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ABSTRACT 

MicroPulse transscleral cyclophotocoagulation (IRIDEX Corp., Mountain View, CA) is a novel technique that uses 
repetitive micropulses of active diode laser (On cycles) interspersed with resting intervals (Off cycles). It has been 
proposed that the OFF cycles allow thermal dissipation and, therefore, reduce collateral damage. The literature suggests 
that Micropulse has a better safety profile compared to traditional continuous-wave cyclophotocoagulation. However, 
because it is a relatively new technique, there are no clear guidelines stating the ideal laser parameters that would allow 
the best balance between high and sustained effectiveness with minimal side effects. This research reviewed the 
literature to approximate ideal parameters for single-session treatment. To simplify the comparison between studies, 
this study used Joules (J) as a way to standardize the energy levels employed. The reviewed clinical publications allowed 
reduction of these parameters to a range between 112 and 150 J of total energy, which allows a moderate IOP lowering 
effect of around 30% with few/no complications. An additional narrowing of the parameters was achieved after 
analyzing recently published experimental data. These data suggest a different mechanism of action for the Micropulse, 
similar to that of the pilocarpine. This effect was maximum at 150 J. Since clinical studies show few or no complications, 
even at those energy levels, it could be hypothesized that the ideal parameters can be located at a point closer to 150 J. 
This data also leads to the concept of dosimetry; the capacity to dose mTSCPC treatment based on desired IOP lowering 
effect and risk exposure. Further prospective studies are needed to test the proposed evidence-based hypothesis. 
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INTRODUCTION

Glaucoma is one of the main causes of irreversible 

blindness, worldwide [1]. Historically, when hypotensive 

medical treatment or laser treatment of the trabecular 

meshwork (TM) were not enough to control the disease, 

traditional surgical procedures (e.g. filtering surgery, and 

drainage devices implantation) were contemplated. 

Unfortunately, they are not always effective and present 

a high incidence of complications of variable severity [2]. 

In recent years, a new group of surgical techniques, 

known as Minimally Invasive Glaucoma Surgeries (MIGS), 
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have been conceived to occupy a niche in the surgical 

treatment of mild to moderate glaucoma [3-8]. However, 

although usually safe, their effectiveness and long-term 

performance is yet to be fully established. Regardless, 

when all these surgical options are exhausted, 

transscleral cyclophotocoagulation with diode laser 

becomes an option [9]. It has been proposed that this 

technique decreases IOP by combining two mechanisms. 

The first mechanism is probably the photo-destruction of 

the ciliary body pigmented and non-pigmented 

epithelium (810 nanometer diode laser wavelength is 

better absorbed by melanin). The second mechanism is 

the increase in the aqueous humor drainage through the 

uveoscleral pathway [10]. With this technique, severe 

complications are frequently reported, including 

hypotony, phthisis bulbi, chronic inflammation, and 

decreased visual acuity [11-15]. 

Motivated by these limitations, a modified transscleral 

cyclophotocoagulation technique has been developed. 

The infrared MicroPulse® transscleral 

cyclophotocoagulation (IRIDEX Corp., Mountain View, 

CA) is a novel technique that uses repetitive micropulses 

of active diode laser (On cycles), interspersed with rest 

intervals (Off cycles) [16]. It has been proposed that the 

Off periods allow for thermal dissipation, and thus, 

reduce collateral damage and adverse effects [13]. 

Energy level (i.e. total time of treatment and power), 

area treated, positioning of the probe, and velocity of 

sweeping motion are all modifiable parameters that can 

influence the clinical outcome of this technique. At 

present, given its novelty, there are no clear guidelines 

on how to balance these parameters to achieve high 

effectiveness with minimal side effects. In this article, the 

researchers reviewed the literature and current evidence 

and developed a hypothesis, in an attempt to 

approximate the ideal parameters for this technique. 

