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Abstract. We propound a descent principle by which previously constructed equa-
tions over GKg™)(X) may be deformed to have incarnations over§EX) without
changing their Galois groups. Currently this is achieved by starting with a vectorial
(= additive)g-polynomial ofg-degreen with Galois group Glon, ¢) and then, under
suitable conditions, enlarging its Galois group to(@l.¢™) by forming its general-

ized iterate relative to an auxiliary irreducible polynomial of degteeElsewhere

this was proved under certain conditions by using the classification of finite simple
groups, and under some other conditions by using Kantor’s classification of linear
groups containing a Singer cycle. Now under different conditions we prove it by
using Cameron-Kantor's classification of two-transitive linear groups.

Keywords. Galois group; iteration; transitivity.

1. Introduction

In this paper we make some progress towards understanding which finite groups are Galois
groups of coverings of the affine line over a ground field of charactepistic 0, having
at most one branch point other than the point at infinity. We are specially interested in the
case when the ground field is not algebraically closed. In particular we realize some of the
matrix groups Glon, ¢™), whereq = p* > 1is a power ofp andm > 0 andn > 0 are
integers, over smaller fields of characterigtithan had previously been accomplished. For
a tie-up with the geometric case of an algebraically closed ground field and the arithmetic
case of a finite ground field see Remark 5.1 at the end of the paper. Likewise, for a tie-up
with Drinfeld module theory see Remark 5.2 at the end of the paper.

To describe the contents of the paper in greater detail, hencefogthdep” > 1 be a
power of a primep, letm > 0 andn > 0 be integers, and let Gf) C k;, C K C Q be
fields whereQ is an algebraic closure & ; note that there are no assumptions on the field
k4 other than for it to contain Glg). Also let E = E(Y) be a monic separable vectorial
g-polynomial ofg-degreen in Y overk, i.e.,

m .
E=EY)=Y" +) X;y""" with X;eK andX, #0, (1.1)
i=1

where the elementXy, ..., X,, need not be algebraically independent okgr When
we want to assume that, for a subgétof {1, ..., m}, the element§X; : i € J*} are
algebraically independent oviey andK = k,({X; :i € J*}) with X; =0 foralli ¢ J*,
we may express this by saying that we are in ge@ericcase of type/*, and we may
indicate it by writingE;:,,q for E andK* for K. WhenJ* is the singleton/® = {m}
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we may say that we are in tH#nomial case. When/* is the pairJJ = {m — u, m}
with 1 < u < m we may say that we are in thetrinomial case. When/* is the set
J¥ ={m—v:v=0orv =adivisor ofm}, we may say that we are in tivisorial case.
Note that the’ -derivative ofE (Y) is X,, and hence ifz € J* theninthe generic case of type
J*, the equatiorE (Y) = O gives a covering of the affine line oviey({X; : m #i € J*})
having X,, = 0 as the only possible branch point other than the point at infinity.

In the general (= not necessarily generic) case, létbe the set of all roots of in
2, and note that thely is anm-dimensional Glg)-vector-subspace aR. Moreover,
since GKgq) is assumed to be a subfield kf and hence oK, every K -automorphism
of the splitting field K (V) of E over K induces a Glg)-linear transformation ol
Consequently G&E, K) < GL(V), i.e., the Galois group of over K may be regarded
as a subgroup of GIV) (see [Ab3]). If we do not assume Gp C k, then we only get
Gal(E, K) < I'L(V), whereI'L(V) is the group of all semilinear transformations of
(see [Ab6]). By fixing a basis o¥ we may identify GI(V) with GL(m, ¢), andT'L(V)
with T'L(m, q). If JlJr C J* then in the generic case of type, as shown in [Ab2] to
[Ab4], we have GalE};, ,, K*) = GL(m, q) but over GKp), as shown in [Ab6], we have
Gal(Ey, ,. GR(p)({X; i € J*})) = I'L(m, q); for applications of these results see [Ab1]
and [Ab5]. To mitigate this bloating we take recourse to generalized iteration as defined
in Remark 3.30 of [Ab7] and repeated below. Here bloating refers to the fact that a more
direct approach would give a Galois group which is larger than desired, when working over
a smaller ground field, and the goal is to modify the covering in order to shrink the group
from semilinear to general linear.

