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ABSTRACT 

This study investigated in-vivo changes of peripheral refraction with commercially available single vision and multifocal 
soft contact lenses, utilizing different designs and various corrective power values. Starting at the fovea, wave-front 
aberrations were measured up to 30o nasal retinal eccentricity, in 10o increments, using a commercially available Shack-
Hartmann aberrometer. Three different types of contact lenses were fitted in an adult subject’s right eye: Acuvue Oasys 
Single Vision (ASV), Proclear Multifocal D with 2.50 diopters (D) add power (PMD), and ArtMost SoftOK (SOK). Each lens 
type was fitted in corrective power values of -2.00 D, -4.00 D, and -6.00 D. Refractive errors were computed in power 
vector notation: The spherical equivalent (M), the Cartesian Jackson-Cross-Cylinder (J0), and the oblique Jackson Cross 
Cylinder (J45) from measured second order Zernike terms. Acuvue Oasys Single Vision lenses produced a slight myopic 
shift at 30o retinal periphery (-0.32 D ± 0.05) without significant differences between the various lens power values. 
Proclear Multifocal D lenses did not create clinically significant myopic shifts of at least -0.25 D. All SOK lenses produced 
clinically significant relative myopic shifts at both 20o (-0.61 D ± 0.08) and 30o (-1.42 D ± 0.15) without significant 
differences between the various lens power values. For all lens types and power values, off-axis astigmatism J0 was 
increased peripherally and reached clinical significance beyond 20o retinal eccentricity. The increased amount of off-axis 
astigmatism J0 did not show a significant difference for the same type of lenses with different dioptric power. However, 
at 30o retinal eccentricity, SOK lenses produced significantly higher amounts of off-axis astigmatism J0, compared with 
ASV and PMD lenses (SOK versus ASV versus PMD: -1.67 D ± 0.09, -0.81 D ± 0.07, and -0.72 D ± 0.15). Both ASV and SOK 
lenses showed no clinically significant differences in the amount of introduced astigmatic retinal image blur, with various 
lens power values. Proclear Multifocal D lenses showed a systematic increase of astigmatic retinal image blur with an 
increase of add power. At 30o retinal eccentricity, -6.00 D SOK lenses introduced 0.73 D astigmatic retinal image blur, 
while PMD and ASV lenses introduced 0.54 D and 0.37 D, respectively. In conclusion, relative peripheral refractions, 
measured in-vivo, were independent of the contact lenses central corrective power. The SOK contact lenses 
demonstrated a stronger capability in rendering relative peripheral myopic defocus into far periphery, compared to the 
other lens designs used in this study. This was accompanied by higher amounts of introduced astigmatic retinal image 
blur. 
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INTRODUCTION

Myopia is a common type of refractive error, which can 
be differentiated to axial myopia and refractive myopia. 
Axial myopia is primarily caused by an axial elongation of 
the eyeball, which exceeds the refractive power of the 
eye’s optical system, therefore, the image is formed in 
front of the retina. There are higher risks of retinal 
detachment, glaucoma, possible blindness, and other 
ocular pathologies in the presence of axial myopia [1]. 
This poses economical as well as health care burdens to 
myopic individuals. In terms of costs to the society, there 
is an estimated $4.6 billion dollars annual expenditure 
related to myopia [2]. Worldwide, the prevalence of 
myopia was increased in the recent years with some East 
Asian countries reporting prevalence rates of up to 80% 
[3, 4]. 
A robust body of scientific literature suggested that onset 
and progression of myopia are related to the direction of 
retinal defocus. A hyperopic defocus will cause 
continuous ocular growth to compensate for the blurred 
retinal image, while, a myopic retinal defocus acts as a 
stop signal [5-7]. Animal studies [8, 9], which include 
mammalian models [10, 11], as well as primates [12, 13], 
have confirmed this theory. Moreover, this theory 
applies to both the foveal portion of the eye, as well as 
the retinal periphery [14, 15]. The human fovea occupies 
only 1% of the central retinal area, while the remaining 
99% represents the retinal periphery [16]. Therefore, it is 
reasonable to assume that a peripheral retinal visual 
stimulus has the ability to substantially influence the 
progression of myopia. 
Many studies have reported that emmetropic and 
hyperopic eyes tend to have relative myopic retinal 
peripheries, while myopic eyes tend to have relative 
hyperopic retinal peripheries, at least along their 
horizontal visual fields [17-19]. It seems plausible that a 
myopic eye will continue to experience myopic 
progression as long as its retinal periphery receives a 
hyperopic defocus. This hypothesis has been confirmed 
by several scientific studies [20, 21]. 
Orthokeratology is one of the most effective optical 
interventions for slowing the progression of myopia [22, 
23]. With this treatment option, changes in corneal 
topography ultimately result in a myopization of the 
retinal periphery and, therefore, contributes to a robust 
myopia control effect [24]. However, potential issues 
may limit the widespread use of orthokeratology, such 
as, discomfort while wearing rigid contact lenses, relative 
complicated lens fitting and lens care procedures, 