METHODS 

A bibliographic search was performed using Pubmed, 

covering publications between years 2015 and 2018. A 

broad match combination of keywords was used, 

including glaucoma AND Micropulse. Twenty-eight 

papers were obtained. This research excluded studies 

that were not original articles, did not refer to glaucoma, 

did not employ the transscleral cyclophotocoagulation 

technique, were written in languages other than English, 

and those that did not describe the laser parameters 

employed. Finally, a total of nine papers remained 

eligible. The review was complemented using references 

of the cited studies, when appropriate. Finally, the 

researchers reviewed AGS abstracts, and ARVO abstracts 

published in Investigative Ophthalmology & Visual 

Science Journal (IOVS) during years 2017 and 2018 that 

were not published as papers; one of them being an 

experimental study (Johnstone et al, 2017). 

Micropulse versus Continuous Wave Transscleral 

Cyclophotocoagulation 

Micropulse is considered as equally effective yet safer 

than Continuous Wave Transscleral 

Cyclophotocoagulation (CW-TSCPC) [13]. Aquino et al. 

compared the efficacy and safety of Micropulse 

Transscleral Cyclophotocoagulation (mTSCPC) against 

CW-TSCPC. After 12 months of follow-up, the results 

showed that in the mTSCPC group, 75% of the cases (18 

of 24 patients) achieved the success criteria (IOP 

between 6 and 21 mmHg and at least 30% decrease in 

baseline IOP), against 29% (7 of 24 patients) in the CW-

TSCPC group (p<0.01). They reported that 46 of 48 

patients completed 18 months of follow-up. No 

significant difference in the success rate between the 

two treatments was observed; the results were 52% (n = 

12) for the Micropulse and 30% (n = 7) for the CW-TSCPC 

method (P = 0.13). The mean baseline IOP, at 18 months 

of follow-up, decreased by 45% in both groups (P = 0.70), 

from a baseline of 36.5mmHg (29.5 to 16.5) in the 

mTSCPC group and 35.0mmHg (29.5 to 46.5) in the CW-

TSCPC (P = 0.50). There were no significant differences in 

the IOP reduction between the two groups (P = 0.70). 

There were no significant differences in the need for 

retreatment (P = 0.36). There was also no difference in 

the decrease of IOP lowering medications (P = 0.88), this 

being two to one drug in both groups (P < 0.01). 

However, the complication rate was higher with the CW-

TSCPC method (P = 0.01). Prolonged hypotonia (IOP ≤ 

5mmHg for more than six months) was observed in five 

eyes treated with CW-TSCPC versus none in the 

MicroPulse group, visual acuity decrease was found in 9% 

(2/23) of the CW-TSCPC group versus 4% (1/23) in case of 

the mTSCPC, prolonged inflammation of the anterior 
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chamber was observed in 30% (7/23) versus 4% (1/23), 

phthisis bulbi 4% (1/23) versus 0%, and scleral thinning 

17% (4/23) versus 4% (1/23), respectively [13]. Similar 

results were observed in a comparative study between 

CW-TSCPC and mTSCPC, on 45 eyes of 36 pediatric 

patients. The success rate was higher in the mTSCPC 

group (71% versus 46% in the CW-TSCPC group) yet the 

difference was not significant (P = 0.1). No significant 

complications were noted in the mTSCPC group, whereas 

in the CW-TSCPC group, one eye developed phthisis bulbi 

and two eyes had severe pain and uveitis (P = 0.3) [17]. 

Mechanism of Action 

The mechanism of action of this technique is not yet fully 

elucidated. Traditional diode laser has a greater 

absorption in melanin-containing tissues [9, 18]. 