DEFINITION 1.2

For every nonnegative integer we inductively define thejth iterate EIL/I of E by
putting EWON = gl (y) = v, gl = Elll(y) = E(Y), andE/] = Elll(y) =
E(EWL-l(y))forall j > 1. Next we define thgeneralized-th iterate El'] of E for any
r=r(T) =Y rT" e Q[T]with r; € Q (andr; = O for all except a finite number 6,
whereT is an indeterminate, by putting'l = EUl(y) = 3", EIl(v). Note that, for
theY—derivativeEEV’](Y) of EI'l(Y) we clearly have

EV ) = EV0) = r(x,) (1.2.1)

and hence i (X,,) # 0 thenEl'! is a separable vectorighpolynomial over2 whoseg-
degree in¥ equalsn times theT-degree of-. Also note that the definition a£[’] remains
valid for any vectorialE without assuming it to be monic or separable. Moreover, in such
a general set-up, this makes the additive group of all vectgfmdlynomialst = E(Y)

in Y over into a2[T]-premodulehaving all the properties of a module except the left
distributive law and the associativity of multiplication, i.e., for all’ € Q[T] we have
Elr+T = g1 4 EU'T butforallE, E’ overQ we need not haveg + E)H) = El 4+ g/lr]
and in generakl"”'] need not be equal t&!")["']. Reverting to the fixed monic separable
vectorial E exhibited in (1.1), the said premodule structure makesito a GRq)[T]-
modulewhen for everyr € GF(¢)[T] andz € Q we define the ‘product’ of andz to be
EU1(z); we denote this Gfg)[T]-module byQ . Now let us fix

s =s(T) € R = GK(g)[T] of T-degree: with s(X,,) # 0 (1.2.2)

and note that the&l*! is a separable vectoriatpolynomial of¢-degreenn in Y overk,
and the coefficient of its highest degree term equals the coefficient of the highest degree
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of s(T). Let V1] be the set of all roots oEl*] in 2, and note that theW D! is an (mn)-
dimensional Glg)-vector-subspace d. Let GHg,s) = R/sR wheresR is the ideal
generated byin R = GF(g)[T], andletw : R — GHF(gq, s) be the canonical epimorphism.
Now VU] is a submodule of2 and as such it is annihilated by and hence we may
regard it as a Gfg, s)-module; note that then, for everye R andz € 2, the ‘product’ of
w(r) andz is given byw (r)z = EUl(z) = Y r Ell(z), and foreverg € Gal(k (VI]), K)
we haveg(w(r)z) = Y g(r) EM(g(2)) = (0(r))g(z); also note that for alk € R and

z € Qwe haverz = w(r)z = EVl(z) = 6(r, z) With 6(r, z) € (GF(@)[X1, ..., XuDIz].

It follows that, in a natural manner,

GalEM], k) < GL(VID, (1.2.3)

where GL(V) is thegroup of all GF(g, s)-linear automorphismsf V151, by which we
mean all additive isomorphismas: V151 — vIsl suchthatforalh € GF(g, s) andz € VI
we haver (nz) = no(z). Note that

s irreducible inR = GL(VE)) ~ GL(m, ¢"), (1.2.4)

where~ denotes isomorphism. Also note that thealerivative of EbI(Y) is s(X,,) and
hence ifm € J* ands is irreducible inR then in the generic case of typgé, the equation
EBl(y)y = 0 gives a covering of the affine line ovey({X; : m # i e J*}) having
s(X,,) = 0 as the only possible branch point other than the point at infinity; this branch
point is rational if and only itz = 1.

Now part of what was proved in [Ab7] can be stated as follows:

Trinomial Lemmad..3. If JlJr C J*theninthe generic case oftypé we havesal(E,, . K*)
= GL(m, q).

In Note 3.37 of [Ab7] the following problem about generalized iterations was posed.

Problem. Show that if/* = {1, 2, ..., m} then in the generic case of type& we have
GalEjl, k*) = GL(VD).

