
Bond yield modelling and its application
in the European Union

by

Dalu Zhang

Doctoral Thesis

Oct 2013

Supervisors: Peter Moffatt, Oleksandr Talavera, Fuyu Yang

School of Economics

University of East Anglia

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with the author and that use of any

information derived there from must be in accordance with current UK Copyright Law.
In addition, any quotation or extract must include full attribution.

©Dalu Zhang(2013)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/29106108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Acknowledgment

I am grateful for the generous advice and support I received during the lengthy gestation
period of this thesis. First and foremost, I would like to express my sincere gratitude to
Prof. Peter Moffatt for the generous effort, time and patience he had put into my journey
of PhD. I am deeply in indebted to him.

I would like to thank Dr Oleksandr Talavera for teaching me how to write an aca-
demic paper and valuable suggestions in various occasion. In addition, I have benefited
greatly over the years from many comments by economists and statisticiana that are too
numerous to mention. Nevertheless, I would like to thank those who provided valuable
advice or support during various stages of my research, namely Dr Joel Clovis, Dr Xinyi
Li, Dr Aristidis Nikoloulopoulos, Dr Anders Poulsen, Dr Odile Poulsen, Dr Yiding Wan,
Dr James Waston, Dr Fuyu Yang and Prof. Daniel Zizzo.

I owe a special thanks to the many discussants of relevant papers that I presented
at international conferences as well as the anonymous referees of Journal of Monetary
Economics for the valuable advice and stimulus for improvement.

I am also grateful to my friends, Yawen and Julian Hudson for their generous help
with my English writing skills.

I would like to express my heartfelt thanks to my beloved parents for believing in
me as well as the constant blessings, support and care they have sent. I would also like
to thank to my son Max for being supportive in his way, which is being so adorable and
obedient. Last but not least, I am forever indebted to my lovely wife, Meilan, for her
understanding, endless patience and encouragement when it was most required. Without
her, the completion of this thesis will not be possible. The dedication of this thesis goes
to all of you, my beloved family!

1



Abstract

Forecasting crises has always been an interesting and important topic for econometri-
cians or statisticians. Literature suggests that government bond yields can be a valid
leading indicator for this purpose. This thesis uses government bond yields and applies
various models to forecast the crisis which happened recently.

Chapter 2 investigates a model utilising the term structure of interest rates to predict
output growth and recession in the UK. In contrast to previous literature, information
retrieved from the whole yield curve is used rather than just the yield spread. Using
different methods, our models are found to outperform the yield spread models both in
in-sample and out-of-sample forecasting. Notably, the B-spline fitting model is able to
forecast the 2009-2010 recession. Moreover, the model with lag of growth shows great
forecasting ability in out-of-sample output growth forecasting. In most cases, models
based on B-spline perform better than the ones based on the Diebold-Li framework.

Chapter 3 examines the existence of time series non-linearities in the real output
growth / recession-term spread relationship. Vector Autoregression (VAR), Threshold
VAR (TVAR), Structural break VAR (SBVAR), Structural break threshold VAR (SBT-
VAR) are applied in the analysis. The in-sample results indicate there are non-linear
components in this relationship. And this non-linearity tends to be caused by structural
breaks. The best in-sample model also shows its robustness on arrival of new infor-
mation in the out-of-sample tests. Evidence shows the model with only structural break
non-linearity outperforms linear models in 1-quarter, 3-quarter and 4-quarter ahead fore-
casting.

The European sovereign debt crisis has become a very popular topic since late 2009.
In Chapter 4, the sovereign debt crisis is investigated by calculating the probabilities
of the potential future crisis of 11 countries in the European Union. We use sovereign
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spreads of the European countries against Germany as targets and apply the GARCH
based vine copula simulation technique. The methodology solves the difficulties of cal-
culating the probabilities of rarely happening events and takes sovereign debt movement
dependence, especially tail dependence, into consideration. Results indicate that Italy
and Spain are the most likely next victims of the sovereign debt crisis, followed by Ire-
land, France and Belgium. The UK, Sweden and Denmark, which are outside EMU, are
the most financially stable countries in the sample.
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Chapter 1

Introduction

The bond market is a financial market where participants can issue new debt, and it
provides a mechanism for long term funding of public and private expenditures. Gov-
ernment bonds, because of their size, liquidity, and relative lack of credit risk, are usually
treated as the representative of the bond markets, although there are also bond markets
for corporate bonds and financial instruments like mortgage bonds. The Bond market
seems very useless on the surface, at least not as interesting as stock markets from most
people’s point of view. The mechanism of the bond market and the impact the bond
market can make are rarely understood by the public. In reality, however, the bond
market can be surprisingly powerful. It can change governments’ policies or even can
change governments. Here is a story regarding the power of the bond market and how
it can change government policy. In the 1990s, President Clinton attempted to increase
the US budget deficit, which led to a sell off of Government bonds. And the Clinton
administration had to alter policy in order to secure the debt. Instead of an increasing
budget deficit, Clinton managed a rare budget surplus. Most recently, the sovereign debt
crisis shows us an almost extreme case of the impact bond market can cause – govern-
ment bankruptcy. Because of the importance of the bond market, this thesis is exploring
a way to use the information in the bond market to assess the economic situation of a
country.
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1.1 The Motivation of the Research

The global financial crisis, starting from the summer of 2007, is considered by many
economists to be the worst financial crisis since the Great Depression of the 1930s. It
resulted in the threat of total collapse of large financial institutions, the bailout of banks
by national governments and downturns in stock markets around the world. The crisis
played a significant role in the failure of key businesses, the decline in consumer wealth
estimated to be in the trillions of US dollars, and a downturn in economic activity leading
to the 2008-2012 global recession, as well as contributing to the European sovereign-
debt crisis. Things got worse in late 2009. The fears of a sovereign debt crisis developed
among investors as a result of the rising private and government debt levels around the
world, together with a wave of downgrading of government debts in some European
Monetary Union (EMU) members. The crisis started from Greece when investors began
to worry about the potential default of Greek government bonds. And this fear spread
to other EMU countries, especially peripheral members. Crises always make people ask
questions like : ‘What if I could see this coming?’. Economists are widely blamed in
this crisis because of their failure of forecasting. This leads to the question of whether
this crisis really could not be forecast and what leading indicator can be used. Regarding
the sovereign debt crisis, it is even harder to forecast. This is because sovereign debt
default is a rarely happening event. How to assess the risk level of sovereign debt is not
an easy question to answer, and it is even harder to forecast the crisis.

