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ABSTRACT 

Ocular accommodation is not just a mechanism for altering curvature of the crystalline lens of the eye, it also enables 
aqueous humor outflow through the trabecular meshwork, influencing intraocular pressure (IOP). Long term stress on 
the ciliary muscle from sustained near focusing may initiate myopic eye growth in children and primary open angle 
glaucoma in presbyopic adults. Multi-factorial studies of ocular accommodation that include measures of IOP, ciliary 
muscle morphology, anterior chamber depth and assessment of nutritional intake and metabolic markers may elucidate 
etiology and novel strategies for management of both myopia and chronic glaucoma. Anatomy of the ciliary fibers from 
anterior insertion in the fluid drainage pathway to their posterior consanguinity with the vascular choroid, alters ocular 
parameters such as micro-fluctuations of accommodation and pulsatile ocular blood flow that are driven by cardiac 
contractions conveyed by carotid arteries. Stretching of the choroid has consequences for thinning of the peripheral 
retina, sclera and lamina cribrosa with potential to induce retinal tears and optic nerve cupping. Early metabolic 
interventions may lead to prevention or reduced severity of myopia and glaucoma. Finally, it might improve quality of 
life of patients and decrease disability from visual impairment and blindness. 
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INTRODUCTION

Studies of the effect of short-term ocular 
accommodation on intraocular pressure (IOP) in the 
living human eye were published in the late 1950s and 
early 1960s at a time when continuous recording of IOP 
was regarded as a valuable tool for assessment of risk for 
glaucoma [1-3]. Etiology of normal tension glaucoma and 
primary open angle glaucoma is multifaceted and much 
uncertainty remains. Despite medical and surgical 
management and regular follow-up, about 14 to 16 
percent of patients with chronic glaucoma become blind 

in one or both eyes within two decades of initial 
diagnosis [4].  
In recent years, dynamic monitoring of changes in IOP in 
response to short-term accommodation has revealed a 
decline in baseline IOP (nearly 2 mm Hg) for progressing 
myopic as well as emmetropic young adults, for an 
accommodative demand of 3 diopters following 2 
minutes of near fixation [5]. In the same study, in 
addition to a decline in baseline IOP, the ocular pulse 
amplitude (OPA) also declined in the both groups, and 
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myopic subjects had a lower baseline OPA compared to 
emmetropic subjects, accompanied by a smaller decline 
in OPA with near focusing. The significance of these 
ocular pulse findings for aqueous humor drainage, 
myopic progression and the onset of glaucoma are now 
under debate. Prior studies on short-term near focusing 
have consistently reported a decline in IOP suggesting 
incremental aqueous outflow via the trabecular 
meshwork (TM). A recent study [6] using accommodative 
demand from zero up to 6 D has found transient 
elevation of IOP in progressing myopes (about 1 mm Hg). 
This was accompanied by decreased anterior chamber 
depth, narrowing of the angle between the peripheral iris 
and cornea, and a thickening of the natural crystalline 
lens of the eye, in both progressing myopes and 
emmetropes. Pioneering research published in 1970 
showed [7] that the mean IOP of myopes was nearly 1 
mm Hg higher than that of emmetropes, and this was 
statistically significant. About two decades later, a 
longitudinal study (of 2 year duration) authored by 
Jensen in 1992 demonstrated that the rate of myopia 
progression appeared to be slower in myopes with lower 
IOP values (in 49 children, aged 9 to 12 years) than those 
with higher IOP readings, suggesting a role for IOP in 
progression of myopia [8]. 
In studies of the anatomy of accommodation by Fisher 
[9], it was suggested that the mechanics of 
accommodation are reversible, with no evidence of 
hysteresis in the eyeball preparation following a cycle of 
stress and strain. Fisher further pointed out that after 30 
years of age the force of the anterior ciliary muscle 
during accommodation steadily rises to a maximum and 
then may decrease to its juvenile value by about 60 years 
of age, perhaps consistent with changes in electrical 
impedance [10]. The crystalline lens accumulates fiber 
cells and grows throughout life, becoming increasingly 
more difficult to deform [11, 12]. Recent data on the age 
of onset of presbyopia in Germany suggest onset in the 
fifth decade of life [13], and an age of about 45 years was 
indicated from early work by Donders and Duane in 
European subjects [14]. Data from the Indian 
subcontinent suggest an average age of onset closer to 
35 years [14], with impairment of accommodation 
among diabetics more than controls [15]. 
As reviewed by Nesterov (1986), in studies published 
between 1900 and 1943, fluid transport was 
demonstrated from the anterior chamber not only to the 
conventional trabecular outflow pathway, but to 
suprachoroidal spaces in the ciliary body, posterior sclera 
and choroid [16]. Such pathways for aqueous humor are 
now termed as the “unconventional” outflow pathway. 