treatment costs, and a potentially increased risk of 
corneal infections [25, 26]. Multifocal soft contact lenses 
can be specifically designed to provide optics, which are 
comparable to those of corneas during orthokeratology. 
Various studies have demonstrated a myopia control 
effect with these lenses, which is comparable to 
orthokeratology [27, 28]. 
Multifocal soft contact lenses with center distance 
designs, which are developed to be used in presbyopic 
patients, may also be used off label for myopia control 
[28]. Several studies have investigated the in-vivo optics 
of some of these stock lens designs when used in the 
context of myopia control, especially the amount of 
induced peripheral defocus [29-31]. 
In the recent years, new multifocal contact lens designs 
were specifically developed for myopia progression 
control [32]. Therefore, a continued interest in in-vivo 
optical performance of these contact lenses, as well as a 
comparison with established lens designs exists. 
The purpose of this study was to investigate in-vivo 
changes of peripheral refraction with commercially 
available single vision and multifocal soft contact lenses, 
utilizing different designs and various corrective power 
values. 

MATERIALS AND METHODS 

Contact Lenses 
The researchers fitted three different types of contact 
lenses for the participant: Acuvue Oasys® single vision 
(ASV), Proclear® Multifocal D with +2.50 diopter (D) add 
power (PMD), and ArtMost SoftOK® (SOK). Each lens type 
was assessed with corrective power values of -2.00 D, -
4.00 D, and -6.00 D. The PMD as well as the SOK contact 
lenses possess multifocal optics. While the PMD lens 
design was developed for presbyopia, SOK was 
specifically designed to mimic the optical performance 
established in orthokeratology. 

Instrumentation and Set-up 
Using a commercially available Complete Ophthalmic 
Analysis System (COAS) Shack-Hartmann aberrometer 
(AMO Wavefront Sciences, Inc., Albuquerque, New 
Mexico), the researchers measured wavefront 
aberrations with and without soft contact lenses in an 
adult subjects’ right eye, which was used as a stable test 
case (male, 41 years old, refractive error: -6.00 D sphere 
and -0.50 D cylinder with axis at 173

o
, no ocular 

pathologies). This interventional study was approved by 
the Institutional Review Board of Western University of 
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Health Sciences and informed consent was obtained 
from the subject. Starting at the patient’s fovea, the 
researchers took measurements in 10

o
 increments, 

extending out to 30
o
 nasal retinal eccentricity. Three 

measurements were taken at each gaze position. The 
instrument was realigned to the measured eye before 
each measurement. 