In the literature, the yield curve has been proven a valid leading indicator in fore-
casting aggregate activities. The yield curve, also known as the term structure of interest
rates, is a curve showing several yields or interest rates across different contract lengths
(3 month, 5 year, 10 year, etc...) for a debt contract. The curve shows the relation be-
tween the interest rates (or borrowing cost) and the time to maturity (term of the debt
contract). And government bond yield curve is generally treated as a benchmark curve
among all. Since Kessel (1965) first brought the idea that different stages of the business
cycle show different term structures of interest rates, researchers started to examine the
predictive power of the term structure in predicting economic activities. And as the sim-
plest form of term structure of interest rates, term spread is used as the leading indicator
and it has been found useful for forecasting macroeconomic activities such as output
growth, inflation, industrial production and recessions. Term spread here is a difference
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between a nominal long-term bond yield (usually 10-year government bond yield) and a
nominal short-term bond yield (usually 3-month government bond yield). This suggests
the these analysis are conducted by real GDP and nominal yields, which implies the
assumption that inflation is constant across different terms. Despite the fact term spread
makes a good indicator, the literature seems have trouble to reach an agreement on the
theory to explain why this macroeconomic / term spread relationship exists. For later
studies, they will just refer to this as a “stylized fact in search of theory” (Benati and
Goodhart, 2008). Three main theories support this relationship so far. The first one is
from Harvey (1989). He believes that when people expect a recession or a decreasing
economy, they will change their investment behaviour. They will withdraw money from
the short-term investment and put them into the long-term ones. In the bond market,
this behaviour leads to a higher long-term bond price and a lower short-term bond price,
so the yield of short-term bonds will rise and the yield on long-term bonds will drop.
And of course, the spread is shrinking. And in the same manner, when people expect
a booming of the economy, the term spread is increasing. The second theory is based
on expectations hypothesis of the term structure of interest rates. The hypothesis ex-
plains long-term interest rates as sum of current and expected future short-term interest
rates plus a term premium. This hypothesis well explained the reason why the long-
term rate is larger than the short-term rate on most occasions, which makes the yield
curve slope upwards. However, if the expectation about future short-term yield drops,
the yield curves become flatten or even downward. This theory is closely related to the
fact that monetary policy will be adjusted according to the market situation. And the
third theory emphasizes the ability of term spread forecasting will be influenced by the
reaction of a monetary authority on stabilizing the output growth. Feroli (2004), Estrella
(2005), Estrella and Trubin (2006) noted in their research that whether the term spread
is a good predictor depends on the monetary authority’s policy objectives and reaction
functions. This means if the monetary authorities focus on controlling inflation exclu-
sively, the accuracy of term spread to forecast will be bad. While if the authorities are
more responsive to the potential output growth, the term spread will become a better
leading indicator. Term spreads did show a great forecast ability in the literature. And
now the question is are they still reliable during the recent crisis and what can be done
to improve this leading indicator?
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The sovereign debt crisis became one of the most popular topics since late 2009.
This is because the crisis happens in a monetary union so that it spreads quickly. Al-
though when we talk about the sovereign debt, it can be issued with different terms to
maturity, 10-year government bond is always treated as the benchmark in terms of the
stability of the sovereign debt. The yield movement of 10-year government bonds repre-
sent the confidence of investors about government solvency in the bond markets. On 8th
Dec, 2009, rating agency Fitch cut Greece’s long-term debt from A- to BBB+. When
the Greek government bond yield rose sharply as a result of the lack of confidence in
investing in Greek government bonds, the bond yield of peripheral European countries
Spain and Portugal also increased along with Greece. In Ireland and Italy, however, the
yields decreased. The different reactions of different countries leads to another question:
‘ Is there any relationship between these countries’ sovereign debt yield movements es-
pecially in a crisis?’ And ‘Can this relationship be used as a tool for forecasting risk
levels of sovereign debt in the European Union?’ When a multi-dimensional method is
needed to model this problem, vine copula becomes a valid and promising choice.

As a developed form of copula method, vine copula is a flexible graphical model
for describing multivariate copulas built up using a cascade of bivariate copulas. Such
pair-copula constructions decompose a multivariate probability density into bivariate
copulas, where each pair-copula can be chosen independently from the others. It comes
with all the properties a conventional copula has, which provides a method of isolat-
ing the description of the dependence structure and understanding the dependence at a
deeper level. It expresses dependence on a quantile scale, which is useful for describing
the dependence of extreme outcomes and is natural in a risk-management context. The
method has been used in the stock market to analyse the risk of an investment portfolio
(Joe, 1996, Nikoloulopoulos et al., 2012). And this leads us to ask the research ques-
tion:‘Can one analyse government bond risks of the countries in the European union at
one time using the vine copula method and how?’

1.2 Contributions of the Study

Chapter 2 and 3 make several contributions to the literature on output growth/recession
- yield curve relationship from two perspectives.
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Chapter 2 expands the research from the aspect of allowing more information to the
leading indicator, and the contribution is threefold: First, conventionally, researchers use
yield spreads to represent the yield curve. However, use of the yield spread is essentially
based on the assumption that the yield curve is a straight line, while it may be that the
non-linearity in the yield curve embodies predictive power. Therefore, the innovative
feature of this chapter is that this assumption is relaxed by using the whole yield curve.
Second, I use two different approaches, parametric and non-parametric, to model the
yield curve in order to meet a great variety of forecasting purposes. Third, I demonstrate
that the term structure forecasting model has an excellent forecast ability in recession
forecasting. This is particularly relevant in the light of the major recession recently
experienced.

The third chapter explores the relationship from the aspects of nonlinearity, and it
contributes to the literature from the following five aspects. Firstly, I choose the UK as
the target country to investigate the relationship between yield spread and real economic
activities involving the time series non-linearity. Secondly, the presented research is
conducted with data containing the recent Financial Crisis. The influence of this big
recession to the relationship is tested. Thirdly, I apply Vector Autoregression (VARs)
with non-linearity to forecast future real GDP growth as well as recessions. Fourthly,
this chapter applied two more non-linear models and various autoregressive orders in
the model search, which is more comprehensive compared to Galvão (2006)’s research.
Last but not least, this study successfully identifies the non-linearity of the real growth-
term spread relationship in the UK.

Chapter 4 analyses the sovereign debt crisis from a new perspective, and the con-
tribution of this research is fourfold. Firstly, this is the first analysis of extreme value
and tail dependence of sovereign debt spreads movements in the European Union. Sec-
ondly, this study conducts the comparison between 11 countries in the European Union
at the same time. Thirdly, this chapter uses vine copulas to deal with large numbers
of dimensions. The model satisfies the wide range of dependence, flexible range of
upper and lower tail dependence, computationally feasible density for estimation, and
closure property under marginalization simultaneously. Fourthly, which is also the key
feature of the chapter, the research identifies the risk levels of sovereign debt in different
countries in the European Union.
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1.3 The Structure of the Thesis

The thesis is organized in five chapters, and the rest of the thesis is structured as follows:

Chapter 2: The yield curve as a leading indicator in economic forecasting in the
UK

This chapter investigates a model utilising the term structure of interest rates to predict
output growth and recession in the UK. In contrast to previous literature, information
retrieved from the whole yield curve is used rather than just the yield spread. Using
both parametric and non-parametric methods and analysing quarterly UK data from
1979q4 to 2009q4, our models are found to outperform the yield spread models both
in in-sample and out-of-sample forecasting. Notably, the B-spline fitting model is able
to forecast the 2009-2010 recession. Moreover, the model with lagged GDP growth
(Model B in the chapter) shows great forecasting ability in out-of-sample output growth
forecasting. In most cases, models based on B-spline perform better than the ones based
on the Diebold-Li framework.

