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A predictive surface profile model for turning based on spectral analysis
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a b s t r a c t

This article presents a predictive approach of surface topography based on the FFT analysis of surface
profiles. From a set of experimental machining tests, the parameters investigated are: feed per revolution,
insert nose radius, depth of cut and cutting speed. The first step of the analysis consists of normalizing
the measured profiles with the feed per revolution. This results in normalized profiles with a feed per
revolution and a signal period equal to 1. The effect of each cutting parameter on the surface profile is
expressed as a spectrum with respect to the period length. These effects are quantified and can be sorted
in descending order of importance as feed per revolution, insert nose radius, depth of cut and cutting
speed. The second part of the paper presents a modeling of the surface profile using the parameters effects
and one interaction. The proposed model gives the spectrum of the profile to be predicted. The inverse
Fourier transform applied to the spectrum yields the expected surface profile. Measured and simulated
profiles are compared for two cutting conditions and results correlate well.

1. Introduction

Guaranteeing the required quality of manufactured surfaces is
of great interest to industrialists. The topography of the generated
surface plays a major role in product quality and in tribolog-
ical properties such as wear, friction and lubricant retentivity.
Consequently, surface profile prediction could be helpful for man-
ufacturers in order to set the appropriate cutting parameters to
achieve a desired surface profile. In 2003, Benardos and Vosniakos
(2003) presented a review of various studies with regard to sur-
face roughness prediction. The authors classified the different
approaches to turning and milling encountered in the literature
into four categories: machining theory, experimental investigation,
designed experiments and Artificial Intelligence (AI).

Numerous studies focus on the prediction of surface roughness
parameters such as Ra and Rt by experimental investigation and
designed experiments. Cakir et al. (2009) investigated the effect
of cutting parameters and insert coating material on Ra rough-
ness parameter. Wang and Chang (2004) used Response Surface
Methodology (RSM) to build experimental Ra models in slot milling
for dry-cutting and coolant conditions. Although these method-
ologies give good results, the conclusions arrived at have little or
no general application. Moreover, the above-mentioned roughness
parameters are not appropriate to depict correctly the tribological
properties of the generated surfaces.

∗ Tel.: +33 3 85 59 53 58; fax: +33 3 85 59 53 70.
E-mail address: jean-philippe.costes@ensam.eu

Studies related to the influence of cutting parameters on rough-
ness are abundant: Selvam and Balakrishnan (1977) studied the
effects of cutting speed, feed rate, depth of cut and rake angle
on measured Ra and Rt. Regarding the profile, the authors used
auto-correlation functions to investigate their randomness or peri-
odicity. No surface profile predictive model was established but
interesting results were brought to light: the measured surface
profile is more random at low cutting speed and low feed rates. Sel-
vam explains these results by built-up edge growth and fracture,
and the amount of side-flow and tearing that occur proportionally
more frequently at low cutting speeds and low feed rates. Grzesik
(1996) established a predictive model for Ra and Rz based on a
mechanistic approach by considering the minimum un-deformed
chip thickness. Some authors developed surface roughness predic-
tion models based on neural network methodology. Most of these
studies also focus on the prediction of the roughness criteria Ra, Rt.
Karayel (2009) built a neural network model to predict Ra, Rz and
Rmax in turning: 120 preliminary machining tests were required in
order to train the model. Asilturk and Çunkaş (2011) proposed a
similar way for Ra prediction in turning using neural network and
multiple regression methods.

The above mentioned neural network studies do not investi-
gate the prediction of surface topography and usually require a
large number of training tests. Although these models are of great
interest particularly in the industrial context, the roughness crite-
ria such as Ra or Rt are not as useful as the roughness profile from
a tribological point of view.

Based on neural network method, Lu et al. (2008) developed a
predictive model of surface profile in turning. Prediction and mea-
sured profiles for the tested machining conditions are found in
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good correlation; nevertheless, the authors outline the dependence
between the training parameters and the conditions to be tested.
The authors show simulated versus measured profile results for
various (depth of cut, cutting speed, feed rate) conditions with
cutting parameters exactly or very close to those of the cutting
parameter of the training data set. Consequently, the correlation
of the neural network model for random cutting parameter values
in the investigated range cannot be accurately established.

El-Sonbaty et al. (2008) used a fractal geometry model and a
neural network identification to simulate the surface profile in
milling. 36 machined surfaces were measured each at 6 positions
tests leading to 216 profiles measurements in order to train the
model. As mentioned by the authors, the conclusion is that the sim-
ulated and measured profiles are not identical. Nevertheless, the
same probability distribution function of the signals is observed.
The authors explained the differences between the actual and pre-
dicted profiles by the randomness of the surface roughness profile
measurement process.