Data Analysis 
The researchers computed relative power vector values 
of defocus M, with-the-rule (WTR) and against-the-rule 
(ATR) astigmatism J0 (the Cartesian Jackson-Cross-
Cylinder), and oblique astigmatism J45 (the oblique 
Jackson Cross Cylinder), by using the following set of 
equations from second order Zernike terms: [33] 

   
  √ 

  
   
  

    
  √ 

  
   
  

     
  √ 

  
   
   

Where Cs are Zernike coefficients for defocus (C2
0
), 

WTR/ATR astigmatism (C2
2
) and oblique astigmatism    

(C2
-2

), M is the spherical equivalent, and r is the pupil 
radius. 
One-sample Kolmogorov-Smirnov test at 5% significance 
level was applied to the data, as statistical analysis, using 

Matlab (MathWorks, Inc., Natick, MA). Figures presented 
in this paper were also generated using the Matlab 
program. For further interpretation, the researchers 
considered a change of 0.25 D in any of the power 
vectors as clinically significant. 
In addition, this study analyzed relative astigmatic retinal 
image blur, by comparing the root mean square value of 
the combined power vectors J0 and J45 of each lens 
design, using the following equation: [34] 

      √  
     

  

RESULTS 

Defocus M 
Acuvue Oasys® single vision lenses produced a slight, yet 
clinically significant relative myopic defocus at 30

o
 retinal 

eccentricity (-0.32 D ± 0.05) without a significant 
difference between the various lens power values (Figure 
1A). Furthermore, PMD lenses did not create clinically 
significant changes in defocus across the measured nasal 
retinal field (Figure 1B) and SOK lenses produced a 
pronounced and clinically significant relative myopic 
defocus at 20

o
 (-0.61 D ± 0.08) and more so 30

o
 (-1.42 D ± 

0.15) retinal eccentricity, without significant differences 
between the various lens power values (Figure 1C). 

 

 
Figure 1: Relative defocus MR with three different contact lens types, each having three different power values, at various degrees of nasal retinal 

eccentricity. (MR: Peripheral M – Central M; D: diopter; ASV: Acuvue Oasys® single vision contact lens; PMD: Proclear Multifocal D with 2.50 diopter add 

power contact lens; SOK: ArtMost SoftOK contact lens). 

 

With-the-Rule and Against-the-rule Astigmatism J0 
Acuvue Oasys® single vision lenses did not significantly 
impact astigmatism J0 across the measured nasal retinal 
field, although with increasing peripheral field angle, the 
WTR component of this power vector increased (Figure 
2A). Furthermore, PMD lenses did not significantly 
impact J0 astigmatism, except the -6.00 D lens, which 
created a significant increase of the WTR component of 

this power vector at 20
o
 (+0.26 D) and 30

o
 (+0.41 D) 

retinal eccentricity (Figure 2B). The SOK lenses 
significantly impacted J0 astigmatism at 30

o
 retinal 

eccentricity (-0.71 D ± 0.09) for all power values, and in 
contrast to the other lenses, produced ATR astigmatism. 
In addition, the -6.00 D lens significantly changed J0 at 
20

o
 retinal eccentricity (-0.25 D) (Figure 2C). 
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Oblique Astigmatism J45 
Acuvue Oasys® single vision lenses clinically significantly 
impacted astigmatism J45 at 30

o
 retinal field for the -4.00 

D and -6.00 D power values, which increased J45 by -0.26 
D (Figure 3A). Furthermore, PMD lenses did not 

significantly impact astigmatism J45 across the measured 
nasal retinal field (Figure 3B) and SOK lenses had a 
clinically significant impact on astigmatism J45 at 30

o
 

retinal field for the -6.00 D power value, which increased 
J45 by -0.27 D (Figure 3C). 

 
Figure 2: Relative WTR/ATR astigmatism. 

(WTR: with-the-rule; ATR: against-the-rule D: diopter; ASV: Acuvue Oasys® single vision contact lens; PMD: Proclear Multifocal D with 2.50 diopter add 

power contact lens; SOK: ArtMost SoftOK contact lens). 

 

 
Figure 3: Relative oblique astigmatism J45 with three different contact lens types, each having three different power values, at various degrees of nasal 

retinal eccentricity. (J45: the oblique Jackson Cross Cylinder; D: diopter; ASV: Acuvue Oasys® single vision contact lens; PMD: Proclear Multifocal D with 

2.50 diopter add power contact lens; SOK: ArtMost SoftOK contact lens). 