Although the adjacent non-pigmented tissues absorb less 

direct energy from the laser, they still exhibit collateral 

damage [18]. This occurs because it is impossible to avoid 

an indirect transfer of caloric energy from the targeted 

pigmented epithelium and dissipate it before reaching 

coagulation temperatures [19]. Clinical and experimental 

studies propose that the OFF periods in the Micropulse 

restrict the accumulation of caloric energy in the tissues 

adjacent to the pigmented epithelium. This allows 

thermal dissipation, preventing from reaching 

coagulation temperatures and, therefore, reducing 

collateral damage [16, 20, 21]. A second component for 

the mechanism of action, involving an increase in the 

aqueous humor drainage through the uveoscleral 

pathway, has also been reported [10]. A third mechanism 

of action for the Micropulse has recently been proposed 

by Johnstone [22] et al., after an experimental study on 

monkeys (m. Fascicularis) [22]. According to the authors, 

the pigmented epithelium is not necessarily involved in 

the mechanism of action. In contrast, Micropulse would 

actually act on the longitudinal fibers of the Ciliary 

muscle (CM), causing a displacement of the Scleral Spur 

(SS) in a posterior and inward direction, which in turn 

modifies the configuration of the TM and the outflow 

tract of the aqueous humor. This effect is similar to that 

of pilocarpine, which causes enlargement of the 

trabecular spaces and expansion of the Schlemm’s canal 

area, reducing the tendency towards collapse or 

narrowing of the canal lumen, thus, facilitating the 

drainage of aqueous humor [23]. It is difficult to conclude 

at this point if one of these suggested mechanisms of 

action has the most effect on IOP or whether the IOP 

lowering effect of this technique is in fact a combination 

of all mechanisms. 

Surgical Technique 

Laser treatment is applied over the 360 degrees of the 

eye, sparing -or not- the three and nine o’clock position. 

Some physicians opt for a fast-sweeping motion of about 

10 seconds back-and-forth over 180 degrees, others use 

a slow-sweeping motion of about one-minute over the 

same distance, or somewhat in between [24]. 

The probe has a notch that is oriented towards the 

central cornea and its base rests close to the conjunctival 

limbus or a few millimeters posterior. The current probe 

was designed to allow for precise positioning of the fiber-

optic tip at 3 mm posterior to the limbus [13, 16]. 

Ideal Parameters: where are we Standing? 

Despite promising initial results, the ideal parameters for 

the Micropulse, to obtain the best balance of 

efficacy/safety, have not yet been established. 

Nevertheless, at this point, the miscellaneous data 

currently available on the literature can help 

approximate these parameters. Due to considerable 

variability in laser settings within published studies, it is 

useful to convert the total energy used in each of the 

settings to Joules in order to facilitate interstudy 

comparison, as introduced by Murray Johnstone et al. in 

their experimental study [22]. Joules (J) = power in Watts 

(W) x total treatment duration in seconds (s) x ON cycle 

(31.3%). This would exclude other potential variables 

from the equation, such as velocity of sweeping motion 

and the positioning distance of the probe from the 

limbus. 

Fig 1 illustrates five representative studies that used 

different energy levels, mainly by varying treatment 

duration. Continuous, warm-colored lines represent 

higher energy levels (200 to 225 J), while green is for 

mid-range levels (112 to 140 J) and cold colors are for 

low-energy levels (≤100J). It is possible to infer a positive 

relationship between total energy and IOP decrease. 

Williams et al. [25] and Emanuel et al. [24] used up to 

200 J and 225 J of energy (320 and 360s x 2W x 31.3% ON 

cycle) and obtained an IOP decrease from baseline of 
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46% and 60%, respectively. However, complications 

soared to more than 45% in both studies (dashed lines 

represent complications). Persistent hypotonia, 

postoperative inflammation >3 months, and loss of 2+ 

Snellen lines were the most common. Indeed, the upper 

level of total energy that can be applied is mainly limited 

by the emergence of complications. There are a few 

reports that applied mid-range energy levels of around 

112 to 140 J (180s x 2 to 2.5W and 31.3% ON cycle). They 

obtained a moderate IOP decrease of approximately 

30%, without complications [26-28] for at least 12 

months. Other studies that used relatively low energy 

levels, ≤100 J (≤ 160s x 2W x 31.3 ON cycle), were 

moderately effective (around 30% IOP decrease) in the 

short-term (~1 month) without complications, yet in 

many cases, more than one laser session (up to three) 

was required to maintain the effect in the mid-term [18, 

28, 29], leading some authors to abandon them for 

insufficient results [25]. The study by Sanchez FG et al. 

