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A methodology is proposed combining the scattering vector method with energy dispersive diffraction for
the non-destructive determination of stress- and composition-depth profiles. The advantage of the present
method is a relatively short measurement time and avoidance of tedious sublayer removal; the disadvantage
as compared to destructive methods is that depth profiles can only be obtained for depth shallower than half
the layer thickness. The proposed method is applied to an expanded austenite layer on stainless steel and al-
lows the separation of stress, composition and stacking fault density gradients.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Residual stresses are widely and deliberately introduced within
the near surface region of materials to locally modify the mechanical
properties and enhance the component performance with respect to
wear and/or fatigue. Surface engineering associated with tailoring of
the surface properties and residual stress can be achieved by thermal,
chemical or mechanical treatment [1] and yields a functionally graded
material that changes its properties from surface to interior. The
quantification of residual stress-depth profiles to investigate the ef-
fect of the surface engineering treatment can be performed by X-ray
diffraction analysis [2]. This technique relies on the determination of
hkl specific lattice strains for various orientations of the scattering
vector with respect to the sample surface normal combined with an
appropriate grain-interaction model [3]. Numerous factors affect the
so-called X-ray diffraction stress analysis, e.g. grain size, triaxiality
of the stress state and preferred orientation. The evaluation of
stress-depth profiles in functionally graded materials can be
influenced by the stress gradient itself, as well as by other gradients.
Steep residual stress gradients can lead to the so-called ghost stresses,
i.e. systematic errors inherent to the applied measurement and/or
evaluation procedure, if no precautions are taken.

When superimposition of composition and stress gradients occurs,
such as for a composition-induced stress gradient, stress evaluation

over the information depth also depends on composition, because
the reference spacing is composition dependent. This can lead to dra-
matic ghost stresses if not taken into account during data acquisition
and evaluation [4,5].

Among the various techniques developed for non-destructive
depth resolved stress determination [3,6–9], energy-dispersive dif-
fractionmethods, using white radiation, give some advantages associ-
ated with multiple reflections recorded in one energy spectrum and
deeper information depths [10–13]. Stress-induced errors can effec-
tively be avoided combining a modified multi-wavelength approach
with the sin 2ψ method or the scattering vector method [14]. In [15]
it was shown that the energy-dispersive method can be applied
even to the detection of very steep in-plane residual stress gradients
in surface treated hard coatings, if the information depth is adapted
to the steepness of the gradient. However, for a composition-
induced (self-induced) stress gradient, the ‘optimisation procedure’
developed for the scattering vector method cannot be applied
straightforwardly, because the lattice spacing in the strain-free direc-
tion varies with the information depth. Instead a sin 2ψ-based ap-
proach should be considered, where sin 2ψ dependencies at pre-
chosen information depths are evaluated by interpolation among
the experimental data. The reference lattice parameter for the appro-
priate information depth follows from interpolation among the data
in the strain free direction or from independent spectroscopic analy-
sis and knowledge of the relation between lattice parameter and
composition.

This work deals with the evaluation of residual stress by means of
non-destructive energy-dispersive diffraction under the influence of
steep stress- and composition gradients. Steep superimposed mul-
tigradients arise after low temperature thermochemical surface treat-
ments of stainless steel [16]. Such treatments (nitriding, carburising
or nitrocarburising) give rise to the formation of a surface zone of
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so-called expanded austenite which essentially is a solid solution of
colossal amounts of interstitials (carbon and/or nitrogen) in the aus-
tenite lattice. This results in biaxial compressive residual stresses of
several GPa's that find their origin in the lattice misfit between the
expanded austenite “case” and the untreated core [16,17].

2. Non destructive depth profiling with energy-dispersive X-ray
stress analysis

X-ray stress analysis is based on the lattice strain measurement ε-
φψ

hkl experienced by a set of lattice planes {hkl} in a given direction
defined by the azimuth, φ, and inclination, ψ, with respect to the sam-
ple surface normal (Fig. 1):

εhklφψ ¼ dhklφψ

dhklo

−1 ð1Þ

where do
hkl is the unstrained lattice spacing.