Chapter 3: Time series non-linearity in the real growth / recession-term spread
relationship, some evidence from the UK

This chapter examines the existence of time series non-linearity in the real output growth
/ recession-term spread relationship. Vector Autoregression (VAR), Threshold VAR
(TVAR), Structural break VAR (SBVAR), Structural break threshold VAR (SBTVAR)
are applied to UK data from 1979q1 to 2013q1 in the analysis. The in-sample results in-
dicate there are non-linear components in this relationship. And this non-linearity tends
to be caused by structural breaks. The best in-sample model also shows its robustness on
arrival of new information in the out-of-sample tests. I find evidence that the model with
only structural break non-linearity outperforms linear models in 1-quarter, 3-quarter and
4-quarter ahead forecasting.
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Chapter 4: Vine copulas and applications to the European Union sovereign debt
analysis

The European sovereign debt crisis has become a very popular topic since late 2009.
This chapter investigates sovereign debt crises by calculating the probabilities of the po-
tential future crisis of 11 countries in the European Union. Sovereign spreads against
Germany are used as targets and apply the Generalized Autoregressive Conditional Het-
eroskedasticity (GARCH) based vine copula simulation technique. The methodology
solves the difficulties of calculating the probabilities of rarely happening events and
takes sovereign debt movement dependence, especially tail dependence, into consider-
ation. Results confirm the situation that Greece and Portugal are in crises. They also
indicate that Italy and Spain are the most likely next victims of the sovereign debt crisis,
followed by Ireland, France and Belgium. The UK, Sweden and Denmark, which are
outside the EMU, are the most financially stable countries in the sample.

Chapter 5: Conclusion

This Chapter concludes the thesis and discusses the limitations of the research as well
as future research.



Chapter 2

The yield curve as a leading indicator
in economic forecasting in the UK

2.1 Introduction

The practical objective for economic forecasting is to provide policymakers with new
economic tools to estimate the impact on aggregate activities of their potential decisions.
The importance of accurate forecasting was brought into sharp focus long ago by the
painful experience of the Great Depression. However, this is not saying that a good
forecaster can prevent a recession like the recent financial crisis happening, but a good
forecaster may help to reduce the loss caused by recession to an acceptable level. The
regulator is not the only party who can benefit from forecasting but also private agents
such as practitioners, portfolio managers and risk managers whose future earnings and
business strategies will be influenced by the quality of such forecasts.

The term structure of interest rates has been mentioned frequently in the context of
monetary policy, particularly as an indicator of market expectations or of the position of
policy. Although it is rarely viewed as a policy target, it is generally conceded to contain
some information that may be of use to both market participants and to the monetary
authority. There has already been a relatively extensive literature examination of the
informational and predictive content of the term structure with regard to the conventional
final targets of monetary policy, which are inflation and real activity. For instance, when
people expect a recession, they will change their investment behaviour: withdraw money
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from short-term investing and put them into long-term investing. In the bond market
this behaviour leads to a higher long-term bond price and a lower short-term bond price,
so the yield of short-term bonds will rise and the yield on long-term bonds will drop,
changing the shape of the yield curve.

This chapter looks at economic forecasting through the term structure of interest
rates from a new perspective by examining the whole yield curve and using the infor-
mation to forecast recessions and output growth.

In the literature, there has been little research using the whole yield curve. The
majority use only the slope or both slope and level to investigate the relationship between
yield curve and output growth. The contribution is threefold: First, conventionally,
researchers use yield spread to represent the yield curve. However, use of the yield
spread is essentially based on the assumption that the yield curve is a straight line, while
it may be that the non-linearity in the yield curve embodies predictive power. Therefore,
one innovative feature of this chapter is that this assumption is relaxed by using the
whole yield curve. Second, two different approaches have been used, parametric and
non-parametric, to model the yield curve in order to meet a great variety of forecasting
purposes. Third, the chapter demonstrates that the term structure forecasting model has
excellent forecast ability in recession forecasting. This is particularly relevant in the
light of the major recession recently experienced.

The nominal zero-coupon rate and real GDP growth in the UK for the period from
1979q4 to 2009q4 are used in this chapter. We adopt the definition of recession used by
the National Bureau of Economic Research (NBER) which is a period in which GDP
falls (negative real economic growth) for at least two consecutive quarters. There are two
striking features in the results of this study: 1. The B-spline and Diebold-Li frameworks
forecast fit better than the yield spread model and achieve higher forecast performance
in short-horizon forecasting especially 1-quarter ahead forecasts. According to both
in-sample and out-of-sample tests, models based on the whole yield curve outperform
those based on yield spread in output forecasting. 2. In terms of the forecasting abil-
ity of different forecasting approaches under two frameworks (Diebold-Li framework
and B-spline framework), the out-of-sample forecasting results demonstrated that probit
model base on B-spline approach exhibits extremely high forecast ability for forecasting
recessions.
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The rest of this chapter is structured as follows: Section 2.2 is a brief literature
review about using the yield curve to forecast economic growth. In Section 2.3, methods
of constructing a yield curve and the forecasting models are illustrated. Section 2.4 is
the description of the data in the research. The results and findings of this research is
presented in Section 2.5. Section 2.6 concludes.

2.2 Brief Literature Review

The use of interest rates and their term structure as a predictor of recession and GDP
growth has been widely studied, and these literature show strong evidence that it is
reliable (Estrella and Hardouvelis, 1991, Zagaglia, 2006, Bordo and Haubrich, 2008).
However, evidence shows that not all the countries in the world can effectively use the
term structure of interest rates as a leading indicator, while most of the literature find
that the UK is one of those that can use it (Jorion and Mishkin, 1991, Harvey, 1991, Es-
trella and Mishkin, 1997, Plosser and Rouwenhorst, 1994, Bernard and Gerlach, 1998).
Estrella and Mishkin (1997) conclude that term spread is not significant in most OECD
countries, except the UK, France and Germany in recession forecasting. Schich (2000)
finds in G-7 countries, US, German, UK and Canadian yield spreads are significant for
output forecasting. Bonser and Morley (1997) show evidence that the UK Canada and
Germany can effectively use the yield spread as a leading indicator, but weak evidence
is shown in Japan and Switzerland.