was in concordance with the literature [30]. The 

researchers applied energy levels within the 62 to 112 J 

range (varying only the treatment duration, power fixed 

at 2W, and ON cycle at 31.3%) on 22 eyes of 17 patients 

(mostly congenital and pseudoexfoliation types), with 

over six months of follow-up with only one treatment 

session per eye. Overall success was low (27.3%). 

However, patients treated with higher energy levels (112 

J) obtained up to 75% success and an IOP decrease from 

baseline of 34%. All patients that received the lowest 

energy level (62 J) failed. No complications were 

observed in any of the cases. Taken together, all these 

clinical data indicate a good balance of efficacy/safety, 

ranging from 112 to 150 J, allowing a moderate IOP 

decrease of about 30% with few/no complications. From 

this point on, the data of clinical origin do not allow 

further approximation of the ideal parameters for the 

mTSCPC. Fortunately, the very interesting experimental 

work in enucleated m. Fascicularis eyes presented by 

Johnstone et al. [22] provides key data with untapped 

potential that may help better understand the clinical 

evidence so far. As it was previously described under 

‘mechanism of action’, the authors propose a 

pilocarpine-like effect for the Micropulse as its main 

mechanism of action, rather than photocoagulation of 

the pigmented ciliary epithelium. Therefore, they 

designed the experiment to evaluate recoil/relaxation in 

the pre-treatment state of the CM, SS, and TM, after 

different levels of total energy was delivered with the 

mTSCPC. Fig 2 shows the recovery percentage (y-axis) 

observed in their experiment with increasing total energy 

in Joules (x-axis). An equivalent of Joules expressed in 

seconds x power was added to facilitate the 

interpretation. 

Figure 1: Clinical Outcomes with Variable Energy Levels.  X-axis: Follow-up Time. Continuous Lines on Y-axis: IOP Decrease. Secondary Axis (Dashed 

Lines): Complications (%). Warm, Green and Cold Colors Represent High, Medium and Low Energy Levels, Respectively. Abbreviations: J: Joules. 



 
 

Med Hypothesis Discov Innov Ophthalmol. 2018; 7(3)  
 

98 
 

MICROPULSE TRANSSCLERAL CYCLOPHOTOCOAGULATION 

Figure 2: Experimental and Clinical Data Overlap. X-axis shows Increasing Energy Levels in Joules. Blue Bars on the Y-axis Summarizes the Progressively 

Less Recoil/Relaxation of SS, CM, and TM observed in the Experimental Study (Johnstone et al). Secondary axis represents Clinical Complications with 

Increasing Energy Levels Reported in the Literature. The Colored Bar Illustrates Evidence-based Hypothesis of the Best Balance Efficacy/Safety. 

Abbreviations: J: Joules; W: Watts; CM: Ciliary Muscle; SS: Scleral Spur; TM: Trabecular Meshwork. 

 

An almost complete recovery/relaxation (i.e. complete 

loss of the pilocarpine-like effect) was observed at lower 

energy levels of less than 62 J (equivalent to a laser 

setting of 100s x 2W x 31.3% ON cycle). Progressively less 

recovery was observed as more energy was applied. 

