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Abstract. We propound a descent principle by which previously constructed equa-
tions over GF(qn)(X) may be deformed to have incarnations over GF(q)(X) without
changing their Galois groups. Currently this is achieved by starting with a vectorial
(= additive)q-polynomial ofq-degreem with Galois group GL(m, q) and then, under
suitable conditions, enlarging its Galois group to GL(m, qn) by forming its general-
ized iterate relative to an auxiliary irreducible polynomial of degreen. Elsewhere
this was proved under certain conditions by using the classification of finite simple
groups, and under some other conditions by using Kantor’s classification of linear
groups containing a Singer cycle. Now under different conditions we prove it by
using Cameron-Kantor’s classification of two-transitive linear groups.
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1. Introduction

In this paper we make some progress towards understanding which finite groups are Galois
groups of coverings of the affine line over a ground field of characteristicp 6= 0, having
at most one branch point other than the point at infinity. We are specially interested in the
case when the ground field is not algebraically closed. In particular we realize some of the
matrix groups GL(m, qn), whereq = pu > 1 is a power ofp andm > 0 andn > 0 are
integers, over smaller fields of characteristicp than had previously been accomplished. For
a tie-up with the geometric case of an algebraically closed ground field and the arithmetic
case of a finite ground field see Remark 5.1 at the end of the paper. Likewise, for a tie-up
with Drinfeld module theory see Remark 5.2 at the end of the paper.

To describe the contents of the paper in greater detail, henceforth letq = pu > 1 be a
power of a primep, let m > 0 andn > 0 be integers, and let GF(q) ⊂ kq ⊂ K ⊂ � be
fields where� is an algebraic closure ofK; note that there are no assumptions on the field
kq other than for it to contain GF(q). Also letE = E(Y ) be a monic separable vectorial
q-polynomial ofq-degreem in Y overK, i.e.,

E = E(Y ) = Yqm +
m∑

i=1

XiY
qm−i

with Xi ∈ K andXm 6= 0, (1.1)

where the elementsX1, . . . , Xm need not be algebraically independent overkq . When
we want to assume that, for a subsetJ ∗ of {1, . . . , m}, the elements{Xi : i ∈ J ∗} are
algebraically independent overkq andK = kq({Xi : i ∈ J ∗}) with Xi = 0 for all i 6∈ J ∗,
we may express this by saying that we are in thegenericcase of typeJ ∗, and we may
indicate it by writingE∗

m,q for E andK∗ for K. WhenJ ∗ is the singletonJ [ = {m}
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we may say that we are in thebinomial case. WhenJ ∗ is the pairJ †
µ = {m − µ, m}

with 1 ≤ µ < m we may say that we are in theµ-trinomial case. WhenJ ∗ is the set
J ‡ = {m− ν : ν = 0 orν = a divisor ofm}, we may say that we are in thedivisorial case.
Note that theY -derivative ofE(Y ) isXm and hence ifm ∈ J ∗ then in the generic case of type
J ∗, the equationE(Y ) = 0 gives a covering of the affine line overkq({Xi : m 6= i ∈ J ∗})
havingXm = 0 as the only possible branch point other than the point at infinity.

In the general(= not necessarily generic) case, letV be the set of all roots ofE in
�, and note that thenV is anm-dimensional GF(q)-vector-subspace of�. Moreover,
since GF(q) is assumed to be a subfield ofkq and hence ofK, everyK-automorphism
of the splitting fieldK(V ) of E over K induces a GF(q)-linear transformation ofV .
Consequently Gal(E, K) < GL(V ), i.e., the Galois group ofE overK may be regarded
as a subgroup of GL(V ) (see [Ab3]). If we do not assume GF(q) ⊂ kq then we only get
Gal(E, K) < 0L(V ), where0L(V ) is the group of all semilinear transformations ofV

(see [Ab6]). By fixing a basis ofV we may identify GL(V ) with GL(m, q), and0L(V )

with 0L(m, q). If J
†
1 ⊂ J ∗ then in the generic case of typeJ ∗, as shown in [Ab2] to

[Ab4], we have Gal(E∗
m,q, K∗) = GL(m, q) but over GF(p), as shown in [Ab6], we have

Gal(E∗
m,q, GF(p)({Xi : i ∈ J ∗})) = 0L(m, q); for applications of these results see [Ab1]

and [Ab5]. To mitigate this bloating we take recourse to generalized iteration as defined
in Remark 3.30 of [Ab7] and repeated below. Here bloating refers to the fact that a more
direct approach would give a Galois group which is larger than desired, when working over
a smaller ground field, and the goal is to modify the covering in order to shrink the group
from semilinear to general linear.