The information included in the term structure successfully predicts recessions with
discrete choice models, in which the recession is coded as 1 and other times coded 0
(Estrella and Mishkin, 1998, Wright, 2006). Although Dotsey (1998), and Stock and
Watson (2003) report that the predictive power of the spread has decreased after 1985,
Estrella and Mishkin (1998)’s work demonstrates that the spread is still better than other
leading indicators in predicting recessions. In Stock and Watson (1999)’s work they in-
clude term spread as a very important element in their leading business cycle indicator
index. Stock and Watson (2003), then imply a short-term interest rate (short-term com-
mercial paper rate) to improve the predictive power of the whole model. By introducing
monetary regime into the explanatory variables, Bordo and Haubrich (2004) success-
fully increase the predictive ability of the yield curve and show that this influence is
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changing over time. Ang et al. (2006) test the spreads between different long-term
bonds to a 3-month bond together using a VAR approach. This approach avoids the
limitation of using a 10-year and a 3-month spread and predicts that greater explanatory
power should come from longer term spreads.

Term spread here is a difference between a nominal long-term bond yield (usually
10-year government bond yield) and a nominal short-term bond yield (usually 3-month
government bond yield). This suggests the these analysis are conducted by real GDP and
nominal yields, which implies the assumption that inflation is constant across different
terms and time.

In order to add more elements into forecasting models, we apply a Nelson and Siegel
(1987) exponential components framework modified by Diebold and Li (2006) and the
B-spline model (de Boor, 1978) to include more information in the yield curve in the
UK economy. We also assume that inflation is constant across different terms and time,
in order to establish the relationship between the nominal term structure of interest rate
and the real economics activities. The Diebold-Li framework and B-spline model can
properly model yield from 3-month 6-month 9-month... to 15 year all in one daily yield
curve. Moreover, from the Diebold-Li framework, this curve has three estimators which
represent short-, medium- and long-term yield. The B-spline model is a non-parametric
model which fits a curve very well. In this research, we use this whole yield curve to
forecast both the real growth and the recession to identify the forecast ability of the
whole yield curve.

2.3 Methodology

The econometric modelling approach adapted here consists of two stages: The first
stage is to model the yield curve in each time period and the second stage is using the
estimators obtained from the first stage to forecast recession and real output growth.

2.3.1 Stage 1: Model the yield curve

Several approaches have been developed for modeling the yield curve. The Bank of Eng-
land for example have adapted a model developed by Mastronikola (1991) to estimate
term structure in the early 1990s, later replacing it with a parametric model developed
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by Nelson and Siegel (1987), and then further improved by Svensson (1994). However,
Fisher et al. (1995) and Waggoner (1997) construct term structure using non-parametric
models based on cubic splines (B-splines) which later became part of the official model
used by the Bank of England. Anderson and Sleath (2008) compared these models and
conclude that the Nelson and Siegel (1987) model appears to be much more stable than
the Svensson technique, while in all cases the Waggoner (1997) curve appears to per-
form well. Practically, the Nelson and Siegel model modified by Diebold and Li (2006)
appears to be more stable than the Svensson model and more flexible than the Nelson-
Siegel approach. Therefore, one parametric model which is Diebold-Li framework for
explanatory purpose and one non-parametric model which uses the B-spline technique
to construct yield curve for forecasting purposes have been chosen.

Diebold-Li framework

In general, when talking about the term structure of interest rates, economists usually
refer to the zero-coupon yield which is because of the great data availability. There
are three key theoretical constructs for yields: the discount curve, the forward curve,
and the yield curve. Assume that a set of observable zero-coupon bond prices across
a continuum of maturities, let Pt (τ) be the present value at time t of £1 receivable at
maturity τ, let yt (τ) be the yield to maturity of continuously compounded zero-coupon
bond. From the yield to maturity, economists obtain the discount curve:

Pt (τ) = e−τyt (τ) . (2.1)

The most basic type of information for estimating yield curve is the implied forward
rates of interest at various horizons. Implied forward rates of interest are defined as
the marginal rates of return that investors require in order to hold bonds of different
maturities (Anderson and Sleath, 2001). The set of ’instantaneous’ forward rates for
period u, f (u), are related to the price, P(τ), of a τ-maturity zero-coupon bond by:

Pt (τ) = exp[
∫ τ

0
f (u) du]. (2.2)

Equation (2.1) shows a direct relationship between the bond prices which can be
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observed and zero coupon nominal yields which cannot be observed, while equation
(2.2) shows a direct relationship between the bond prices and the instantaneous forward
rates which cannot be observed.Hence a direct relationship between nominal yields and
forward rates is obtained by both equation (2.1) and (2.2):

yt (τ) =
1
τ

∫ τ

0
f (u) du, (2.3)

where yt denotes the yield at time t, and τ is the maturity of the bond. This equation im-
plies that the zero-coupon yield is an average of all the implied one period forward rates.
Since the discount curve, the forward curve and the yield curve are all algebraically re-
lated, any of these three can be computed by knowing one of the others. In practice,
however none of the three can be computed by knowing one of the others. In prac-
tice, however, none of the three curves is directly observable, they must be estimated
from observed coupon-bearing bond prices. The McCulloch (1975) and McCulloch
and Kwon (1993), Vasicek and Fong (1982) constructing yields by estimating a smooth
discount curve and then converting to yields at the relevant maturities via the above for-
mulas. The problem of McCulloch (1975) and McCulloch and Kwon (1993) is fitted
discount curve diverging from zero instead of converging to zero at long maturities. The
problem of Vasicek and Fong (1982) is hard to restrict the implied forward rates to be
positive. Instead of using an estimated discount curve, Fama and Bliss (1987) however,
construct yields via estimated forward rates at different maturities. This method is called
‘unsmoothed Fama-Bliss yields’ is successfully fit the yield curves at longer-maturities
bonds, and restricting the implied forward rates to be positive, is adapted by Diebold
and Li (2006) for the United States government bond market.

The Diebold-Li method is a modified model from the Nelson-Siegel model (1987).
Nelson-Siegel model is a parametric method and offers a conceptually convenient and
parsimonious description of the term structure of interest rates. The yields are modeled
as follows:

yt (τ) = b1t + b2t
1 − e−λt τ

λtτ
+ b3te−λt τ, (2.4)

where yt (τ) is yield at time t of a bond with time to maturity τ and the parameter λ
determines the rate of exponential decay.

This model using 1−e−λtτ
λt τ

and e−λt τ have two problems: first, it is hard to explain
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the effect or significance of the two factors in the original Nelson-Siegel framework;
second, it is difficult to estimate the factors precisely, because the high coherence in the
factors produces multicollinearity. However, the model modified by Diebold and Li:

yt (τ) = β1t + β2t
1 − e−λt τ

λtτ
+ β3t

(
1 − e−λt τ

λtτ
− e−λt τ

)
, (2.5)

is more preferable because the correlation between 1−e−λtτ
λt τ

and 1−e−λtτ
λt τ

− e−λt τ is greatly
reduced, compare to the two factors in Nelson-Siegel framework. The multicollinearity
of the factors has been solved in the mean time. The four parameters β1t , β2t , β3t and
λt can be interpreted as long-, short-, medium-term factors and exponential decay rate
respectively which represent the level, slope, curvature and proportion between slope
and curvature of the curve respectively. Figure 2.1 shows how the model decomposes
the yield curve into 3 factors.