Tracer studies conducted by Anders Bill contributed to 
such understanding and corneal, iris and retinal routes 
were identified [17]. 
Estimates of the relative contribution of the uveoscleral 
drainage pathway to total aqueous humor outflow, range 
from 25% to 60%, especially in eyes of younger humans. 
The fraction of uveoscleral aqueous humor drainage is 
reported to represent about 35% of the total in young 
adults, and far less in older adults [18]. The state of 
contraction of the ciliary muscle modulates uveoscleral 
outflow, i.e. contraction reduces outflow while relaxation 
increases it. Consequently, changes in ciliary tone 
modulate relative contributions of trabecular and 
uveoscleral outflow routes, with associated histological 
changes in the extracellular matrix [16-20].  
Nerve supply to anterior ocular aqueous fluid drainage 
structures enables regulation of IOP by feedback 
mechanisms that are poorly understood [21]. 
Inflammation of the anterior segment reduces density of 
collagen in the extracellular matrix of the ciliary muscle 
[22], contributing to increased uveoscleral outflow. 
Topical pilocarpine decreases the size of spaces between 
the ciliary bundles [23], reducing uveoscleral outflow. 
However, the pressure lowering effect of this alkaloid is 
produced by forces transferred to the elastic trabecular 
network in the angle between the iris root and peripheral 
cornea, affecting the endothelium of Schlemm’s canal 
and juxta-canalicular tissue [24]. Increased ciliary body 
thickness with increasing axial myopia [25] suggests that 
natural near accommodation sustained daily for several 
hours and extended for months, may decrease 
unconventional outflow and clinical epidemiology data 
[26] are published.  
Current methods for measuring unconventional outflow 
are not entirely reliable [17], and research toward 
development of more accurate procedures may facilitate 
better management of glaucoma suspects, patients with 
normal tension glaucoma, open angle glaucoma, and 
possibly other types involving changes in the anterior 
segment of the eye. Glycosaminoglycans, fibronectin, 
laminin and collagen are considered relevant to 
trabecular outflow, as well as to deposition of fibrotic 
plaques in the TM of possible metabolic origin [27].  
Reports reveal that the thickness of the ciliary body as it 
relates to refractive error in both children and adults is 
important for its possible explication of mechanisms that 
lead to myopia or elevation of IOP or both. In 53 children 
aged 8 to 15 years, thicker ciliary body measurements 
were associated with myopia and a longer axial length 
[28]. The relaxed ciliary muscle in older adults has an 
appearance similar to the accommodated ciliary muscle 
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of a young individual [29], and the aged ciliary muscle 
may be less able to implement relaxation of 
accommodation [30], a sort of hysteresis, with 
unexplored consequences for aqueous drainage. The 
ciliary ring diameter and inner apex position are subject 
to change, mediated in part by tension in zonular fibers 
[31]. 
Thicker ciliary body morphology is associated with 
suppressed high-frequency micro-fluctuations of 
accommodation [32]. High frequency and low frequency 
fluctuations in accommodation are considered 
concomitant with pulsatile changes in IOP, although a 
visual information processing role including retinal 
control of eye focus is postulated. Decline in the 
amplitude of accommodative microfluctuations and 
pulsations of IOP with increased ciliary body thickness 
may be factors associated with ocular hypertension and 
stimulating myopic eye growth. A study of intraocular 
pulsations of IOP alongside laser interferometric 
measurements of cardiac synchronous fundus pulsations 
demonstrated a high association between fundus 
pulsation amplitude and tonometric pulse amplitude 
[33], suggesting a role for such pulsations in choroidal 
perfusion. The anatomical basis for such a connection lies 
in the posterior consanguinity (intimate connection) of 
the ciliary muscle with the choroid.  
Recent reports postulate that glaucoma, myopia and 
presbyopia are linked by anatomical adherence, 
elasticity, and force transfer properties of the choroid, 
and damage to the optic nerve may be caused in part by 
transient changes (spikes) in accommodation, IOP and 
choroidal tension [34, 35]. Posterior attachments of the 
ciliary muscle to the choroid pull the entire choroid and 
the adhering retina anteriorly by about 1 mm at the ora 
serrata during accommodation. Choroid biomechanics 
during accommodation have not been studied in living 
human eyes. How much tension is placed on the optic 
nerve head, particularly the lamina cribrosa during 
contraction of the posterior ciliary muscle in the living 
eye remains a matter of speculation. Physiological as well 
as glaucomatous cupping (excavation) of the optic nerve 
head may be in part due to choroidal biomechanics, 
which continue to pull on the posterior eyeball structures 
during accommodation, despite low to normal fluid eye 
pressure, and maybe after surgical removal of the 
crystalline lens and implant of a synthetic intra-ocular 
lens (IOL) to manage visual loss from cataract. Further, 
the role of such forces and retinal stretching in 
development of retinal tears, with possibility of 
progression to retinal detachment, particularly in axial 
myopia, has not been investigated in detail. 