Above a considerably higher energy level (150 J), no 

recovery was observed (i.e. full permanence of the 

effect). This is equivalent to a laser setting of 240s x 2W x 

31.3% ON cycle. Superimposed is a red dotted line 

representing the emergence of adverse effects reported 

so far in clinical studies. A colored bar was added, 

summarizing the clinical results with different energy 

levels in the literature. The experimental data suggests 

that the pilocarpine-like effect explains at least part of 

the clinical response observed with different energy 

levels. Based on this, to fully benefit from this 

mechanism, the energy level should be increased to 

nearly 150 J (equivalent to 240s x 2W x 31,3%) [22]. 

Beyond 150 J, significant side effects start to appear, 

while no additional pilocarpine-like effect is added. Taken 

together, the clinical and experimental results suggest a 

sweet spot between 112 to 150 J. When the clinical and 

the experimental results are combined, it is possible to 

redefine the sweet spot more precisely at energy levels 

closer to 150 J to maximize the pilocarpine-like effect. In 

this way, with energy levels closer to 150 J, maximum 

benefit could be obtained from the combination of the 

multiple mechanisms of action proposed for the 

Micropulse, without triggering the complication rate. 

Although above 200 J the percentage of IOP reduction is 

greater (approximately 40% to 60% from baseline), 

moderate to severe complications increase considerably 

[24, 25]. A possible explanation may be that the extra IOP 

lowering effect mainly depends, at this level, on 

cyclodestruction. 

Re-treatment 

When it comes to using this new therapeutic technology, 

two surgical approaches are possible. One treatment is 

described above with the expectation of achieving 

success or the possibility of repeated treatments with 

lower energy levels to achieve target pressure. There is 

little published evidence on re-treatments. Aquino et al. 

[13] and Tan et al. [16] used shorter treatment durations 

of 100s x 2W (62.5J), yet performed a second or a third 

session when the first session had failed. From a total of 

23 patients treated with the Micropulse, Aquino et al. 

needed to re-treat 11 patients (48%), whose IOP 

remained uncontrolled after a mean of 6.8 months 

(range two to 17 months). They performed a second 

session on seven patients and a third session on four. 
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Even after the third session, those four eyes (all 

neovascular glaucomas) failed again.  

Comparably, Tan et al. needed to re-treat 14 out of 40 

eyes (35%). From those 14 eyes, nine failed again after 

the second treatment yet did not undergo a third 

session. No significant complications were observed in 

any of the studies. 

Increased Risk in Certain Populations 

Radhakrishnan et al. reported higher odds of persistent 

mydriasis in the Asian race (OR 13.07, P < 0.001) and 

phakic status (OR 3.12, P = 0.014) in a 144-patient cohort 

[31]. Williams et al. stated that it is reasonable to use 

shorter treatment times in heavily pigmented patients 

with the understanding that repeat treatment may be 

needed later, should this initial approach be ineffective, 

and considering the significantly higher odds of 

prolonged inflammation found in this population (OR 

3.61, 95% CI 1.27-10.23; P = 0.02). In patients with good 

vision at baseline (given the non-infrequent incidence of 

vision loss in their study), 13 patients showed loss of 2+ 

lines of best-corrected visual acuity for ≥ 3 months 

(16.5%) [25]. Individualizing treatments based on 

patients and disease characteristics is the next step in the 

ongoing development of this technology.  

CONCLUSION 

The available data, although scarce and difficult to 

compare because of varying definitions of success criteria 

and use of laser parameters, suggest that a good balance 

of efficacy/safety can be narrowed to an intermediate 

amount of total energy of approximately 112 to 150 J. 

This would allow an adequate IOP decrease with few/no 

complications, opening the possibility and initial rationale 

to dose the treatment based on desired IOP lowering 

effect and risk exposure. Prospective comparative 

studies, with homogeneous success criteria definitions 

and longer follow-up periods, are necessary to precisely 

determine Micropulse’s ideal parameters, especially 

evaluating the individual characteristics of each patient 

and their glaucoma. It would be interesting to also 

evaluate the impact of re-treatment, probe motion 

velocity, and probe positioning on clinical outcomes. 
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