In energy-dispersive diffraction using a white beam, measure-
ments are carried out for fixed and predetermined diffraction and
scattering angles. The Bragg equation then takes the following form:

dhkl ¼ hc
2 sinθ

1
Ehkl

ð2Þ

where 2θ is the scattering angle, h is Planck's constant, c is the veloc-
ity of light and Ehkl is the energy for which diffraction of the hkl lattice
planes occurs.

Introducing Eq. (2) in Eq. (1) gives the lattice strain εφψhkl in the
measuring direction defined by φ and ψ as:

εhklφψ ¼ Ehklo

Ehklφψ

−1 ð3Þ

where Eo
hkl corresponds to the unstrained lattice spacing do

hkl.For sur-
face engineered quasi-isotropic polycrystalline materials usually a
state of rotationally symmetric biaxial stress (σ13=σ23=σ33=0
and σ11=σ22=σ//) can be assumed, leading to:

εhklψ zð Þ ¼ 2Shkl1 σ == zð Þ þ 1
2
Shkl2 σ == zð Þ sin2ψ ð4Þ

where S1hkl and 1/2S2hkl are diffraction elastic constants, depending on
the crystal orientation hkl and elastic interaction among the crystals.
The lattice spacing, 〈dψhkl〉 (or equivalently the energy at which diffrac-
tion occurs) determined in an X-ray diffraction experiment for a

sample (or layer) of thickness, t, is the diffracted intensity-weighted
average over depth, z, i.e.:

dhklψ

D E
¼ ∫t

0d
hkl
ψ zð Þ exp −μ Eð Þkzf gdz
∫t
0 exp −μ Eð Þkzf gdz

ð5aÞ

where, for measurement in reflection geometry (as practised in the
present work)

k ¼ 2 sinθ cosψ
sin2θ− sin2ψþ cos2θ sin2ψ sin2η

ð5bÞ

describes the diffraction geometry, μ(E) is the linear absorption coef-
ficient which, for a homogeneous layer, depends on the photon ener-
gy and η denotes the rotation angle around the scattering vector, g

→
φψ

(Fig. 1). For completeness it is mentioned that μ(E) depends on com-
position. This second order effect is not considered here.2 Hence, it is
obtained for the lattice strain, averaged over the diffracting volume,
〈εψhkl〉 :

εhklψ

D E
¼ ∫t

0d
hkl
ψ zð Þ exp −μ Eð Þkzf gdz

∫t
0d

hkl
o zð Þ exp −μ Eð Þkzf gdz

−1 ð6Þ

Note that these equations are only valid for the case where the
studied layers are well within the gauge volume. From Eq.(6) it is ob-
served that the lattice strain evaluated for experimental lattice spac-
ings has to be evaluated from strained and unconstrained lattice
spacings weighted over the same depth range. This lattice strain can
be assigned to the information depth, τ:

τ Eð Þ ¼ zh i ¼ ∫t
0z⋅ exp −μ Eð Þkzf gdz
∫t
0 exp −μ Eð Þkzf gdz

¼ 1
μ Eð Þkþ t

exp −μ Eð Þktf g
exp −μ Eð Þktf g−1

ð7Þ

Note that the information depth in a layer is maximally t/2 for the
case where the layer can be considered infinitely thin as compared to
the penetration of the X-rays.3 For an infinitely thick layer the infor-
mation depth equals 1/[μ(E)k], which for the present case amounts
to 27 μm. It is important to realise that, in general, 〈dψhkl〉 and 〈do

hkl〉

are not experimentally determined at the same information depth,
because the strain-free lattice spacing applies only for one specific
value for ψ (and thus τ), the so-called strain-free direction, ψo, de-

fined by sin2ψo ¼ − 2Shkl1
1
2S

hkl
2

(as obtained by equating Eq. (4) to zero).