DEFINITION 1.2

For every nonnegative integerj we inductively define thej th iterate E[[j ]] of E by
putting E[[0]] = E[[0]] (Y ) = Y , E[[1]] = E[[1]] (Y ) = E(Y ), andE[[j ]] = E[[j ]] (Y ) =
E(E[[j−1]](Y )) for all j > 1. Next we define thegeneralizedrth iterateE[r] of E for any
r = r(T ) = ∑

riT
i ∈ �[T ] with ri ∈ � (andri = 0 for all except a finite number ofi),

whereT is an indeterminate, by puttingE[r] = E[r](Y ) = ∑
riE

[[ i]] (Y ). Note that, for
theY-derivativeE

[r]
Y (Y ) of E[r](Y ) we clearly have

E
[r]
Y (Y ) = E

[r]
Y (0) = r(Xm) (1.2.1)

and hence ifr(Xm) 6= 0 thenE[r] is a separable vectorialq-polynomial over� whoseq-
degree inY equalsm times theT-degree ofr. Also note that the definition ofE[r] remains
valid for any vectorialE without assuming it to be monic or separable. Moreover, in such
a general set-up, this makes the additive group of all vectorialq-polynomialsE = E(Y )

in Y over� into a�[T ]-premodulehaving all the properties of a module except the left
distributive law and the associativity of multiplication, i.e., for allr, r ′ ∈ �[T ] we have
E[r+r ′] = E[r] +E[r ′] , but for allE, E′ over� we need not have(E+E′)[r] = E[r] +E′[r] ,
and in generalE[rr ′] need not be equal to(E[r])[r ′] . Reverting to the fixed monic separable
vectorialE exhibited in (1.1), the said premodule structure makes� into a GF(q)[T ]-
modulewhen for everyr ∈ GF(q)[T ] andz ∈ � we define the ‘product’ ofr andz to be
E[r](z); we denote this GF(q)[T ]-module by�E . Now let us fix

s = s(T ) ∈ R = GF(q)[T ] of T -degreen with s(Xm) 6= 0 (1.2.2)

and note that thenE[s] is a separable vectorialq-polynomial ofq-degreemn in Y overK,
and the coefficient of its highest degree term equals the coefficient of the highest degree
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of s(T ). Let V [s] be the set of all roots ofE[s] in �, and note that thenV [s] is an(mn)-
dimensional GF(q)-vector-subspace of�. Let GF(q, s) = R/sR wheresR is the ideal
generated bys in R = GF(q)[T ], and letω : R → GF(q, s) be the canonical epimorphism.
Now V [s] is a submodule of�E and as such it is annihilated bysR and hence we may
regard it as a GF(q, s)-module; note that then, for everyr ∈ R andz ∈ �, the ‘product’ of
ω(r) andz is given byω(r)z = E[r](z) = ∑

riE
[i](z), and for everyg ∈ Gal(K(V [s]), K)

we haveg(ω(r)z) = ∑
g(ri)E

[i](g(z)) = (ω(r))g(z); also note that for allr ∈ R and
z ∈ � we haverz = ω(r)z = E[r](z) = θ(r, z) with θ(r, z) ∈ (GF(q)[X1, . . . , Xm])[z].
It follows that, in a natural manner,

Gal(E[s], K) < GL(V [s]), (1.2.3)

where GL(V [s]) is thegroup of allGF(q, s)-linear automorphismsof V [s] , by which we
mean all additive isomorphismsσ : V [s] → V [s] such that for allη ∈ GF(q, s) andz ∈ V [s]

we haveσ(ηz) = ησ(z). Note that

s irreducible inR ⇒ GL(V [s]) ≈ GL(m, qn), (1.2.4)

where≈ denotes isomorphism. Also note that theY -derivative ofE[s](Y ) is s(Xm) and
hence ifm ∈ J ∗ ands is irreducible inR then in the generic case of typeJ ∗, the equation
E[s](Y ) = 0 gives a covering of the affine line overkq({Xi : m 6= i ∈ J ∗}) having
s(Xm) = 0 as the only possible branch point other than the point at infinity; this branch
point is rational if and only ifn = 1.

