 − 1).
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Finally, to avoid the local translations xP , we note that, if qP denotes the number
of valuations of f at P , then 〈f, xP 〉P = 〈f, dx〉P + qP , where, as usual, 〈f, dx〉P
denotes the sum of the orders of the differential dx at various valuations of f
centered at P .

Thus the summation in our formula can be rewritten as

〈f, dx〉finite +
∑

qP − 1 = 〈f, dx〉finite + q.

Here, by 〈f, dx〉finite we denote the total degree of the differential dx on f at finite
distance.

At this point, we need to assume that f is irreducible, since we want to use the
genus formula.

Now we use the fact that the total degree of the divisor of any nonzero differential
is 2g− 2. Moreover, the contribution of the differential dx to 〈f, dx〉infinity is easily
seen to be −n− q∞ − 1. So, we get that

〈f, dx〉finite = 2g − 2 + n+ q∞ + 1.

Combining, we get:

J∗(f) = 1− n− e(f) + q + 2g − 2 + n+ q∞ + 1 = r(f)− e(f).

Thus the number r = e(f) + J∗(f) measures the number of critical points of
f outside it, including the special contribution from infinity. We remark that this
formula gives a simple algebraic proof of the initial topological arguments in the two
proofs of the Lin-Zaidenberg Theorem (1.1) ([LZ1], [NeR]). The original arguments
were based on index theorems for Milnor numbers in terms of Euler characteristics.

We also remark that this calculation leads to an alternate explanation of the
original Epimorphism Theorem. Recall that the Epimorphism Theorem in char-
acteristic 0 states that: if a plane curve f is isomorphic to a line, then by an
automorphism of the plane, the equation f can be reduced to y. To see this, as-
sume that f is isomorphic to a line (or that its coordinate ring is isomorphic to
k[t]). We remark that it is enough to deduce that for any λ 6= 0, the curve f + λ is
isomorphic to a line.

Now the value of r(f) is 0 since the curve f is obviously a nonsingular curve
of genus zero with one place (valuation) at infinity. Thus, we get that J∗(f) = 0.
Also, by nonsingularity of f , the contribution of 〈fx, fy〉P = 0 for all points on f
also. Thus, evidently, 〈fx, fy〉P = 0 at all P in the plane. Consequently, for any λ,
the J∗(f+λ) evaluates to 0 also. As is well known from the Expansion Techniques,
f + λ has one place at infinity, and so e(f + λ) is 0 for all λ. Thus the value of
r(f +λ) is also 0. We further know that f +λ is nonsingular since otherwise J∗(f)
would be nonzero. Thus, f+λ must have genus 0 and is nonsingular with one place
at infinity, hence is isomorphic to a line.
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