In [AS1] this was proved whern = T" and in Theorem 3.25 of [Ab7] that result was
semilinearized. Likewise in [AS2] it was proved under the assumptions thatreducible
andm is a square-free integer with GG, n) = 1 and GCOmnu, 2p) = 1, where we
recall thatu is the exponent op in g, i.e.,u is the positive integer defined by = p“.
Actually, what was proved in (1.18) of [AS2] was the following slightly more general result.

Weak divisorial Theorem 1.4. Assume that is irreducible inR, and J¥ c J*. Also
assume thain is a square-free integer wit®CD(m, n) = 1, and GCD(mnu, 2p) = 1.
Then in the generic case of tygé we haveGal(E,, K*) = GL(VE)) ~ GL(m, ¢").

Now CPT (= the classification of projectively transitive permutation groups, i.e., sub-
groups of GL acting transitively on nonzero vectors) is a remarkable consequence of CT
(= the classification theorem of finite simple groups). The implication=STPT was
mostly proved by Hering [Hel, He2]; itis also discussed by Cameron [Cam], Kantor [Ka2],
and Liebeck [Lie]. The proof of (1.4) given in [AS2] makes essential use of the follow-
ing weaker version of CPT, which follows by scanning the list of projectively transitive
permutation groups given in [Ka2] or [Lie].

Weak CPTL.5. Letd be an odd positive integer, and 6t < GL(d, p) be transitive on
the nonzero vectors Gp)? \ {0}. Then there exist positive integdrsc with be = d and
a groupGo with SL(b, p) < Go < I'L(b, p©) such thatG ~ Gq.
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Them = 1 case of (1.4), without the hypothesis G@bwu, 2p) = 1, was proved by
Carlitz [Car] (also see Hayes [Hay]) in connection with his explicit class field theory. In
our proof of (1.4) we used the following variation of Carlitz's result which we reproved as
Theorem 1.20 in [AS2]; recall that a univariate polynonﬂalY) Z 0 EYi of positive
degreeN in Y is said to de|senste|rreIat|ve(R M) WhereM is a prime ideal in a ring
R, |fFNeR\M FreMforl<i<N-—1, andFoeM\M

Carlitz irreducibility lemmal.6. Assume that is irreducible inR, and J* ¢ J*. Let
s*(T) be a nonconstant irreducible factor ofT) in k,[T], and letM* be the ideal in
R* = ky4[{X; i € J*}] generated by{X; : i € J*\ JPYU {s*(X,n)}). Then, form = 1,
in the generic case of typé* we have thatM* = s*(X,,)R* is a maximal ideal in
R* = ky[Xnl, Y‘lEIF;] (Y) is Eisenstein relative toR*, M*), Y‘lEI,[;](Y) is irreducible
in K*[Y], and GaI(Ei[;], K*) = GL(VE)) ~ GL(1, ¢"). Moreover, without assuming
m = 1, but assumingsCD(m, n) = 1, in the generic case of typ&* we have that\/*
is a maximal ideal inR*, Y~ 1E* 5] ¢(Y) is Eisenstein relative toR*, M*), Y~ 1Em§}(Y) is
irreducible in K*[Y], andGaI(E;“,,[f(}, K*) has an element of ordef™” — 1.

In proving (1.4), in addition to items (1.5) and (1.6), we also used the first part of the
following well-known versatile lemma which was initiated by Singer in [Sin] and which
was stated as Lemma 1.23 in [AS2]; for an elementary proof of a supplemented version of
this see Lemma 5.13 and 86 of [Ab8].

Singer cycle lemma.7. Let A € GL(m, g) have ordere = ¢™ — 1. Thendet(A) has
ordere = g — 1, and A acts transitively on the nonzero vect@§(g)™ \ {0}, i.e., itis an
e-cycle in the symmetric groufy, (and as such it is called a Singer cycle). Moreover, in
GL(m, g) all subgroups generated by such elements, i.e., all cyclic subgroups ofarder
form a nonempty complete set of conjugates.

Now the last assertion of (1.6) says thatifs irreducible inR and J> c J* with
GCD(m, n) = 1 then GaAEm ‘4> K), as a subgroup of Glx, ¢"), contains a Singer cycle.
In his 1980 paper [Kal], without using CT, Kantor proved the following variation (1.8) of
(1.5) by replacing the hypothesis@facting transitively on nonzero vectors by the stronger
hypothesis tha€ contains a Singer cycle.