Now part of what was proved in [Ab7] can be stated as follows:

Trinomial Lemma1.3. If J †
1 ⊂ J ∗ then in the generic case of typeJ ∗ we haveGal(E∗

m,q, K∗)
= GL(m, q).

In Note 3.37 of [Ab7] the following problem about generalized iterations was posed.

Problem. Show that ifJ ∗ = {1, 2, . . . , m} then in the generic case of typeJ ∗ we have
Gal(E∗[s]

m,q , K∗) = GL(V [s]).

In [AS1] this was proved whens = T n and in Theorem 3.25 of [Ab7] that result was
semilinearized. Likewise in [AS2] it was proved under the assumptions thats is irreducible
andm is a square-free integer with GCD(m, n) = 1 and GCD(mnu, 2p) = 1, where we
recall thatu is the exponent ofp in q, i.e., u is the positive integer defined byq = pu.
Actually, what was proved in (1.18) of [AS2] was the following slightly more general result.

Weak divisorial Theorem 1.4. Assume thats is irreducible inR, andJ ‡ ⊂ J ∗. Also
assume thatm is a square-free integer withGCD(m, n) = 1, andGCD(mnu, 2p) = 1.
Then in the generic case of typeJ ∗ we haveGal(E∗[s]

m,q , K∗) = GL(V [s]) ≈ GL(m, qn).

Now CPT (= the classification of projectively transitive permutation groups, i.e., sub-
groups of GL acting transitively on nonzero vectors) is a remarkable consequence of CT
(= the classification theorem of finite simple groups). The implication CT⇒ CPT was
mostly proved by Hering [He1, He2]; it is also discussed by Cameron [Cam], Kantor [Ka2],
and Liebeck [Lie]. The proof of (1.4) given in [AS2] makes essential use of the follow-
ing weaker version of CPT, which follows by scanning the list of projectively transitive
permutation groups given in [Ka2] or [Lie].

Weak CPT1.5. Letd be an odd positive integer, and letG < GL(d, p) be transitive on
the nonzero vectors GF(p)d \ {0}. Then there exist positive integersb, c with bc = d and
a groupG0 with SL(b, pc) < G0 < 0L(b, pc) such thatG ≈ G0.
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Them = 1 case of (1.4), without the hypothesis GCD(mnu, 2p) = 1, was proved by
Carlitz [Car] (also see Hayes [Hay]) in connection with his explicit class field theory. In
our proof of (1.4) we used the following variation of Carlitz’s result which we reproved as
Theorem 1.20 in [AS2]; recall that a univariate polynomialF̃ (Y ) = ∑N

i=0 F̃iY
i of positive

degreeN in Y is said to beEisensteinrelative(R̃, M̃), whereM̃ is a prime ideal in a ring
R̃, if F̃N ∈ R̃ \ M̃, F̃i ∈ M̃ for 1 ≤ i ≤ N − 1, andF̃0 ∈ M̃ \ M̃2.

Carlitz irreducibility lemma1.6. Assume thats is irreducible inR, andJ [ ⊂ J ∗. Let
s∗(T ) be a nonconstant irreducible factor ofs(T ) in kq [T ], and letM∗ be the ideal in
R∗ = kq [{Xi : i ∈ J ∗}] generated by{Xi : i ∈ J ∗ \ J [} ∪ {s∗(Xm)}. Then, form = 1,
in the generic case of typeJ ∗ we have thatM∗ = s∗(Xm)R∗ is a maximal ideal in
R∗ = kq [Xm], Y−1E

∗[s]
1,q (Y ) is Eisenstein relative to(R∗, M∗), Y−1E

∗[s]
1,q (Y ) is irreducible

in K∗[Y ], andGal(E∗[s]
1,q , K∗) = GL(V [s]) ≈ GL(1, qn). Moreover, without assuming

m = 1, but assumingGCD(m, n) = 1, in the generic case of typeJ ∗ we have thatM∗
is a maximal ideal inR∗, Y−1E

∗[s]
m,q (Y ) is Eisenstein relative to(R∗, M∗), Y−1E

∗[s]
m,q (Y ) is

irreducible inK∗[Y ], andGal(E∗[s]
m,q , K∗) has an element of orderqmn − 1.