Figure 2.1: Factor Loadings for Diebold and Li framework.

For simplicity, Diebold and Li (2006) fix λt at 0.0609. At this value the medium-
term, or curvature, factor achieves its maximum at a maturity of 30 months. This is
considered as standard.
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B-spline model

In general a spline is a piecewise polynomial of degree k that is continuously differen-
tiable k − 1 times, i.e. a curve constructed from individual polynomial segments joined
at ‘knot points’, with coefficients chosen such that the curve and its first derivative are
continuous at all points. The most commonly used polynomials are cubic functions –
giving a cubic spline. The continuity constraints imply that any cubic spline can be
written in the form:

S(x) = αx3 + βx2 + γx + δ +

N−1∑
i=1

ηi |x − ki |
3 , (2.6)

for some constants α, β, γ, δ, ηi,where ki is the ith knot and N is the number of knots
are chosen. It is the simplest expression for a cubic spline, but numerically unstable, and
therefore a linear combination of cubic B-spline is preferred instead (de Boor, 1978). A
B-spline is a piecewise cubic polynomial that is twice continuously differentiable as a
cubic spline. The B-spline framework can be used to model a curve with following
advantages. It provides a useful tool for the general construction of cubic splines and
takes positive values over only four adjacent sub-intervals in the overall partition. On
all other sub-intervals, cubic B-spline vanishes. Moreover, any cubic spline on [a,b]
can be constructed as a linear combination of this sequence of cubic B-splines. Finally,
because these cubic B-splines are defined piecewise, this linear combination is easy to
compute and numerically stable (Bolder and Gusba, 2002). This is a completely general
transformation (any spline can be written as such a combination of B-splines of the
appropriate order), which solves the numerically unstable problem. B-splines of order
n are most simply represented by the following recurrence relation:

Bi,n(x) =
x − ki

ki+n−1 − ki
Bi,n−1(x) +

ki+n − x
ki+n − ki+1

Bi+1,n−1(x), (2.7)

with Bi,1(x) = 1 if ki ≤ x < ki+1, and Bi,1(x) = 0 otherwise.1
In the present case one internal knot2, k1 = 90 is used and the yield curve can be

1For further details see Lancaster and Salkauskas (1986)
2One internal knot is chosen in B-spline model for the reason of balancing the accuracy of the curve

modelling and the degree of freedom in the forecasting models.
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written as:

yt (τ) = bs1t B1(τ) + bs2t B2(τ) + bs3t B3(τ) + bs4t B4(τ) + bs5t B5(τ), (2.8)

where B1(τ), B2(τ), B3(τ), B4(τ) and B5(τ) are basis functions according to the internal
knot. Figure 2.2 shows the decomposition of yield curve into basis functions.

Figure 2.2: Loading figure for B-spline framework.

For comparison reason, this paper also conduct forecast using the term spread in the
same time. The term spread is calculated as follows,

St = lrt − srt , (2.9)

where St is the term spread, lrt is 10-year government bond and srt is 3-month govern-
ment bill.

2.3.2 Stage 2: Forecasting Model

By estimating β1t , β2t and β3t from equation (2.5) and bs1t , bs2t , bs3t , bs4t and bs5t

from equation (2.8), information is extracted from the yield curve on the last day of the
each quarter. We adapted the following forecasting models to draw a connection with
the recession variable or real GDP growth and the yield curve.
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Recession forecasting

As in the literature (Estrella and Hardouvelis, 1991, Estrella and Mishkin, 1997, Dotsey,
1998, Wright, 2006), this research also suggests a probit model involves the prediction
of whether or not the economy will be experiencing a recession k quarters ahead. This
model abstracts from the actual magnitude of economic activity by focusing on the sim-
ple binary indicator variable. Although this forecast is in some sense less precise, the
requirements on predictive power are in another sense less demanding and may increase
the potential accuracy of the more limited forecast. Here the NBER definition of re-
cession is used. The value of probability of recession is equal to 1 when the economy
is in recession, and 0 when it is not in recession. And the models are as follows: For
Diebold-Li framework:

P(recessiont ) = Φ(α1 β1,t−h + α2 β2,t−h + α3 β3,t−h), (2.10)

where h is the forecasting horizon.
For B-spline model:

P(recessiont ) = Φ(α1bs1,t−h + α2bs2,t−h + α3bs3,t−h + α4bs4,t−h + α5bs5,t−h), (2.11)

where h is the forecasting horizon.

Real GDP growth forecasting

Since the data is quarterly, annual GDP growth is calculated as follows:

∆yt = log(yt ) − log(yt−4) (2.12)

Two different approaches to forecast real output growth are applied. They are identi-
fied as Model A and B. Model A is a model with the real GDP growth as the dependent
variable and lagged yield curve representative variables being independent variables.
And the equation is as follows:

Model A: ∆yt = AXt−h + ε t , (2.13)
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where matrix X = (β1, β2, β3) for Diebold-Li framework and matrix X = (bs1,bs2,bs3,bs4,bs5)
for B-spline model.

Model B is a model modified from Model A by adding a lag term of the GDP growth,
and it is set up as follows:

Model B: ∆yt = φ∆yt−h + AXt−h + ε t , (2.14)

where matrix X = (β1, β2, β3) for Diebold-Li framework and matrix X = (bs1,bs2,bs3,bs4,bs5)
for B-spline model

Models will be compared by both adjusted R2 and Akaike information criterion
(AIC). AIC is calculated as follows,

AIC = 2k − 2ln(L), (2.15)

where k is the number of parameters, L is the maximized value of the likelihood function
for the estimated model.

Because of the two-step setting of this analysis, the standard error of coefficients
from the second step will be biased. In order to solve this, a bootstrap re-sampling
technique is used. We re-sample the variables from the first step of the analysis for 1000
times, which improves the accuracy of the standard errors.

2.4 Data

In order to forecast quarterly macroeconomic activity, quarterly zero-coupon bond yield
nominal spot rate in UK bond market data from fourth quarter of 1979 to the fourth
quarter of 2009 is used in this research. For simplicity, maturities are fixed to 3, 6, 9,
12, 15, 18, 21, 24, 30, 36, 42, 48, 54, 60, 72, 84, 96, 108, 120, 144, 180 months. That
is 21 yields in each time-period. There are 121 time-periods in total. The descriptive
statistics for the yields is given in Table 2.1. The yield curves are wave like. The long
rates are less volatile and more persistent than the short ones.