Kantor's Singer cycle theorem 1.8.1f G < GL(m, ¢") contains an element of order
— 1then for some divisor’ of m we haveGL(m’, ¢""/™ ) <G, whereGL(m’, g"™/™")
is regarded as a subgroup &L (m, ¢) in a natural manner.

As a consequence of (1.6) and (1.8), but without using (1.5), and hence without using
CT, in (5.18) of [Ab8] we proved the following stronger version (1.9) of (1.4) in which the
assumption GCDnnu, 2p) = 1is replaced by the weaker assumption G@Dp) = 1.

Strong divisorial theorem 1.9. Assume that is irreducible inR, and J¥ ¢ J*. Also
assume that: is a square-free integer witBCD(m, n) = 1, andGCD(m, p) = 1. Then

in the generic case of typg* we haveGal(E,), K*) = GL(VI)) ~ GL(m, ¢").

In (1.14) of [Ab9] we settled another case of the above Problem by proving the following
Theorem without using the above results (1.4) to (1.9).
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Two step theorem 1.10.Assume that is irreducible inR, andJlT = J*. Also assume that

m = n = 2. Then in the generic case of tygé we haveGal(Ej), k*) = GL(VI) ~
GL(m, ¢").

The proof of (1.10) was based on the following lemma which was stated as Lemma 1.16
in [Ab9] and established in §3 of that paper.

Packet throwing lemma.11. Let M be the maximal ideal in a regular local domai
of dimension/ > 0 with quotient fieldk. Let F(Y) = ZO<1<N F;Y' be a polynomial
of degreeN > 0in Y which is Eisenstein relative toR M) [Note that then for some
elementsfs, ..., F;in R we have(Fo, F, .. Fd)R = M] LetK K(n) whereg is
an element in an overfield o with F(n) = 0 and letR = R[r;] and M = nR + MR.
ThenR is the integral closure oRinK,Risad dimensional regular local domain with
maximal |deaIM MNR = M, and for anyn € K with F(n) = 0and anyFy, ..., Fy
in R with (Fo, Fo,...,F)R = M we have(n, Fo, .. Fd)R = M, and hence for any
ne K with F@) = O we haven e M \ M2, Moreover if for some positive integer
D < N — 1we haveFp ¢ M2+ FoR and F; € MP+21 4 FoRforl<i < D -1,
andns, ..., np are pairwise distinct elements ik with F(nJ) =0forl<j < D,then
F(Y) F(Y) 1_[1<,<D(Y 77/) whereF(Y) is a polynomial of degre&’ — D in Y which

is Eisenstein relative torR, M).

In proving (1.10), the following consequence of (1.11) was implicitly used; in 82 we
shall explicitly deduce it from (1.11).

Two transitivity lemmad.12. Assume that is irreducible in R, and we are in the generic
case of typel* with J° ¢ J* andm > 1. [Note that by(1.2) we know that then
GaI(Eq s1.K*) < GL(VDB)) ~ GL(m, ¢") and hence we may rega@laI(E;Fﬁ, K*) to be
acting on the(m — 1)-dimensional projective spade(m l¢q )overGF(q ) (where the
action is not faithful unlesg” = 2).] LetN = ¢"" —land F(Y) = Y 1E} Lliyy =
D 0<i<N FYiwith F; € R* = ky[{X; : j € J*}]. Assume that the Iocallzatlon @& at
some nonzero prime ideal in it is a regular local doma&imvith maximal idealZ such that
F(Y) is Eisenstein relative toR, M). LetD = ¢" — 1 and assume thatp ¢ M2+ FoR
andF; € MPT2= 4 FoRforl<i <D —1. ThenGaI(E;‘!f,l, K*) is two transitive on
the im — 1)-dimensional projective spade(m — 1, g") overGF(g").

In Theorem | of [CKa], Cameron—Kantor proved the following:

Cameron-Kantor’s two transitivity theorem 1.13. If m > 2andG < I'L(m, g) is two
transitive on the projective spad@(m — 1, q), then eitherSL(m,q) < G or G = the
alternating groupA7 insideSL(4, 2).