In proving (1.4), in addition to items (1.5) and (1.6), we also used the first part of the
following well-known versatile lemma which was initiated by Singer in [Sin] and which
was stated as Lemma 1.23 in [AS2]; for an elementary proof of a supplemented version of
this see Lemma 5.13 and §6 of [Ab8].

Singer cycle lemma1.7. Let A ∈ GL(m, q) have ordere = qm − 1. Thendet(A) has
orderε = q − 1, andA acts transitively on the nonzero vectorsGF(q)m \ {0}, i.e., it is an
e-cycle in the symmetric groupSe (and as such it is called a Singer cycle). Moreover, in
GL(m, q) all subgroups generated by such elements, i.e., all cyclic subgroups of ordere,
form a nonempty complete set of conjugates.

Now the last assertion of (1.6) says that ifs is irreducible inR and J [ ⊂ J ∗ with
GCD(m, n) = 1 then Gal(E∗[s]

m,q , K), as a subgroup of GL(m, qn), contains a Singer cycle.
In his 1980 paper [Ka1], without using CT, Kantor proved the following variation (1.8) of
(1.5) by replacing the hypothesis ofG acting transitively on nonzero vectors by the stronger
hypothesis thatG contains a Singer cycle.

Kantor’s Singer cycle theorem 1.8. If G < GL(m, qn) contains an element of order
qmn −1 then for some divisorm′ ofm we haveGL(m′, qnm/m′

)GG, whereGL(m′, qnm/m′
)

is regarded as a subgroup ofGL(m, q) in a natural manner.

As a consequence of (1.6) and (1.8), but without using (1.5), and hence without using
CT, in (5.18) of [Ab8] we proved the following stronger version (1.9) of (1.4) in which the
assumption GCD(mnu, 2p) = 1 is replaced by the weaker assumption GCD(m, p) = 1.

Strong divisorial theorem 1.9. Assume thats is irreducible inR, andJ ‡ ⊂ J ∗. Also
assume thatm is a square-free integer withGCD(m, n) = 1, andGCD(m, p) = 1. Then
in the generic case of typeJ ∗ we haveGal(E∗[s]

m,q , K∗) = GL(V [s]) ≈ GL(m, qn).

In (1.14) of [Ab9] we settled another case of the above Problem by proving the following
Theorem without using the above results (1.4) to (1.9).



Modular Galois theory 143

Two step theorem 1.10.Assume thats is irreducible inR, andJ
†
1 = J ∗. Also assume that

m = n = 2. Then in the generic case of typeJ ∗ we haveGal(E∗[s]
m,q , K∗) = GL(V [s]) ≈

GL(m, qn).

The proof of (1.10) was based on the following lemma which was stated as Lemma 1.16
in [Ab9] and established in §3 of that paper.

Packet throwing lemma1.11. Let M̃ be the maximal ideal in a regular local domaiñR
of dimensiond > 0 with quotient fieldK̃. Let F̃ (Y ) = ∑

0≤i≤N F̃iY
i be a polynomial

of degreeN > 0 in Y which is Eisenstein relative to(R̃, M̃). [Note that then for some
elementsF2, . . . , Fd in R̃ we have(F̃0, F2, . . . , Fd)R̃ = M̃.] Let K̂ = K̃(η) whereη is
an element in an overfield of̃K with F̃ (η) = 0, and letR̂ = R̃[η] andM̂ = ηR̂ + M̃R̂.
ThenR̂ is the integral closure of̃R in K̂, R̂ is a d dimensional regular local domain with
maximal idealM̂, M̂ ∩ R̃ = M̃, and for anŷη ∈ K̂ with F̃ ( η̂ ) = 0 and anyF2, . . . , Fd

in R̃ with (F̃0, F2, . . . , Fd)R̃ = M̃ we have(̂η, F2, . . . , Fd)R̂ = M̂, and hence for any
η̂ ∈ K̂ with F̃ (̂η) = 0 we havêη ∈ M̂ \ M̂2. Moreover, if for some positive integer
D < N − 1 we haveF̃D /∈ M̃2 + F̃0R̃ and F̃i ∈ M̃D+2−i + F̃0R̃ for 1 ≤ i ≤ D − 1,
andη1, . . . , ηD are pairwise distinct elements in̂K with F̃ (ηj ) = 0 for 1 ≤ j ≤ D, then
F̃ (Y ) = F̂ (Y )

∏
1≤j≤D(Y − ηj ) whereF̂ (Y ) is a polynomial of degreeN − D in Y which

is Eisenstein relative to(R̂, M̂).