The UK Expenditure Approach Total GDP at Constant Prices, Seasonally Adjusted
is used as the real GDP. The recession variable is using the NBER definition which is
negative real GDP growth for at least two quarters and records 1 when the period is
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Table 2.1: Descriptive statistics, nominal yield curves.

Maturity(Months) Obs Mean Std. Dev. Min Max
3 121 7.936 3.723 0.435 17.029
6 121 7.777 3.521 0.410 15.129
9 121 7.719 3.414 0.496 14.795
12 121 7.710 3.353 0.665 14.627
15 121 7.718 3.303 0.878 14.563
18 121 7.732 3.263 1.077 14.530
21 121 7.749 3.231 1.221 14.513
24 121 7.768 3.206 1.368 14.605
30 121 7.805 3.166 1.644 14.804
36 121 7.8386 3.140 1.891 14.950
42 121 7.870 3.122 2.107 15.047
48 121 7.898 3.112 2.298 15.107
54 121 7.925 3.106 2.467 15.138
60 121 7.949 3.104 2.619 15.149
72 121 7.989 3.105 2.883 15.135
84 121 8.018 3.108 3.108 15.100
96 121 8.033 3.109 3.303 15.053
108 121 8.036 3.103 3.473 15.005
120 121 8.026 3.090 3.624 14.955
144 121 7.975 3.042 3.880 14.847
180 121 7.840 2.933 4.053 14.646
Note: The table summarizes the general information of the data is used, which
is zero-coupon rate measured as a percentage in sample period 1979q4-2009q4.

experiencing recession, otherwise records 0. The term spread is calculated using “UK
Yield 10-Year Central Government Securities" and “UK Yield Three-Month Treasury
Bill". All data are collected from Thomson Reuters ECOWIN3.

3Please see Appendix A for more information.
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2.5 Results

2.5.1 Yield curve fitting

The first stage of the forecasting is to construct the yield curve. 121 regressions are
run using both the Diebold-Li framework and the B-spline model one per time-period.
Each regression has 21 observations on yields. The average adjusted R2 results are
0.86 for Dielbold-Li framework and 0.99 for B-splines model (see Table 2.2). These
results demonstrate that the modeled yield curves fit the original data well. However,
the B-spline framework shows a better and more stable performance according to the
smaller standard deviation (0.001) of the adjusted R2 than the Diebold-Li frame work
(0.196). From Table 2.2, the results show that the lowest adjusted R2 for the Diebold-Li
framework is 0.01. This means the Diebold-Li framework cannot model certain types
of yield curve properly. For example, on 30 Sep, 1985, the performance of Deibold-Li
framework fitting is not very good (see Figure 2.3a). On the other hand, B-spline is able
to model the same yield curve accurately (see Figure 2.3b). On the other hand, Figure
2.3c and 2.3d show the examples on 30 June, 1997 that both models fit the yield curve
accurately.

Table 2.2: Comparison of estimation of the yield curve based on Diebold-Li and B-
spline frameworks.

Variable Obs Mean Std. Dev. Min Max
Diebold-Li framework

Adj R2 121 0.86 0.196 0.01 0.99
B-spline framework

Adj R2 121 0.99 0.001 0.98 0.99
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Figure 2.3: A comparison of Diebold-Li and B-spline framework fittings for selected
dates.

(a) The yield curve and fitting by Dieblod-Li
framework on 30, Sep, 1985

(b) The yield curve and fitting by B-spline
framework on 30, Sep, 1985

(c) The yield curve and fitting by Dieblod-Li
framework on 30, Jun, 1997

(d) The yield curve and fitting by B-spline
framework on 30, June, 1997

2.5.2 Recession forecasting

The results of Probit model in-sample tests are presented in Table 2.3 and Table 2.4.
Pseudo R2 is a value that is similar to the R2 in OLS representing the fitting ability of
the model. The results from both tables demonstrate that 6-quarters ahead forecasts have
the biggest Pseudo R2 and lowest AIC. All the coefficients of independent variables in
Diebold-Li framework 6- and 7-quarters ahead are significant. Therefore, it means that
the term structure explains the recession best by 6- and 7-quarters ahead forecasting,
and all the independent variables can contribute to the explanation of the recessions.
Long-term factor has a negative relationship with recession while short-term and mid-
term factors have a positive relationship with the recession. This is consistent with the
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argument that when there is a recession looming people tend to sell short-term and mid-
term bonds and change it into long-term bonds.

Table 2.3: Probit model forecasting recession for Diebold-Li framework.

qrt-
ahead

α1 α2 α3 constant Pseudo
R2

AIC

1 0.0467 0.1286 -0.2751∗ -1.9838∗ 0.25 75.40
2 0.0505 0.2287∗ -0.2301∗ -1.9499∗ 0.25 75.32
3 0.0487 0.3251∗ -0.1774∗ -1.9303∗ 0.28 72.51
4 0.0320 0.4704∗ -0.1022∗ -1.9041∗ 0.33 65.38
5 0.0165 0.5032∗ -0.0329 -1.7868∗ 0.36 63.53
6 -0.1289∗ 0.5994∗ 0.0082∗ -1.5781∗ 0.52 40.47
7 -0.1404∗ 0.8115∗ 0.0151∗ -1.1326∗ 0.45 44.81
8 -0.2513∗ 0.9547∗ 0.1433∗ -0.7472∗ 0.34 51.68
Note: ∗ is significant in 95% confidence level with coefficients’ standard error boot-
strapped 1000 times. Here α1 is coefficient of b1, α2 is coefficient of b2 and α3 is
coefficient of b3.

Table 2.4: Probit model forecasting recession for B-spline.

qrt-
ahead

αbs1 αbs2 αbs3 αbs4 αbs5 constant Pseudo
R2

AIC

1 0.0105 0.0110 -0.4576 0.0725 0.4584 -2.3411 0.38 67.94
2 0.0352 0.1424 -0.4295 -0.0589 0.3826 -2.0847 0.35 70.20
3 0.0699 0.1522 -0.4529 0.0748 0.2316 -2.0342 0.32 73.00
4 0.1128 0.3532 -0.7004 0.1042 0.1985 -2.0160 0.36 67.27
5 0.1124 0.2992 -0.3042 -0.0731 -0.0158 -1.7950 0.42 45.08
6 0.1408 0.3585 -0.4138 -0.0293 -0.0801 -1.5598 0.60 39.71
7 0.1793 0.3370 -0.1539 -0.2794 -0.2889 -0.7560 0.47 50.67
8 0.3190 -0.3056 2.1036 -1.5884 -1.7833 3.5564 0.34 60.14
Note: αx represents the coefficient of variable x. ∗ is significant in 95% confidence level with
coefficients’ standard error bootstrapped 1000 times.
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Figure 2.4: Comparison of model fitting using probit models 6-quarter ahead.