As a consequence of (1.6), (1.7), (1.12), (1.13), and the coefficient computations of
83, butwithout using(1.5) or (1.8) to (1.10), in 84 we shall prove the following theorem.
With an eye on further applications, the computations of §3 are more extensive than what
we need here.

Main theorem 1.14. Assume that is irreducible inR, andn < m with GCD(m,n) = 1

andJ, c J*. Then in the generic case of tygé we haveGaI(E,’;[‘q, K*) = GL(VDB] ~
GL(m, g").

In 85 we shall make some motivational and philosophical remarks.
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2. Proof of two transitivity lemma

To continue with the discussion of (1.2), foramoment assume ibatreducible inR with
s(X) # 0andm > 1. Then by (1.2.3) and (1.2.4) we have @&, K) < GL(VI]) ~
GL(m, ¢") and hence we may regard G&l*!, K) to be acting on thén — 1)-dimensional
projective spac® (m — 1, ¢") over GKq") (where the action is not faithful unleg8 = 2).
Let N = g™ —1andF(Y) = Y"1ELI(Y). ThenF(Y) € K[Y]is of Y-degreeN. For
a moment assume thax(Y) is irreducible inK[Y] and letk = K (n) wheren is a root
of F(Y) in Q. Then [K : K] = N and GalELY, K) is transitive onP(m — 1, ¢").
Let Rp be the set of all nonzero members Bfof T-degree less than. Then, in the
notation of (1.2),(a)(r)77),€R0 are all the distinct ‘nonzero scalar multiples’ gfin the
(R/s)-vector spac&[*], and clearlyRy is the set of albg + a1 T + - - - + a1 7" 1 with
(oo, 01, ..., 0Qy_1) € GF(q)” \{(0,0,...,0)}. ThisgivesudD dlstlnct roots ofF'(¥) in K
whereD = ¢" — 1. ThereforeF (Y) = F*(Y) ]—[reRo(Y w(@)n) WhereF*(Y) IS K[Y]
is of Y-degreeN — D = ¢"™" — ¢" > 1. Now (w(r)n),<r, iS the inverse image of a point
in P(m — 1, ¢™) under the natural surjection &)™ \ {0} — P(@m — 1, ¢") obtained
by identifying V) with GF(¢")™ via a basis. It follows that iF*(Y) is irreducible
in K then GalED!, K) is two transitive orP(m — 1, q"). Itis also clear that i’ (¥) =
F(Y) ]_[1<1<D(Y n;) wheren, ..., np are distinctroots of'(¥) in K andF(Y) € K[Y]

is irreducible then we must ha\léf*(Y) = F(Y). Therefore we get the following:

Projective action lemma&.1. In the situation of(1.2) assume that is irreducible in R
with s(X,,) # 0andm > 1. Let F(Y) = Y ~*ElI(y) and note that the (Y) € K[Y] is
of Y-degreeN = ¢"" — 1. Assume that’(Y) is irreducible inK[Y] and letK = K (n)
wheren is a root of F(Y) in Q. Then[K K] = N and GaI(E[Y] K) is transitive on
P(m—1, qg™). Moreover, if uponlettindd = ¢" —1we haveF (Y) = F(Y) ]_[l<l<D(Y ni)
whereny, ..., np are distinct roots ofF (Y) in K and F(Y) € K[Y] is irreducible then
Gal(El!, K) is two transitive orP(m — 1, ¢").

Since Eisenstein polynomials are irreducible, upon talting E7, , with F' = F and
K = K* = K in (2.1), by (1.11) we get (1.12).

3. Coefficient computations

Let R" = GF(¢)[X1, ..., X»]. Then clearly for every > 0 we have
ELDy) =y +3 D, ¥4 with D, ; € R*. (3.1)
i=1
Also

m
EM(yy = Eqy)=v7" + ZX,-Y‘f'"“ (3.2)
i=1
and hence for every integer> 1 we have

mv—m ) q"
EN(y)y = E(El-U(y)) = (quu—m + Z Dv_l’iquv_m_l>

m—uv

m mv—m q
+) X (Yq + > D1wY? )

v=1 w=1
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qmv g qm qmvfi
=(r""+ > DI,¥
i=1
m

and therefore, for any positive integemupon letting

the set of all pairs of integel®, w)
QG@)={ withl<v<mandl<w <mv-—m
suchthat +w =i