In proving (1.10), the following consequence of (1.11) was implicitly used; in §2 we
shall explicitly deduce it from (1.11).

Two transitivity lemma1.12. Assume thats is irreducible inR, and we are in the generic
case of typeJ ∗ with J [ ⊂ J ∗ and m > 1. [Note that by(1.2) we know that then
Gal(E∗[s]

q,m, K∗) < GL(V [s]) ≈ GL(m, qn) and hence we may regardGal(E∗[s]
q,m, K∗) to be

acting on the(m − 1)-dimensional projective spaceP(m − 1, qn) overGF(qn) (where the
action is not faithful unlessqn = 2).] Let N = qmn − 1 and F̃ (Y ) = Y−1E

∗[s]
q,m(Y ) =∑

0≤i≤N F̃iY
i with F̃i ∈ R∗ = kq [{Xj : j ∈ J ∗}]. Assume that the localization ofR∗ at

some nonzero prime ideal in it is a regular local domainR̃ with maximal idealM̃ such that
F̃ (Y ) is Eisenstein relative to(R̃, M̃). LetD = qn − 1 and assume that̃FD /∈ M̃2 + F̃0R̃

and F̃i ∈ M̃D+2−i + F̃0R̃ for 1 ≤ i ≤ D − 1. ThenGal(E∗[s]
q,m, K∗) is two transitive on

the(m − 1)-dimensional projective spaceP(m − 1, qn) overGF(qn).

In Theorem I of [CKa], Cameron–Kantor proved the following:

Cameron-Kantor’s two transitivity theorem 1.13. If m > 2 andG < 0L(m, q) is two
transitive on the projective spaceP(m − 1, q), then eitherSL(m, q) < G or G = the
alternating groupA7 insideSL(4, 2).

As a consequence of (1.6), (1.7), (1.12), (1.13), and the coefficient computations of
§3, butwithout using(1.5) or (1.8) to (1.10), in §4 we shall prove the following theorem.
With an eye on further applications, the computations of §3 are more extensive than what
we need here.

Main theorem 1.14. Assume thats is irreducible inR, andn < m with GCD(m, n) = 1
andJ

†
n ⊂ J ∗. Then in the generic case of typeJ ∗ we haveGal(E∗[s]

m,q , K∗) = GL(V [s]) ≈
GL(m, qn).

In §5 we shall make some motivational and philosophical remarks.



144 Shreeram S Abhyankar and Pradipkumar H Keskar

2. Proof of two transitivity lemma

To continue with the discussion of (1.2), for a moment assume thats is irreducible inR with
s(Xm) 6= 0 andm > 1. Then by (1.2.3) and (1.2.4) we have Gal(E[s], K) < GL(V [s]) ≈
GL(m, qn) and hence we may regard Gal(E[s], K) to be acting on the(m−1)-dimensional
projective spaceP(m−1, qn) over GF(qn) (where the action is not faithful unlessqn = 2).
Let N = qmn − 1 andF(Y ) = Y−1E[s](Y ). ThenF(Y ) ∈ K[Y ] is of Y -degreeN . For
a moment assume thatF(Y ) is irreducible inK[Y ] and letK̂ = K(η) whereη is a root
of F(Y ) in �. Then [̂K : K] = N and Gal(E[s], K) is transitive onP(m − 1, qn).
Let R0 be the set of all nonzero members ofR of T -degree less thann. Then, in the
notation of (1.2),(ω(r)η)r∈R0 are all the distinct ‘nonzero scalar multiples’ ofη in the
(R/s)-vector spaceV [s] , and clearlyR0 is the set of allα0 + α1T + · · · + αn−1T

n−1 with
(α0, α1, . . . , αn−1) ∈ GF(q)n \{(0, 0, . . . , 0)}. This gives usD distinct roots ofF(Y ) in K̂