Consequently, application of Eq. (6) requires that a value for 〈do
hkl〉

at τψ is obtained by interpolation among the experimentally deter-
mined strain-free lattice spacing-depth profile 〈do

hkl(z)〉.
In the case of stress-depth profiling, various methods have been

developed, based on either successive layer removal (destructive
methods) or assigning the evaluated data to a depth below the sur-
face (non-destructive methods). According to Eqs. (7) and (5b) for a
fixed value of θ the information depth can be varied by variation of
the angles ψ and η or, for energy dispersive analysis, by selecting an-
other energy E where diffraction occurs. In the present work the scat-
tering vector method (varying η and ψ) and the multi-wavelength
method (varying E and ψ) are combined for non-destructive depth
profiling of the composition, stress and stacking fault probability in
low temperature hardened stainless steel.

Fig. 1. Diffraction geometries in X-ray stress analysis from [17]. η denotes the rotation
of the sample around the scattering vector g

→
φψ for a fixed measuring direction (φ,ψ)

with respect to the sample system P. PB and SB denote primary and secondary
(diffracted) beam.

2 For the present case where a layer of expanded austenite on stainless steel is con-
sidered, the error in assuming μ(E) independent of depth (i.e. a homogeneous layer)
lies in the range 3.94 to 4.39% for a composition ranging from yN=0.30 to yN=0.50
(cf. Fig. 4).

3 For ‘Real space’ method, the measuring depths are not limited to t/2 since the
gauge volume is used to define the observed volume.
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3. Experimental details

3.1. Nitriding

A disc of AISI 316 L stainless steel with diameter 10 mm was gro-
und and polished to a mirror like finish. The final thickness of the disc
was 2.18 mm. The disc was austenitised in flowing hydrogen at a
temperature of 1355 K in order to obtain a fully recrystallized austen-
itic structure in the sample. Nitriding was performed in a Netzsch 449
thermo-balance equipped with electronic mass-flow controllers for
accurate gas control. The sample was activated in a gaseous atmo-
sphere and subsequently nitrided at 440 °C for 14 h in a gas mixture
consisting of 100 ml/min NH3+5 ml/min N2 (N2 was led through
the measurement compartment to protect the electronics of the ap-
paratus from interaction with NH3). This treatment yielded a zone
of expanded austenite with a thickness of about 16 μm.

3.2. X-ray diffraction

The energy dispersive diffraction experiments were performed at
the materials science beamline EDDI@BESSY II [18]. The white syn-
chrotron beam with usable photon energies between about 8 keV
and 120 keV is provided by a superconducting 7 T multipole wiggler.
The primary beam cross-section was 0.3×0.3 mm², the equatorial di-
vergence Δ2θ in the diffracted beam was limited by a double slit sys-
tem with an aperture of 0.03×5 mm² to values smaller than 0.01°.
Hence, the gauge volume (which is the part of the sampling volume
defined by the beam limiting slits, that immerses in the sample)
takes a rather complex geometrical shape [19]. In the case of steel,
however, the limiting factor for the information depth is not given
by this ‘geometrical’ gauge volume but due to the high absorption
by the 1/e information depth τ(Ε) = 1/[μ(Ε)⋅k] (cf. Eq. (7)). Reference
measurements were carried out under identical experimental condi-
tions on stress-free powder to ensure that geometrically induced
line shifts were smaller than ΔE=10 eV and therefore, had not to
be taken into account in data evaluation. A measuring time of 300 s
was chosen for recording the diffraction patterns in order to achieve
good counting statistics. For data acquisition a solid state germanium
detector (Canberra model GL0110) was used.