we get
D,; = Z XUDZT?U) if mv—m<i<my
(v,w)eQ (i)

and

m—v

Di=Xi+DI_,+ Y Xx,pi_, if 1<izm

(v, w)eQ()
By induction we shall show that for every> 0 we have

Dv,mv = X;,}1
and
if is aninteger with <! < m
such thatX; = 0 whenevem — [ <i <m
thenD, ; = 0 whenevemv — [ <i < mv
_ —D+xr(g -1
andDu,mv—l = Xm—l ZK:% XI(; A )
and

if jis aninteger with 1< j <m

such thatX; = O whenever 1< i < j
then for 1< i < min(m, 2j — 1) we have
D,; = ZK;é X?

which we know to be zero if ¥ i < j.

145

(3.3)

(3.4)

(3.5)

(3.6)

3.7)

(3.8)

By (3.2), this is obvious for = 1. So letv > 1 and assume true for— 1. Then clearly
Q(mv) = {(m, mv — m)}, and hence by (3.4) and thve— 1 version of (3.6) we get

Dv,mv = XmDv—l,mv—m
-1
= XmX;)n
_ vV
=XV

Likewise, ifl is an integer with 1< [ < m such thatX; = 0 whenevem — [ < i < m,

then by (3.4) we get

XmDy—1.mv—m—i if my—1<i<my

Dv,i = ql
Xmval,mvfmfl + XD

v—=1mv—m

ifmy—1=i
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and hence by the — 1 versions of (3.6) and (3.7) we get
D,;=0 if mv—Il<i<my

and

v—1
~Dq' —-2)+i(q' -1
Dv,mv—l = Xm—1 (Xl(of 1 + Zxr(:: ) ))

=0
v—1 ;
—D+r(g' -1
= Xy 3 XY,
A=0

Similarly, if j is an integer with 1< j < m such thatX; = 0 whenever 1< i < j, then
foralli,v,wwithl<i <2j—1and(v, w) € Q(i) we have eithep < j orw < j, and
hence by (3.5) and the — 1 version of (3.8) we see that ford i < min(m, 2j — 1) we
have

m v=2 mi qm vt m
Dy;=X;+DI_,, =X,-+(ZX? ) =y xI.
2=0 2=0

4. Proof of main Theorem

To prove the Main Theorem 1.14, assume thas irreducible inR andn < m with

GCD(m, n) = 1. Also assume that we are in the generic case of ffjpwith VARSI A
In view of (1.2.3) and (1.2.4), after identifying[*] with GF(4")" via a basis, we have
GaI(E,}*!f;J, K*) < GL(m, ¢™) and we may regard G(&f;[;l K*)asactingoP(m—1, g")
(where the action is not faithful unlegg = 2). We want to show that GHY;,[:SJ, K*) =
GL(m, ¢").

Let N = ¢™ — LandF(y) = Y EII(v) = Yo .y FiYi with FYl e R* =
ky{X; - j € J}]l. Let D = ¢" — 1. Note thats = s(T) = Y g.,-, 5 T" with
sy € GKg) ands, # 0. LetEq be an algebraic closure &f in 2, and let; be a root
of s(T) in k,. Sinces(T) is irreducible inR, we getz?" ~1 = 1 ands’(¢) # 0 where
s'(T) is theT -derivative ofs(T). Let R be the localization oEq[Xn, X,,] at the maximal
ideal generated by, andX,, — §.~Then§ is two dimensional regular local domain with
maximal idealM = (X,, X, — ¢)R.

For a moment suppose that = k, andJ, = J*, and let us writek ' for K* andE):,,q
for £, ,. Now by (1.6) and (1.7) we see thA(Y) is Eisenstein relative toR, ), and

the determinantal map G(aﬂﬂfq], KTy — GF(¢™) \ {0} is surjective. By (1.2.1) we have
Fo=s(Xn).

By taking/ = n in (3.7) we see that
F:=0forl<i<D-1

and

ﬁD = Xm—n®(Xm),
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where

-1 n_q
®(Xm)= Z Sy Z Xr(rll) )+ (g )

O<v<n 0O<i<v-1
Sincec?"~1 = 1, we get

I DD -t

O<i<v-1

and therefore

O = Y s t=5)#0.