whereD = qn − 1. ThereforeF(Y ) = F̂ ∗(Y )
∏

r∈R0
(Y − ω(r)η) whereF̂ ∗(Y ) ∈ K̂[Y ]

is of Y -degreeN − D = qmn − qn > 1. Now(ω(r)η)r∈R0 is the inverse image of a point
in P(m − 1, qn) under the natural surjection GF(qn)m \ {0} → P(m − 1, qn) obtained
by identifying V [s] with GF(qn)m via a basis. It follows that if̂F ∗(Y ) is irreducible
in K̂ then Gal(E[s], K) is two transitive onP(m − 1, qn). It is also clear that ifF(Y ) =
F̂ (Y )

∏
1≤i≤D(Y −ηi) whereη1, . . . , ηD are distinct roots ofF(Y ) in K̂ andF̂ (Y ) ∈ K̂[Y ]

is irreducible then we must havêF ∗(Y ) = F̂ (Y ). Therefore we get the following:

Projective action lemma2.1. In the situation of(1.2) assume thats is irreducible inR

with s(Xm) 6= 0 andm > 1. LetF(Y ) = Y−1E[s](Y ) and note that thenF(Y ) ∈ K[Y ] is
of Y -degreeN = qmn − 1. Assume thatF(Y ) is irreducible inK[Y ] and letK̂ = K(η)

whereη is a root ofF(Y ) in �. Then[K̂ : K] = N and Gal(E[s], K) is transitive on
P(m−1, qn). Moreover, if upon lettingD = qn−1we haveF(Y ) = F̂ (Y )

∏
i≤i≤D(Y−ηi)

whereη1, . . . , ηD are distinct roots ofF(Y ) in K̂ and F̂ (Y ) ∈ K̂[Y ] is irreducible then
Gal(E[s], K) is two transitive onP(m − 1, qn).

Since Eisenstein polynomials are irreducible, upon takingE = E∗
m,q with F = F̃ and

K = K∗ = K̃ in (2.1), by (1.11) we get (1.12).

3. Coefficient computations

Let R\ = GF(q)[X1, . . . , Xm]. Then clearly for everyν > 0 we have

E[[ν]] (Y ) = Yqmν +
mν∑
i=1

Dν,iY
qmν−i

with Dν,i ∈ R\. (3.1)

Also

E[[1]] (Y ) = E(Y ) = Yqm +
m∑

i=1

XiY
qm−i

(3.2)

and hence for every integerν > 1 we have

E[[ν]] (Y ) = E(E[[ν−1]](Y )) =
(

Yqmν−m +
mν−m∑
i=1

Dν−1,iY
qmν−m−i

)qm

+
m∑

v=1

Xv

(
Yqmν−m +

mν−m∑
w=1

Dν−1,wY qmν−m−w

)qm−v
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=
(

Yqmν +
mν−m∑
i=1

D
qm

ν−1,iY
qmν−i

)

+
(

m∑
v=1

XvY
qmν−v +

m∑
v=1

mν−m∑
w=1

XvD
qm−v

ν−1,wY qmν−v−w

)

and therefore, for any positive integeri, upon letting

Q(i) =
 the set of all pairs of integers(v, w)

with 1 ≤ v ≤ m and 1≤ w ≤ mν − m

such thatv + w = i

(3.3)

we get

Dν,i =
∑

(v,w)∈Q(i)

XvD
qm−v

ν−1,w if mν − m < i ≤ mν (3.4)

and

Dν,i = Xi + D
qm

ν−1,i +
∑

(v,w)∈Q(i)

XvD
qm−v

ν−1,w if 1 ≤ i ≤ m. (3.5)

By induction we shall show that for everyν > 0 we have

Dν,mν = Xν
m (3.6)

and 
if l is an integer with 1≤ l < m

such thatXi = 0 wheneverm − l < i < m

thenDν,i = 0 whenevermν − l < i < mν

andDν,mν−l = Xm−l

∑ν−1
λ=0 X

(ν−1)+λ(ql−1)
m

(3.7)

and 
if j is an integer with 1≤ j ≤ m

such thatXi = 0 whenever 1≤ i < j

then for 1≤ i ≤ min(m, 2j − 1) we have

Dν,i = ∑ν−1
λ=0 X

qmλ

i
which we know to be zero if 1≤ i < j .