The 111 and 200 diffraction lines of the expanded austenite phase
were investigated. The 〈dψ

hkl〉 versus the information depth τ were
evaluated for a constant diffraction angle 2θ=8° and azimuth
φ=0° at nine different ψ angles, ranging from 18.43° to 71.57°. For
each value of ψ, 18 values of the rotation angle η about the scattering
vector were selected. The range of rotation angles, η, depends on the
inclination angle, ψ; the larger ψ the smaller is the range of η values.
According to Fig. 1 the orientation η=90° corresponds to the
Ψ−mode of X-ray stress analysis and, therefore, to the largest infor-
mation depth. The case η=0° corresponds to the Ω−mode (ψb0)
and can only be realised for θ>ψ. For the small Bragg angles between
about 4° and 10° used in ED diffraction, this condition is usually not
fulfilled. Here, the minimum rotation angle ηwhich would correspond
to an inclination angle α between the incoming beam and the sample
surface, is given byηmin ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ψ− sin2 θ

q
= sinψ cosθð Þ

� �
[20]. The dif-

fraction elastic constants for the analysed reflections were calculated
using the Eshelby/Kröner model with the single crystal constants of
Fe-18Cr-12Ni [21].

4. Results and interpretation

An energy spectrum of the nitrided sample is given in Fig. 2. Both
expanded austenite and the unaffected austenite in the substrate are
observed; the 111 line profiles are observed at 40 and 42.8 keV for
expanded austenite and austenite, respectively. The difference in en-
ergy position between the peaks for expanded austenite (case) and

austenite (core) is attributed to the combined effect of residual stress,
composition and stacking fault energy (see [22]). Asymmetry of the
peaks obtained for expanded austenite is ascribed to the presence of
gradients in stress, composition and stacking fault probability,
where those in stress and composition will dominate [22]. In addi-
tion, also texture gradients could contribute to the asymmetry. Such
texture gradients originate from grain rotation caused by plastic de-
formation in the expanded austenite case during growth [23].
Recognising that the line profiles are an average over a depth range
and, thus, a certain part of the profile, the centroid position of the
γN line profile was taken as the peak position and assigned to the in-
formation depth (cf. Eq. (7)).4

The lattice spacing 〈dψ
hkl〉 as measured for nine different ψ angles

and 18 η angles per value of ψ is given in Fig. 3a as a function of the
corresponding information depth τ. Clearly, the variation in τ realised
by rotation about the diffraction vector is largest for the lowest value
of ψand is ascribed to larger range of η values for smallerψ. The data in
Fig. 3a is assigned to relatively shallow information depths, smaller
than t/2=8 μm (see comment below Eq. (7)). From interpolation
among the data in Fig. 3a it is possible to evaluate a 〈dψ

111〉 vs sin 2ψ
dependence at a chosen value for τ. An example is given in Fig. 3b
at a depth of 4 μm (indicated by the vertical dashed line in Fig. 3a).
Within experimental accuracy a straight line is obtained, suggesting
no influence of steep stress/composition gradients on the evaluation
method.

The dependence of the strain-free lattice spacing on informa-
tion depth was obtained by linear interpolation in 〈dψ

111〉 vs sin 2ψ
and 〈dψ

200〉 vs sin 2ψ data for the respective strain-free directions,
i.e. sin 2ψo=0.324 and 0.48 for 111 and 200, respectively. The re-
sults are given in Fig. 4 and converted to the nitrogen content in ex-
panded austenite by applying the relation determined in [24]. A
non-negligible difference in lattice parameter/composition is ob-
served for the two selected hkl. The lattice parameter/nitrogen
content determined from the 200 line profile is systematically
highest. This discrepancy can be understood from the introduction
of stacking faults associated with the partial plastic accommoda-
tion of the colossal, chemically induced, stresses introduced in ex-
panded austenite during growth of this zone into the austenite
substrate. The presence of stacking faults on the peak positions of
111 and 200 line profiles is antagonistic: for 200 a shift towards
lower energy (higher lattice spacing) and for 111 a shift towards
higher energy (lower lattice spacing) would occur, which is in
agreement with the observed discrepancy. Adopting the Warren
equation for the relation between the peak shift as a consequence
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Fig. 2. (Smoothed) energy spectrum of nitrided 316 L stainless steel. 2θ=8°, φ=0°,
ψ=18.43°, η=86.9°, counting time: 300 s. Expanded austenite and austenite are den-
oted by γN and γ respectively.