O<v<n
It follows that

Fp ¢ M? + FoR
and hence by (1.12) we conclude that (E;{l[f], K1) is two transitive orP(m — 1, q"). If

n > 1thenby (1.13) we see that 6k, ¢") < GaI(EL[f;}, KTy and hence, because the deter-
minantal map GaIE;[,[‘,} KTy — GF(¢")\{0} is surjective, we must have le,f,[f(}, K" =
GL(m, ¢"). If n = 1 then by (1.3) we get Ga,*}, k) = GL(m, g"). Thus in both the
cases we have Gai,|l), k) = GL(m, ¢").

Now let us return to the case when the figJdneed not be algebraically closed. Since
k, is an overfield ofk, and E,Jﬁ,[i} is obtained fromE;“,,[f;]] by puttingX; = 0 foralli ¢
J*\J,:r, in view of the extension principle (cf. p. 93 of [Ab2]) and the specialization
principle (cf. p. 1894 of [AbL]), see that (Xaf,f,[fq], K" < GaI(E,f,[i;, K*). Therefore

GalExL], k1) = GL(m, ¢™).

5. Concluding remarks

Let us end with some remarks on motivation and philosophy.

Remark5.1 (Algebraic fundamental groups The algebraic fundamental group (L)

of the affine lineL; over a fieldk is defined to be the set of all Galois groups of finite
unramified Galois coverings of the affine liig overk. Similarly we definer4 (L ;) for

Li,; = Li punctured at points, and more generally we defing(C, ,,) for a nonsingular
projective genug curveC overk punctured aiv + 1 points. LetQ(p) be the set of all
quasip groups, i.e., finite group& such thatG = p(G) where p(G) is the subgroup

of G generated by all of itg-Sylow subgroups, and more generally {&t(p) be the set

of all quasi{p, t) groups, i.e., thos& for which G/p(G) is generated by generators.

In [Abl], as geometric conjectured was predicted that ik is an algebraically closed
field of characteristipp thenmws (L) = Q(p), and more generallyta(Lr;) = Q:(p)
andm s (Cg,w) = Q2¢4w(p). In 1994, these were settled affirmatively by Raynaud [Ray]
and Harbater [Har]. For higher dimensional versions of the geometric conjectures see
[Ab5]. Then, mostly inspired by Fried—Guralnick—Saxl [FGS] and Guralnick—Sax| [GuS],
we turned our attention to coverings defined over finite fields. In [Ab6] this led to the
arithmetical questiorasking whetherr 4 (Lgrg)) = Q1(p), the philosophy behind this
being that dropping from an algebraically closed field to a finite field is somewhat like
adding a branch point. In particular we may ask whethefL, 1) containsQ1(p) where
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k is an overfield of GFy). As indicated in the introduction, in doing this arithmetical
problem, the linear groups got bloated towards their semilinear versions and the attempt to
unbloat them led us to generalized iterations.

Remarlks.2 Division points and Drinfeld modulsThe generalized iterations themselves
came out of the theory of Drinfeld modules as developed in his paper [Dri]. This work of
Drinfeld seems to have been inspired by Serre’s work [Sel] on division points of elliptic
curves which was later generalized by him [Se2] to abelian varieties. Inturn, our description
of the moduleEl! in (1.2) is based on the ideas of Drinfeld modules. For a discussion of
Drinfeld modules and their relationship with division points of elliptic curves and abelian
varieties see Goss [Gos]. Very briefly, the roots of the separable vecjepiallynomial

E of g-degree & exhibited in (1.1) form a2 dimensional GFy)-vector-space on which

the Galois group of acts. The said Galois group also acts on the roofl8fdiscussed

in (1.2) which are the analogues ofdivision points of E." Indeed, we have used the
letter E to remind ourselves of elliptic curves in casenof= 1 and more generally ofi2
dimensional abelian varieties. We hope that the present descent principle can somehow
be ‘lifted’ to characteristic zero. Before that it should be made to work in the symplectic
situation, the bloated semilinear equations for which can be found in [Ab7]. Prior to that
the GL work of this paper should be completed.

Acknowledgement

This work was partly supported by NSF Grant DMS 99-88166 and NSA grant MDA 904-
97-1-0010.