Consequently, although many authors investigated the rough-
ness criteria as Ra or Rt a very few predictive models of the surface
profiles were developed. Moreover, the neural network methods
usually require numerous measurements in order to be trained.
Also, the neural network model is usually considered as a black-
box that gives a result for a given set of data but this result may be
difficult to interpret further.

Regarding the surface profile prediction, some authors have pro-
posed numerical models based on the relative kinematics of the
tool edge and the material part. Quinsat et al. (2008) investigated
the pattern obtained on the machined surface in the case of ball
end mill. Considering the tool shape and its trajectory, geometrical
interactions with the material yield the topography of the gener-
ated surface. In these approaches, cutting phenomena at the tool
edge scale as well as mechanical and dynamics effects are usually
neglected in the computation of the profile. Arizmendi et al. (2009)
built models where the tool and work piece system dynamics are
considered for side milling process. Here, the dynamic displace-
ments occurring in the tool/work piece system are measured while
the machining operation is processed. The measured dynamic are
then used in addition to the exact kinematics of the tool in order
to compute the actual envelope swept by the tool edge. Costes and
Moreau (2011) developed a similar approach in end milling. Sur-
face profile prediction in turning was also investigated using the
same methodology by Lin and Chang (1998). The principle of these
methods is that for a given machining condition the roughness pro-
file is calculated from the tool displacements measured during the
machining operation. Although these dynamic methods show good
correlation between predicted and measured profiles, these meth-
ods are not predictive as usually understood since the machining
test for a given condition has yet to be conducted. This is the main
drawback of these methods.

Numerous articles cover surface characterization: Wu (2000)
applied an FFT analysis for three-dimensional surfaces. Josso
et al. (2001) investigated the modeling of surface topography
with wavelet transform. Grzesik and Brol (2009) characterized
machined surfaces using wavelet together with fractal functions.
The main objective followed by the authors is to identify ways of
texture characterization for manufactured surfaces. Surface topog-
raphy prediction is not investigated by these authors.

As explained above, if many authors have carried out interesting
results regarding the prediction of roughness parameters such as Ra

or Rt, a very few have investigated the roughness profile prediction.
In the present paper, a model of surface topography prediction by
means of FFT operations is presented. In order to enable compar-
isons and the development of a surface profile model, the scanned
axis of the surface profiles is normalized with respect to the feed-
rate. The model is based on an experimental design table where the
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Fig. 1. Surface profile for test no. 2.

parameter effects and interaction are investigated and evaluated in
terms of spectra.

2. Surface profile model

An innovative method for surface profile prediction is presented
here. It is based on 8 preliminary turning machining tests for a given
set of cutting conditions. The approach is based on an experimental
design and the mathematical processing of the measured profiles
using FFT. The parameters investigated in the preliminary tests are:
feed per revolution f, insert nose radius Rε, depth of cut ap and
cutting speed Vc. The surface profiles of the preliminary machining
tests are measured with a mechanical profilometer. Each of the
obtained profiles shows a quasi-periodic signal with a period equal
to the feed per revolution.

The effects of the four above-mentioned parameters as well as
the interaction between f and Rε are the elements under investi-
gation. The profile to be predicted will be written following the
experimental design modeling:

YPrediction = Y + EffectRε + Effectf + Effectap + EffectVc + InterfRε
(1)

where YPrediction is the expected surface profile for a given set
of cutting conditions (Rε, f, ap, Vc). More precisely, YPrediction
is the distribution of heights for the expected profile. Y
is the average profile obtained for the 8 preliminary tests.
EffectRε , Effectf , Effectap and EffectVc are the effects of the four cut-
ting parameters on the surface profile. Interf Rε is the interaction
between the feed rate and the insert radius.

Each preliminary machining test yields a surface profile Yi(x)
with i ∈ (1. . .8) where Y is the height of the measured point at posi-
tion x. It is assumed that the period of the i ∈ (1. . .8) measured
profiles is equal to fi, the feed per revolution. This assumption can
be easily checked for all the 8 profiles. Eq. (1) is first expressed in a
spectral form as:

F{YPrediction} = F{Y} + F{EffectRε } + F{Effectf } + F{Effectap }
+ F{EffectVc } + F{InterfRε

} (2)

where each component of Eq. (2) is a spectrum, i.e. a complex func-
tion of frequency (mm−1) or period (mm).

Before identifying the model, the first stage consists of normal-
izing the 8 profiles Yi(x) of the preliminary machining tests with the
feed per revolution fi. This is performed by dividing the scanning
x-axis of profile no. i by the value of the feed per revolution fi. It
results in 8 normalized profiles YNormi

(x) with a feed per revolution
and a signal period equal to 1. Figs. 1 and 2 illustrate respectively
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Fig. 2. Normalized surface profile for test no. 2.
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Fig. 3. Spectrum of F{Y2}.

the initial measured profile and the normalized profile for the same
machined surface.