 

 
Figure 4: Direct comparison of relative change in peripheral refraction with three different contact lens types at various degrees of nasal retinal 

eccentricity. Each curve indicates an average relative value of three utilized powers per lens (-2.00 D, -4.00 D, -6.00 D) for power vectors M.  

(ASV: Acuvue Oasys® single vision contact lens; PMD: Proclear Multifocal D with 2.50 diopter add power contact lens; SOK: ArtMost SoftOK contact lens). 
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Direct Comparison of Average Changes in Peripheral 
Defocus M 
For an easier visual comparison of the average changes in 
M across the nasal retinal field, the researchers plotted 
the average relative mean changes of the three utilized 
power values per lens (-2.00 D, -4.00 D, -6.00 D) across 
the nasal visual field (Figure 4). 

Direct Comparison of Astigmatic Retinal Image Blur 
When analyzing relative astigmatic retinal image blur, the 
researchers found a higher effect for SOK lenses 
compared to ASV and PMD lenses, especially at the 30

o
 

nasal retinal (Figure 5). 

 

 
Figure 5: Relative astigmatic retinal image blur with three different contact lens types at various degrees of nasal retinal eccentricity. Each curve 

indicates the root mean square value of the combined power vectors J0 and J45. 

(J0: Cartesian Jackson-Cross-Cylinder, J45: the oblique Jackson Cross Cylinder, D: diopter; ASV: Acuvue Oasys® single vision contact lens; PMD: Proclear 

Multifocal D with 2.50 diopter add power contact lens; SOK: ArtMost SoftOK contact lens.) 

 

DISCUSSION 

Measurements on peripheral refraction using the 
Complete Ophthalmic Analysis System (COAS) has been 
validated in a previous study, especially when measuring 
eyes fitted with multifocal contact lenses [31]. For a 
particular lens type, the results indicate that changes of 
peripheral refraction in the nasal retina were 
independent of central corrective power values of 
individual lenses. ArtMost SoftOK lenses demonstrated 
the strongest capability in producing relative peripheral 
myopic defocus at the outer nasal retinal periphery. 
According to the hypothesis that peripheral myopic 
defocus is a protective mechanism for further 
development of myopia, it is reasonable to assume that 
the SOK lens will have a strong potential for inhibiting 
myopia progression.  
The current results also suggested that the SOK lens 
design induced a clinically significant amount of 
peripheral ATR astigmatism. The researchers found 
astigmatic retinal image blur at the 30

o
 nasal retinal 

periphery to be higher with SOK lenses compared to ASV 
and PMD lenses. Although astigmatic blur certainly 
influences retinal image quality, animal studies have 

shown that defocus has a stronger effect on eye growth 
[35, 36]. 
The single eye approach used in this study was successful 
as it provides a stable case for fitting contact lenses with 
different designs and power values. The current results 
rendered information to the field, to better understand 
the power profiles in the peripheral visual field after 
wearing the three tested soft contact lenses and looked 
at the differences of peripheral refraction introduced by 
the same design with different power values. However, 
the temporal visual field was not measured due to the 
limitation of the device to access the full horizontal visual 
field. More lens power values could be chosen from each 
type of contact lenses to better evaluate the changes in 
their peripheral refraction.  
More studies are needed to evaluate in-vivo changes in 
peripheral refraction with a wider variety of soft contact 
lens designs in the horizontal and vertical retinal fields. In 
addition, interventional studies could identify a specific 
amount of change in peripheral retinal refraction, 
required for efficiently controlling myopia progression in 
children. 
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CONCLUSIONS 

In this study, relative peripheral refractions, measured in-
vivo, were independent of the contact lenses central 
corrective power. The SOK contact lenses demonstrated 
a stronger capability in rendering relative peripheral 
myopic defocus to far periphery, compared to the other 
lens designs used in this study. This was accompanied by 
higher amounts of introduced astigmatic retinal image 
blur. 
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