Survival of neurons, in general, depends on trophic 
factors released by target tissue innervated by those 
neurons during development [36]. The posterior uvea 
(choroid), contains smooth muscle, fibroblasts and 
endothelial cells, that provide molecular mechanisms for 
survival of ciliary ganglion neurons [37, 38]. Future 
studies of the mechanisms involved in such trophic 
activity, with their associated biochemical, hormonal and 
dietary precursors, are likely to aid development of 
neuro-protective strategies amenable to eye care 
practitioners, family physicians and public health 
professionals.  
The mechanisms controlling development and 
progression of myopia and chronic glaucoma appear to 
be related and there is substantial evidence for increased 
risk for primary open-angle glaucoma not just in 
moderate and high myopia, but also in low myopia [39]. 
Ergonomic factors, ambient light (spectrum and 
intensity) and physiological factors underlying eye 
growth for myopic refractive change [40], may 
potentially influence the onset of glaucoma [41], as well 
as stretching, atrophy and degeneration of the peripheral 
retina. A proposed difference between glaucoma and 
axial myopia could be the elastic properties of the sclera 
[42], with potential modifiable biochemical components 
[43]. 
Whereas several mechanisms have been proposed to 
relate myopia and glaucoma, well-substantiated 
evidence is lacking. Contraction of the longitudinal ciliary 
muscle and its effect on choroidal tension and stretching 
of the sclera suggest significance for the development of 
myopia [44]. In addition, biochemical and hormonal 
mechanisms that regulate growth factors in the choroid 
[45] and nutritional factors that influence IOP and ciliary 
muscle physiology [46, 47] warrant further investigation. 
Documentation of ciliary muscle backscatter and 
hysteresis [48] and near focusing induced reduction in 
depth of the anterior chamber following lens thickening 
and forward displacement [49], need to be correlated 
with nutritional, biochemical, metabolic, hormonal and 
environmental variables, as well as IOP and aqueous 
drainage. Such investigations require cooperation 
between professionals from diverse disciplines, and pose 
a challenge to the discrete, non-communicating domains 
(silos) of grant funding categories classified by agencies 
such as the Department of Health and Human Services 
and the National Institutes of Health. 

CONCLUSION 

The onset and progression of myopia (near sightedness 
or defocused distance vision) in children and 
development of chronic open angle and normal tension 
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glaucoma in middle aged adults have a common 
underlying feature as “sustained stress on the ocular 
accommodative mechanism.” Myopia and chronic 
glaucoma have high burdens for nations that are poorly 
equipped with trained personnel and economic 
resources, as well as for countries that have a higher 
gross domestic product. It is hoped that the present 
investigation stimulates additional researches supported 
by their host institutions. Early metabolic interventions 
may lead to prevention or reduced severity of myopia 
and glaucoma, as they are indicated for cataract [50].    
Finally, such preventive strategies might improve quality 
of life and work productivity of patients and decrease 
disability from visual impairment and blindness, 
substantially reducing national expenditure on 
healthcare. Medical ophthalmologists, clinical 
optometrists, pediatricians, family physicians, 
naturopathic doctors, functional and environmental 
medicine doctors,  endocrinologists, nurses, 
epidemiology researchers, national agencies that impact 
science, food supply and public health (e.g. the DHHS, 
NIH, FDA, CDC, USDA, and ARS) and those associated to 
the United Nation (e.g. WHO, FAO, UNESCO, UNICEF), 
can all potentially cooperate in this endeavor.  
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