The second stage of the process consists of a FFT of the normal-
ized profile YNormi

(x) for each test i, i ∈ (1. . .8). F{YNormi
}(l) is the

FFT complex value of YNormi
(x) at a period l in mm. The following

figures display the FFT of the measured and normalized profiles for
test no. 2. The graphs show the modulus of the two FFT spectra
with respect to the signal period in mm. Although FFT x-axis usu-
ally shows frequency values in mm−1, period values in mm have
been displayed here since it is easier to interpret (Figs. 3 and 4).
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Fig. 4. Spectrum of F{YNorm2 }.

Table 1
Parameters and levels.

Test no. Rε (mm) Vc (m/min) f (mm/rev) ap (mm)

1 0.4 100 0.07 0.1
2 0.4 100 0.2 0.4
3 0.4 400 0.07 0.4
4 0.4 400 0.2 0.1
5 0.8 100 0.07 0.4
6 0.8 100 0.2 0.1
7 0.8 400 0.07 0.1
8 0.8 400 0.2 0.4

The FFT operation on each of the 8 normalized profiles generates
8 spectra with a maximum magnitude centered on a period equal
to 1 mm. This property will enable the calculation of each of the
terms of Eq. (2). This will be described in the following section.

3. Identification of the model

3.1. Experimental tests

A set of 8 cutting conditions are applied in turning. The cut-
ting conditions for test no. i will be written as: fi, Vci

, api
, Rεi

and
are given in Table 1. The Taguchi table L8(27) is suitable for model
identification (Fig. 5).

Each test consists of a longitudinal turning operation using two
VCGT 16 04 carbide tools with Rε = 0.4 mm and 0.8 mm. The work
piece is a 304 L stainless steel that is divided into eight 10 mm width
surfaces separated by grooves.

Surfaces profiles are measured using a Somicronic Surfascan S-
M3 mechanical profilometer and a stylus with a radius of 2 �m,
angle 90◦. The vertical resolution of the measured profiles is
0.03 �m with a scanning period of 1 point per �m for the longi-
tudinal axis. fs will refer to the scanning frequency which here is
1000 pts mm−1. Since the measurement length of each profile is
3 mm, the profile consists of 3000 points.

The profile spectrum F{Y} for the 8 experimental tests is
obtained as follows: for each period l value, the average of the 8
Fourier components F{YNormi

}(�), i ∈ (1. . .8) is calculated using:

F{Y}(�) = 1
8

8∑
i=1

F{YNormi
}(�) (3)

Fig. 6 shows the average spectrum F{Y} and two profile spectra
among the 8 measured.

According to the experimental design definition, the effect of
parameter P at level j can be introduced as:

Epj
= (Average of tests with P at level j)

− Average of all tests (4)

Fig. 5. Work-piece and tool before the turning operations.
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Fig. 6. Spectra of F{YNorm1 }, F{YNorm8 } and F{Y}. Only two measured profile spectra
are plotted with the average spectrum for reading convenience.

The effect of the parameter Pj can also be written in its spectral
form as:

F{EPj
} = F{YNormi

}
i/Pi=Pj

− F{Y} (5)

For the effect of cutting speed Vc at level 1, Eq. (4) yields:

F{EVc1 } = F{YNormi
}
i/Vci

=Vc1
− F{Y} (6)

where F{YNormi
}
i/Vci

=Vc1
is the average profile spectrum for Vc at

level 1. Similarly, F{Y}, F{YNormi
}
i/Vci

=Vc1
can be calculated for each

period length l using:

F{YNormi
}
i/Vci

=Vc1
(�) = 1

4

∑
i=1,2,5,6

F{YNormi
}(�) (7)

According to the experimental design theory, it can be noticed
that the effect matrix of a parameter P with n levels satisfies:

n∑
i=1

EPi
= 0 (8)

In the case of a 2-level parameter P, this results in:

F{EP1 } = −F{EP2 } (9)

Consequently, the effects of cutting speed, feed rate, depth of
cut and insert radius can be expressed in the following form:

F{EVc } =
(

F{EVc1
}

−F{EVc1
}

)
(10)

F{Ef } =
(

F{Ef1 }
−F{Ef1 }

)
(11)

F{Eap } =
(

F{Eap1 }
−F{Eap1 }

)
(12)

F{ERε } =
(

F{ERε1 }
−F{ERε1 }

)
(13)

For each row of the effect matrix, the columns give the Fourier
components with respect to the period length. Similarly, the inter-
action between f and Rε is given by:

IfRε =
(

If1Rε1
If1Rε2

If2Rε1
If2Rε2

)
(14)
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Fig. 7. Effect spectra (modulus) for ap , Vc , f and Rε . The x-axis is magnified and
centered on the 1 mm period value.

where IfiRεj
is the interaction spectrum for f at level i and Rε at level

j. Following the definition proposed by the experimental design
theory, IfiRεj

will be written as:

F{IfiRεj
} = F{YNormij

}{i/f =fi}∩{j/Rε=Rεj
} − F{Y} − F{Efi

} − F{ERεj
} (15)

3.2. Model results

Fig. 7 displays the effect spectra for ap, f, Vc and Rε calculated at
level 1. For the 1 mm value, i.e. the normalized feed per revolution,
it is quite visible that the magnitude of these effects can be sorted
in descending order of importance as f, Rε, ap and Vc.