References

[Abl] Abhyankar S S, Coverings of algebraic curvas). J. Math.79 (1957) 825-856

[Ab2] Abhyankar S S, Galois theory on the line in nonzero characterBtit, Am. Math. Soc.
27(1992) 68-133

[Ab3] Abhyankar S S, Nice equations for nice groulssael J. Math.88 (1994) 1-24

[Ab4] Abhyankar S S, Projective polynomiaBroc. Am. Math. Sod25(1997) 1643-1650

[Ab5] Abhyankar S S, Local fundamental groups of algebraic varigfies;. Am. Math. Sod.25
(1997) 1635-1641

[Ab6] Abhyankar S S, Semilinear transformatioRgspc. Am. Math. Sod27(1999) 2511-2525

[Ab7] Abhyankar S S, Galois theory of semilinear transformations, Proceedings of the UF Galois
Theory Week 1996 (ed.) Helmut Voelklegt al, London Math. Soc., Lecture Note Series
256(1999) 1-37

[Ab8] Abhyankar S S, Desingularization and modular Galois theory (to appear)

[Ab9] Abhyankar S S, Two step descent in modular Galois theory, theorems of Burnside and
Cayley, and Hilbert's thirteenth problem (to appear)

[AbL] Abhyankar S S and Loomis P A, Once more nice equations for nice groRms;. Am.
Math. Soc126(1998) 1885-1896

[AS1] Abhyanka S S and Sundaram G S, Galois theory of Moore— Carlitz—Drinfeld modales,
R. Acad. Sci. Pari825(1997) 349-353

[AS2] Abhyanka S S and Sundaram G S, Galois groups of generalized iterates of generic vectorial
polynomials (to appear)

[Cam] Cameron P J, Finite permutation groups and finite simple gr@uybls | ondon Math. Soc.
13(1981) 1-22

[CKa] Cameram P J and Kantor W M, 2-Transitive and antiflag transitive collineation groups of
finite projective spaces, Algebra60 (1979) 384-422

[Car] Carlitz L, A class of polynomialsirans. Am. Math. Soél3 (1938) 167-182

[Dri] Drinfeld V G, Elliptic Modules, Math. Sbornikd4 (1974) 594-627



Modular Galois theory 149

[FGS] Fried M D, Guralnik R M and Saxl J, Schur covers and Carlitz’s conjectlamel J. Math.
82(1993) 157-225

[GuS] Guralnik R M and Saxl J, Monodromy groups of polynomials, Groups of Lie Type and
their Geometries (efl$V M Kantor and L Di Marino (Cambridge University Press) (1995)
125-150

[Gos] Goss D, Basic Structures of Function Field Arithmetic (Springer-Verlag) (1996)

[Har] Harbater D, Abhyankar's conjecture on Galois groups over cumesnt. Math117(1994)
1-25

[Hay] Hayes D R, Explicit class field theory for rational function fieldsans. Am. Math. Soc.
189(1974) 77-91

[Hel] Hering C, Transitive linear groups and linear groups which contain irreducible subgroups
of prime orderGeometriae Dedicatd (1974) 425-460

[He2] Hering C, Transitive linear groups and linear groups which contain irreducible subgroups
of prime order I1,J. Algebra93(1985) 151-164

[Kal] Kantor W M, Linear groups containing a Singer cycleAlgebra62 (1980) 232-234

[Ka2] Kantor W M, Homogeneous designs and geometric lattitgSpmbinatorial TheonA38
(1985) 66-74

[Lie] Liebeck M W, The affine permutation groups of rank threegc. London Math. So&4
(1987) 477-516

[Ray] Raynaud M, Redtment de la droit affine en charadsticp > 0 et conjecture d’Abhyankar,
Invent. Math.116(1994) 425-462

[Sel] Serre J-P, Prof@tes galoisiennes des points d’ordre fini des courbes elliptiqoesnt.
Math. 15 (1972) 259-331
[Se2] Serre J-P, &une des cours et travauAnnuaire du Cokge de Franc®5-86(1985)

[Sin] Singer J, A theorem in finite projective geometry and some applications in number theory,
Trans. Am. Math. Sod.3(1938) 377-385