4 It is noted that if texture gradients contribute to the asymmetry of the line profiles,
an error is introduced by assigning the peak position to the centroid position.
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of stacking faults in angle dispersed X-ray diffraction [25]:

Δ 2θhkl
� �

¼ 0:2756⋅α⋅Ghkl⋅ tanθhkl ð8aÞ

where Δ(2θhkl) is given in radians and α is the stacking fault proba-
bility, G111=1/4 and G200=−1/2. Equivalently, for the change in

lattice spacing :

Δ dhkl
� �
dhkl

¼ −0:1378⋅α⋅Ghkl ð8bÞ

Assuming that the same composition, and thus strain-free lattice
parameter should be obtained from 111 to 200 line profiles, the stac-
king fault probability and strain free lattice spacing can be deter-
mined, provided that the same stacking fault probabilities prevail
for 111 and 200 as measured in the strain-free direction. In terms of
the strain-free lattice parameter ao, it is obtained from Eq. (8b) :

a111o −a200o

ao
¼ −0:1378⋅α⋅ 1

4
−1

2

� �
ð8cÞ

with ahkl the lattice parameter following from the as measured hkl lat-
tice spacing.

The depth dependencies of the strain-free lattice parameter a0 and
the stacking fault probability α for the depth range τ=4–6 μm(where
they can be determined), are given in Figs. 4 and 5, respectively.

Using the strain-free lattice parameter from Fig. 4, residual stress-
es can be evaluated for 111 and 200 reflections from interpolated
graphs as Fig. 3b. Fig. 6 shows the resulting residual stress depth pro-
files σ//(τ) for both diffraction lines 111 and 200 of expanded austen-
ite after reconstruction of sin 2ψ plots at predefined depths τ. It has to
be noted that the error bars are given as twice the standard deviation,
which is obtained from the determination procedure of the scattering
peak position and propagated through all calculations.

5. Discussion

Separation of stress-, composition- and stacking fault probability
depth profiles from X-ray stress analysis of nitrided 316 L stainless
steel was investigated through an energy-dispersive method. The
scattering-vector method was applied for its fast depth profiling reli-
ability and combined with a procedure for reconstruction of sin 2ψ
plots at chosen information depths τ. It is noted explicitly that the
profiles shown in Figs. 2–6 do not reflect the actual depth profiles.
By straightforward calculus it can be shown that an actual depth pro-
file, i.e. vs depth z, is only (in a certain depth range) identical to that
for the profile vs τ, if the profile depends linearly on depth [26]. In this
respect it is important to realise that the lattice spacing data used for
the evaluation are diffracted intensity weighted lattice spacings (cf.
Fig. 3a) and that the larger information depth to which the observed
lattice spacing (or stress, composition, stacking fault probability) is
assigned, the less will the average value reflect the actual lattice spac-
ing (or stress, composition, stacking fault probability) at this depth.
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Fig. 3. a) As measured lattice spacing-depth, 〈dψ111〉 vs τ profiles of expanded austenite
measured with the scattering vector method applied to a nitrided 316 L stainless steel.
b) A reconstructed sin 2ψ plot at chosen information depth, τ, of 4 μm is also given.
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The actual depth profiles could be obtained by reconstructing the ac-
tual lattice spacing profiles from those in Fig. 3a by assuming a poly-
nomial description of the actual profile (for the case of layer/substrate
systems see [5]).