Note: Shaded areas are recessions under the NBER definition.
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Figure 2.4 contains the graphs showing predicted probability among the Diebold-Li
framework, B-spline model and spread model 6-quarter ahead. B-spline captures all
the three recessions while the Diebold-Li framework captures the first and the recent
ones. There are increasing probabilities during the second recession (the early 1990s),
but they are smaller than 0.25 which is not high enough to alert the market. The spread
model only captures the first two recessions and fail to predict the recent financial crisis.
Moreover, the spread model also has a false alarm in the beginning of 2000.

Figure 2.5 presents the comparison of the out-of-sample forecasting results by using
these models. Both Diebold-Li framework and B-spline forecast the recent financial
crisis successfully 6-quarters ahead. However, the spread model fails to forecast the
recent recession by giving out a very low probability (smaller than 0.2) of recession
when we are experiencing the financial crisis. The spread model also show a fairly high
probability of recession in the beginning of early 2000s. It is worth mentioning that both
the Diebold-Li framework and B-spline model show a reducing probability of recession
in 2009q3 while in reality the UK was still experiencing the recession.
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Figure 2.5: Comparison of model out-of-sample using probit models 6-quarter ahead.

Note: Shaded areas are recessions under the NBER definition. In-sample period:1979q4-1999q4,
out-of-sample period 2000q1-2009q4

2.5.3 GDP growth forecasting

In-sample test

By using real GDP growth as a dependent variable, firstly Model A with both the
Diebold-Li method and B-spline method are constructed. The in-sample test results
are given in Table 2.5 and Table 2.6. The model with the highest adjusted R2 or lowest
AIC is selected as best fit of the model. Therefore, Model A based on the Diebold-Li
framework shows its best performance in 5-quarters ahead forecasting. Model A based
on the B-spline framework performs the best in 4-quarters ahead. Actually from 1-
quarter ahead to 4-quarters ahead models based on the B-spline framework show great
forecasting ability. In the Diebold-Li framework coefficients of long-term and short-
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term factors are significant in the 3- to 5-quarters and 7- to 8 quarters ahead models.
This shows that only short-term and long-term bonds of the yield curve contribute to the
explanation of the real GDP growth in these forecasting horizons. The adjusted R2 here
can be interpreted as the percentage with which we can explain the GDP growth by us-
ing the model. Thus 26% of real GDP growth can be explained by the yield curve based
on the Diebold-Li framework 5-quarters ahead. While in the B-spline model 4-quarters
ahead explains 28% of real GDP growth, which is a better result compared to the yield
spread, which can only explain a 22% real GDP growth base on the result of 5-quarter
ahead modelling (see Table 2.7). This confirms that including more useful information
into the model by using the whole yield curve improves the forecasting ability. Co-
efficients of the short-term factor (α2) in 3- to 8-quarter ahead Diebold-Li framework
based Model A are significant (see Table 2.5), which suggests that monetary policy is
an important factor in explaining real growth. In the Diebold-Li framework based on
Model B, coefficients of short-term factor in 3- to 8- ahead forecast are also significant,
suggesting the same (see Table 2.8). The results from Model B (see Table 2.8 and Table
2.9) are better than spread model based on both their R2 and AIC. One quarter ahead
forecasting based on both the Diebold-Li framework (R2 is 0.82 and AIC is -766.35)
and B-spline model (R2 is 0.82 and AIC is -762.85) are the best model compare to the
other forecasting horizons. Table 2.10 examine the models performance based on AIC.
According to Table 2.10, Model B based on Diebold-Li framework 1-quarter ahead fore-
cast, is the best fitting model of all. For Diebold-Li framework, from 1- to 4- quarter
ahead forecasts Model B are better than Model A, while from 5- to 8-quarters ahead
forecasts Model A are better. This suggests including the lag term of the real growth
is not always improves the model when it is based on the Diebold-Li framework. In
most cases, models based on the B-spline framework achieve better performance than
the ones based on the Diebold-Li framework. According to Table 2.8, the coefficients
of lagged real GDP growth in 1-quarter to 6-quarters ahead forecast of Model B based
on the Diebold-Li framework are significant. For Model B based on the B-spline frame-
work, coefficients of lagged GDP of all the forecast horizons except 8-quarters ahead
are significant. This means the lagged real GDP growth contribute to the explanation
of GDP growth in short-term forecasting. This is also consistent with the increasing
adjusted R2 after applying the lagged real GDP.
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Table 2.5: Model A based on Diebold-Li framework.

qrt-ahead α1 α2 α3 constant R2 AIC
1 -0.0006∗ -0.0010 0.0031∗ 0.0278∗ 0.17 -584.58
2 -0.0007∗ -0.0024 0.0022 0.0278∗ 0.14 -578.35
3 -0.0007∗ -0.0038∗ 0.0015 0.0275∗ 0.17 -576.70
4 -0.0006∗ -0.0047∗ 0.0004 0.0265∗ 0.20 -581.65
5 -0.0003∗ -0.0047∗ -0.0001 0.0242∗ 0.26 -588.95
6 0.0002∗ -0.0046∗ -0.0001 0.0208∗ 0.25 -586.24
7 0.0006∗ -0.0043∗ -0.0003 0.0178∗ 0.20 -585.08
8 0.0009∗ -0.0039∗ -0.0003 0.0153∗ 0.19 -583.39
Note: ∗ is significant in 95% confidence level with coefficients’ standard error
bootstrapped 1000 times. Here α1 is coefficient of b1, α2 is coefficient of b2
and α3 is coefficient of b3.

Table 2.6: Model A based on B-spline framework.

qrt-ahead αbs1 αbs2 αbs3 αbs4 αbs5 constant R2 AIC
1 -0.0002 -0.0003 0.0086∗ -0.0044∗ -0.0058∗ 0.0351∗ 0.27 -594.89
2 -0.0003 -0.0027∗ 0.0078∗ -0.0015 -0.0054∗ 0.0347∗ 0.25 -590.92
3 -0.0005∗ -0.0042∗ 0.0063∗ 0.0010 -0.0045 0.0333∗ 0.27 -596.90
4 -0.0007∗ -0.0053∗ 0.0045∗ 0.0029 -0.0028 0.0302∗ 0.28 -597.24
5 -0.0007∗ -0.0049∗ 0.0015 0.0047∗ -0.0011 0.0257 0.21 -578.43
6 -0.0007∗ -0.0036∗ -0.0016 0.0058∗ 0.0006 0.0199 0.20 -580.06
7 -0.0008∗ -0.0026∗ -0.0027 0.0054∗ 0.0020 0.0151 0.21 -584.05
8 -0.0009∗ -0.0017 -0.0022 0.0037 0.0027 0.0116 0.22 -583.48
Note: αx represents the coefficient of variable x. ∗ is significant in 95% confidence level with
coefficients’ standard error bootstrapped 1000 times.
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Table 2.7: Results based on spread model

qrt-ahead α1 constant R2

1 -0.002 0.0201∗ 0.01
2 -0.004∗ 0.021∗ 0.07
3 -0.005∗ 0.021∗ 0.12
4 -0.006∗ 0.021∗ 0.20
5 -0.007∗ 0.022∗ 0.22
6 -0.006∗ 0.023∗ 0.19
7 -0.006∗ 0.023∗ 0.18
8 -0.005∗ 0.023∗ 0.14
Note: αx represents the coefficient of variable
x. ∗ is significant in 95% confidence level with
coefficients’ standard error bootstrapped 1000
times.
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Table 2.8: Model B based on Diebold-Li framework.