Figs. 8(a–d) and 9(a–d) show the effects for the 4 parameters at
levels 1 and 2. It is not surprising that the most significant effects
are detected for the feed rate and the nose radius. Variations in cut-
ting speed and depth of cut have little effect on spectrum profile
amplitude. In Fig. 9(a–d), the trend observed for the period of the
normalized feed rate and for the 4 parameters yields the follow-
ing well-known result: surface profile is improved when a larger
nose radius or a lower feed rate is used. When the depth of cut and
the cutting speed are set to the highest values, the surface profiles
improve. However, these effects appear to be very narrow and it
cannot be definitely concluded from the present machining tests
whether these effects are significant or not. The graph of the inter-
action between the feed rate and the insert nose radius (Fig. 9e),
indicates that the effect of one parameter variation depends on the
value set for the second. The maximum amplitude is reached for
f = 0.2 mm. For this feed rate value, a change in the nose radius
from 0.4 mm to 0.8 mm gives rise to a large effect on spectrum
amplitude, which consists of a decrease in the profile spectrum
amplitude. When a 0.07 mm feed rate value is applied, the same
change applied to the nose radius has little effect on the profile.

4. Simulation of profiles and experimental validation

Using the profile modeling presented above, 2 cutting condition
tests are simulated with values for f, ap, Vc, f and Rε as displayed in
Table 2.

For each simulated condition and each cutting parameter, the
spectrum effect is calculated with the level value given in the
chart. The f/Rε interaction spectrum is also calculated. Following
Eq. (2), the average spectrum, the parameter effect spectra and
the f/Rε interaction spectrum are summed and the result gener-
ates the spectrum of the simulated profile. This simulated spectrum
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Fig. 8. (a–d) Effect spectra (modulus) for ap , Vc , f and Rε and average spectrum (black line).
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Fig. 9. (a–e) Effect spectra (modulus) for ap , Vc , f and Rε and f/Rε interaction. The effects and interaction values are displayed for the 1 mm normalized period value.

Table 2
Cutting conditions (a) and (b) for experimental validation.

(a) (b)

f (mm/rev) 0.12 0.2
ap (mm) 0.2 0.2
Vc (m/min) 200 200
Rε (mm) 0.8 0.4

consists of the complex Fourier components of the profile with
respect to period length. This spectrum is finally transformed into
the space domain by means of an inverse Fourier transforma-
tion. The simulated and experimental profiles for both cutting
conditions (a) and (b) are plotted in Figs. 10 and 11. For both cut-
ting conditions, the experimental and simulated profiles correlate
well.
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Fig. 10. Simulated and experimental profiles for cutting conditions (a) (cf. Table 2). f = 0.12 mm, ap = 0.2 mm, Vc = 200 m/min, Rε = 0.8 mm.
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Fig. 11. Simulated and experimental profiles for cutting conditions (b) (cf. Table 2). f = 0.2 mm, ap = 0.2 mm, Vc = 200 m/min, Rε = 0.4 mm.

5. Conclusions

This article presents a mathematical approach to surface pro-
file prediction. The modeling process uses FFT operations applied
to profiles, and is based on experimental design theory. Using a
few preliminary cutting operations in various conditions, machined
surfaces are measured and the effects of feed rate, depth of cut, cut-
ting speed and insert nose radius are identified for the machining
conditions of the study. First, the cutting parameters can be ranked
in the following descending order according to their contribution to
the surface profile amplitude: feed rate, and insert nose radius have
the main effects on amplitude; depth of cut and cutting speed con-
tribute to a far lesser extent. Second, the spectrum of the expected
profile is expressed as a sum of the parameter effects spectra and
one interaction spectrum. An inverse Fourier transform is applied to
the obtained spectrum: this generates the expected surface profile.
Two combinations of new cutting conditions are tested: simula-
tions and experimental measurements compare well as regards
shape, period and amplitude.

At this stage of the study, it is difficult to evaluate how the
result regarding the parameters importance as well as the sur-
face prediction would remain in a general case. It is clear that the
effects of the cutting parameters were calculated for a given setup.

Consequently, the prediction of the profile is valid only in the used
setup and the range of the investigated cutting parameters. The
objective of the study was to develop a new methodology for a
given setup. The extension of the proposed model to general cases
of tool and machining conditions will be investigated in a future
work.
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