5.1. Composition

Clearly, the nitrogen content decreases with depth, as anticipated
for a growth process largely governed by solid state diffusion of nitro-
gen through the developed layer. Presuming local equilibrium at the
surface in an unconstrained condition, the nitrogen content at the
surface would be yN

s =0.61 [24]. This predicted value compares
favourably with the present results, as suggested by extrapolation of
the current experimental data towards the surface. Actually, a dis-
crepancy would be expected between experimental and predicted
surface concentrations as a consequence of the huge compressive
stresses, which affect the thermodynamics of the system, such that
the solubility is reduced as compared to the unconstrained condi-
tion [27]. In this respect it should also be mentioned that the adopted
elastic constants were assumed to be identical to those for austenite.
For the nitrogen content close to the unnitrided stainless steel sub-
strate (at a depth of 16 μm) a content corresponding to a ratio Cr:
N=1:1 (i.e. yN=0.17) is expected at the transition from expanded
austenite to “substrate”. It is not possible to make an accurate extrap-
olation of the few present data to this information depth, but a first
estimate provides a value of 0.21, which is in fair agreement with
the predicted value, taking the uncertainty into account.

5.2. Stacking fault probability

In this discussion it has to be remarked that the Warren method
for the determination of stacking fault probabilities only applies for
relatively low stacking fault probabilities and that the method by
Velterop et al. [28] should be preferred for probabilities of values de-
termined. Seen in this light the current evaluation should be consid-
ered a first attempt. Interpreting stacking faults in terms of the
Velterop-model would require additional measurements.

The stacking fault probability increases with depth from a small
value for shallow depths to a higher value closer to the “substrate”
and is opposite to the depth dependence of strain-free lattice param-
eter. The origin of plastic deformation in expanded austenite is plastic
accommodation of the composition-induced stresses in the growing
expanded austenite zone, which exceeds the yield stress. It has been
demonstrated convincingly that grain rotation and texture changes
occur as a consequence of the plastic accommodation [23,29]. If the
stacking faults are caused by this plastic deformation, it would be

expected that the stacking fault probability is highest at the surface
and decreases with depth. Provided that the evaluation procedure is
correct and the assumptions made are justified, the present data
show the opposite trend (within the small information depth range
where the analysis can be made). This could be understood as follows.
The part of the expanded austenite zone that grows into the “sub-
strate” can accommodate the compositionally induced lattice misfit
largely elastically.5 Ahead of the growing expanded austenite the
compensating tensile stress in the unnitrided (and not strengthened)
austenite leads to deformation martensite and plastic deformation.
Upon continued nitriding this structure is transformed into expanded
austenite but it could be that the stacking faults remain. For the part
closest to the surface, in an early stage of nitriding, such stresses in
the unnitrided austenite can be (partly) relaxed by the adjacent sur-
face and inhomogeneous thickness of the expanded austenite zone.

5.3. Residual stress

The stress data for 111 and 200 show a trend of a decreasing resid-
ual compressive stress with increasing information depth. In this re-
spect it has to be noted that the stress values at the largest
accessible information depths for both 111 and 200 are very sensitive
for small variations in the data, because the number of data contribut-
ing to the dψ vs sin 2ψ graph decreases with increasing τ (cf. Fig. 3 for
111). These data should therefore be considered as less reliable.

The occurrence of residual stresses of the magnitude observed in
Fig. 6 is consistent with the previous work [16], where depth profiles
of stress and composition were reconstructed from measurements
after (destructive) successive layer removals. The present method
has the advantage that significantly shorter measurement times are
necessary and no tedious removal of thin (sub)layers from the sample
is necessary, which affects the stress state. On the other hand the ac-
tual stress profile is not obtained, only a diffracted intensity weighted
average.

6. Conclusion

The present work explores the use of the scattering vector method
for non-destructive X-ray diffraction analysis and separation of
composition-, stress- and stacking fault probability gradients in a
functionally graded material. Based on the energy-dispersive method,
complementary information can be deduced from recording various
diffraction lines simultaneously such that from assuming an identical
strain-free lattice parameter evaluated from these reflections, the
composition and stacking fault probability can be estimated. The re-
sults appear to be in agreement with earlier work on a similar system.
The advantages of the present method are relatively short measure-
ment time and a non-destructive analysis. The disadvantage is that
no actual profiles are obtained, but rather diffraction intensity
weighted averages are assigned to the information depth. The latter
is maximally half the layer thickness, so the deeper part of the layer
remains “invisible”.
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