(3.8)

By (3.2), this is obvious forν = 1. So letν > 1 and assume true forν − 1. Then clearly
Q(mν) = {(m, mν − m)}, and hence by (3.4) and theν − 1 version of (3.6) we get

Dν,mν = XmDν−1,mν−m

= XmXν−1
m

= Xν
m.

Likewise, if l is an integer with 1≤ l < m such thatXi = 0 wheneverm − l < i < m,
then by (3.4) we get

Dν,i =
{

XmDν−1,mν−m−i if mν − l < i < mν

XmDν−1,mν−m−l + Xm−lD
ql

ν−1,mν−m if mν − l = i
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and hence by theν − 1 versions of (3.6) and (3.7) we get

Dν,i = 0 if mν − l < i < mν

and

Dν,mν−l = Xm−l

(
X

(ν−1)ql

m +
ν−1∑
λ=0

X
(ν−2)+λ(ql−1)
m

)

= Xm−l

ν−1∑
λ=0

X
(ν−1)+λ(ql−1)
m .

Similarly, if j is an integer with 1≤ j ≤ m such thatXi = 0 whenever 1≤ i < j , then
for all i, v, w with 1 ≤ i ≤ 2j − 1 and(v, w) ∈ Q(i) we have eitherv < j or w < j , and
hence by (3.5) and theν − 1 version of (3.8) we see that for 1≤ i ≤ min(m, 2j − 1) we
have

Dν,i = Xi + D
qm

ν−1,i = Xi +
(

ν−2∑
λ=0

X
qmλ

i

)qm

=
ν−1∑
λ=0

X
qmλ

i .

4. Proof of main Theorem

To prove the Main Theorem 1.14, assume thats is irreducible inR and n < m with
GCD(m, n) = 1. Also assume that we are in the generic case of typeJ ∗ with J

†
n ⊂ J ∗.

In view of (1.2.3) and (1.2.4), after identifyingV [s] with GF(qn)m via a basis, we have
Gal(E∗[s]

q,m, K∗) < GL(m, qn) and we may regard Gal(E
∗[s]
q,m, K∗) as acting onP(m−1, qn)

(where the action is not faithful unlessqn = 2). We want to show that Gal(E
∗[s]
q,m, K∗) =

GL(m, qn).
Let N = qmn − 1 andF̃ (Y ) = Y−1E

∗[s]
q,m(Y ) = ∑

0≤i≤N F̃iY
i with F̃iY

i ∈ R∗ =
kq [{Xj : j ∈ J ∗}]. Let D = qn − 1. Note thats = s(T ) = ∑

0≤ν≤n sνT
ν with

sν ∈ GF(q) andsn 6= 0. Let kq be an algebraic closure ofkq in �, and letζ be a root
of s(T ) in kq . Sinces(T ) is irreducible inR, we getζ qn−1 = 1 ands′(ζ ) 6= 0 where
s ′(T ) is theT -derivative ofs(T ). Let R̃ be the localization ofkq [Xn, Xm] at the maximal
ideal generated byXn andXm − ζ . ThenR̃ is two dimensional regular local domain with
maximal idealM̃ = (Xn, Xm − ζ )R̃.

For a moment suppose thatkq = kq andJ
†
n = J ∗, and let us writeK† for K∗ andE

†
m,q

for E∗
m,q . Now by (1.6) and (1.7) we see that̃F(Y ) is Eisenstein relative to(R̃, M̃), and

the determinantal map Gal(E
†[s]
m,q, K†) → GF(qn) \ {0} is surjective. By (1.2.1) we have

F̃0 = s(Xm).

By takingl = n in (3.7) we see that

F̃i = 0 for 1 ≤ i ≤ D − 1

and

F̃D = Xm−n2(Xm),
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where

2(Xm) =
∑

0≤ν≤n

sν
∑

0≤λ≤ν−1

X
(ν−1)+λ(qn−1)
m .

Sinceζ qn−1 = 1, we get∑
0≤λ≤ν−1

ζ (ν−1)+λ(qn−1) = νζ ν−1

and therefore

2(ζ) =
∑

0≤ν≤n

sννζ ν−1 = s′(ζ ) 6= 0.

It follows that

F̃D 6∈ M̃2 + F̃0R̃

and hence by (1.12) we conclude that Gal(E
†[s]
m,q, K†) is two transitive onP(m − 1, qn). If

n > 1 then by (1.13) we see that SL(m, qn) < Gal(E†[s]
m,q, K†) and hence, because the deter-

minantal map Gal(E†[s]
m,q, K†) → GF(qn)\{0} is surjective, we must have Gal(E

†[s]
m,q, K†) =

GL(m, qn). If n = 1 then by (1.3) we get Gal(E
†[s]
m,q, K†) = GL(m, qn). Thus in both the

cases we have Gal(E
†[s]
m,q, K†) = GL(m, qn).

Now let us return to the case when the fieldkq need not be algebraically closed. Since

kq is an overfield ofkq andE
†[s]
m,q is obtained fromE

∗[s]
m,q by puttingXi = 0 for all i ∈

J ∗ \J
†
n , in view of the extension principle (cf. p. 93 of [Ab2]) and the specialization

principle (cf. p. 1894 of [AbL]), see that Gal(E
†[s]
m,q, K†) < Gal(E∗[s]

m,q , K∗). Therefore

Gal(E∗[s]
m,q , K†) = GL(m, qn).

5. Concluding remarks

Let us end with some remarks on motivation and philosophy.

Remark5.1 (Algebraic fundamental groups). The algebraic fundamental groupπA(Lk)

of the affine lineLk over a fieldk is defined to be the set of all Galois groups of finite
unramified Galois coverings of the affine lineLk overk. Similarly we defineπA(Lk,t ) for
Lk,t = Lk punctured att points, and more generally we defineπA(Cg,w) for a nonsingular
projective genusg curveC overk punctured atw + 1 points. LetQ(p) be the set of all
quasi-p groups, i.e., finite groupsG such thatG = p(G) wherep(G) is the subgroup
of G generated by all of itsp-Sylow subgroups, and more generally letQt(p) be the set
of all quasi-(p, t) groups, i.e., thoseG for which G/p(G) is generated byt generators.
In [Ab1], as geometric conjecturesit was predicted that ifk is an algebraically closed
field of characteristicp thenπA(Lk) = Q(p), and more generallyπA(Lk,t ) = Qt(p)

andπA(Cg,w) = Q2g+w(p). In 1994, these were settled affirmatively by Raynaud [Ray]
and Harbater [Har]. For higher dimensional versions of the geometric conjectures see
[Ab5]. Then, mostly inspired by Fried–Guralnick–Saxl [FGS] and Guralnick–Saxl [GuS],
we turned our attention to coverings defined over finite fields. In [Ab6] this led to the
arithmetical questionasking whetherπA(LGF(q)) = Q1(p), the philosophy behind this
being that dropping from an algebraically closed field to a finite field is somewhat like
adding a branch point. In particular we may ask whetherπA(Lk,1) containsQ1(p) where
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k is an overfield of GF(q). As indicated in the introduction, in doing this arithmetical
problem, the linear groups got bloated towards their semilinear versions and the attempt to
unbloat them led us to generalized iterations.

Remark5.2 (Division points and Drinfeld modules). The generalized iterations themselves
came out of the theory of Drinfeld modules as developed in his paper [Dri]. This work of
Drinfeld seems to have been inspired by Serre’s work [Se1] on division points of elliptic
curves which was later generalized by him [Se2] to abelian varieties. In turn, our description
of the moduleE[s] in (1.2) is based on the ideas of Drinfeld modules. For a discussion of
Drinfeld modules and their relationship with division points of elliptic curves and abelian
varieties see Goss [Gos]. Very briefly, the roots of the separable vectorialq-polynomial
E of q-degree 2m exhibited in (1.1) form a 2m dimensional GF(q)-vector-space on which
the Galois group ofE acts. The said Galois group also acts on the roots ofE[s] discussed
in (1.2) which are the analogues of ‘s-division points ofE.’ Indeed, we have used the
letterE to remind ourselves of elliptic curves in case ofm = 1 and more generally of 2m
dimensional abelian varieties. We hope that the present descent principle can somehow
be ‘lifted’ to characteristic zero. Before that it should be made to work in the symplectic
situation, the bloated semilinear equations for which can be found in [Ab7]. Prior to that
the GL work of this paper should be completed.
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