qrt-
ahead

φ α1 α2 α3 constant R2 AIC

1 0.9486∗ 0.0002 -0.0008 0.0000 -0.0013 0.82 -766.35
2 0.8870∗ 0.0003∗ -0.0017 -0.0003 -0.0019 0.64 -678.53
3 0.7070∗ 0.0003∗ -0.0028∗ -0.0001 0.0018 0.44 -621.40
4 0.4790∗ 0.0002∗ -0.0038∗ -0.0005∗ 0.0082 0.32 -599.22
5 0.3448∗ 0.0003∗ -0.0041∗ -0.0008∗ 0.0107 0.25 -586.70
6 0.2421∗ 0.0006∗ -0.0041∗ -0.0006∗ 0.0112 0.22 -585.28
7 0.1480 0.0008∗ -0.0040∗ -0.0006∗ 0.0120 0.21 -586.09
8 0.0383 0.0010∗ -0.0039∗ -0.0004 0.0138 0.19 -581.53
Note: ∗ is significant in 95% confidence level with coefficients’ standard error boot-
strapped 1000 times. Here φ is coefficient of lag of GDP growth, α1 is coefficient of
b1, α2 is coefficient of b2 and α3 is coefficient of b3.

Table 2.9: Model B based on B-spline framework.

qrt-
ahead

φ αbs1 αbs2 αbs3 αbs4 αbs5 constant R2 AIC

1 0.9518∗ -0.0001 -0.0006 -0.0008∗ 0.0015∗ 0.0003 -0.0019∗ 0.82 -762.85
2 0.8594∗ -0.0002 -0.0022 0.0000 0.0029 -0.0003 -0.0004 0.68 -695.88
3 0.6558∗ -0.0003∗ -0.0031∗ 0.0002 0.0041∗ -0.0006 0.0045∗ 0.48 -629.88
4 0.4359∗ -0.0005∗ -0.0043∗ 0.0002 0.0050∗ -0.0002 0.0102∗ 0.33 -606.71
5 0.3332∗ -0.0006∗ -0.0041∗ -0.0017∗ 0.0062∗ 0.0009 0.0101∗ 0.26 -593.81
6 0.2841∗ -0.0006∗ -0.0029∗ -0.0043∗ 0.0070∗ 0.0023 0.0065∗ 0.24 -587.67
7 0.2439∗ -0.0007∗ -0.0020 -0.0050∗ 0.0065∗ 0.003∗4 0.0035∗ 0.24 -586.50
8 0.1634 -0.0008 ∗ -0.0013 -0.0037∗ 0.0045∗ 0.0037 0.0038∗ 0.23 -583.54
Note: αx represents the coefficient of variable x. ∗ is significant in 95% confidence level with
coefficients’ standard error bootstrapped 1000 times.
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Table 2.10: Model comparison based on AIC

Model A Model B
qrt-ahead DL BS DL BS
1 -584.58 -594.89 -766.35 -762.85
2 -578.35 -590.92 -678.53 -695.88
3 -576.70 -596.90 -621.40 -629.88
4 -581.65 -597.24 -599.22 -606.71
5 -588.95 -578.43 -586.70 -593.81
6 -586.24 -580.06 -585.28 -587.67
7 -585.08 -584.05 -586.09 -586.50
8 -583.39 -583.48 -581.53 -583.54
Note: Selection rules: The lower AIC the model has, the better it fits
the data. DL = Deibold-Li framework, BS = B-spline framework.

Out-of-sample test

A good forecasting model should not only fit well in-sample but also predict well out-
of-sample. Out-of-sample tests are conducted using 1979q4 to 1999q4 as in-sample
period. And in the mean time, the result is compared with the result from classic yield
spread forecasting model. The forecast equation is:

∆yt = α + βSt−h + ε t , (2.16)

where S is the term spread and h is the forecasting horizon.
The results are shown in Table 2.11. RMSE (Root Mean Square Error) is a conven-

tional tool to measure the efficiency of a forecast model in an out-of-sample test. It is
calculated as follows:

RMSE =

√∑T
i=1 (Ai − Fi)2

T
, (2.17)

where A is the actual value, and F is the forecast value.
According to the results, it is important to note that Model B 1-quarter ahead based

on both the Diebold-Li framework and B-splines get the smallest RMSE which makes
it the best forecast model of all. Generally speaking, all the models show an impressive
out-of-sample forecasting ability across all of the forecasting horizons. In reference to
both forecast ability and fitting ability, models based on the whole curve beat those based
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on the yield spread. Model B shows better fitting ability and forecasting performance
as well as average stability in all the horizon based on R̄2 and RMSE, especially for
1- and 2-quarter ahead forecasting. This suggests that adding the term ∆yt−h to the
model improves the model’s forecasting performance. Models based on the B-spline
framework get slightly better RMSE and better fitting ability.
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Table 2.11: Out-of-sample test results.

qrt-ahead Model A Model B
Spread D-L B-spline D-L B-spline

RMSE R̄2 RMSE R̄2 RMSE R̄2 RMSE R̄2 RMSE R̄2

1 0.029 0.13 0.022 0.45 0.022 0.50 0.011 0.75 0.011 0.75
2 0.028 0.21 0.022 0.49 0.023 0.57 0.015 0.70 0.018 0.70
3 0.027 0.27 0.023 0.48 0.021 0.56 0.020 0.60 0.020 0.63
4 0.026 0.32 0.024 0.43 0.024 0.53 0.023 0.47 0.023 0.56
5 0.026 0.33 0.025 0.36 0.024 0.43 0.024 0.42 0.024 0.49
6 0.026 0.29 0.026 0.32 0.027 0.43 0.026 0.39 0.025 0.44
7 0.027 0.27 0.027 0.32 0.028 0.38 0.027 0.31 0.026 0.39
8 0.028 0.22 0.027 0.30 0.028 0.32 0.026 0.25 0.027 0.30
Note: D-L represents Diebold-Li framework. Selection rules: Choose the model with smallest RMSE and
biggest R̄2. In-sample period:1979q4-1999q4, out-of-sample period 2000q1-2009q4; RMSE: Root Mean
Square Error is computed as in equation (2.17).
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A comparison of out-of-sample results in this research and HM Treasury forecasts
has been conducted. In the UK, the official forecast is the one published by HM Trea-
sury, and HM Treasury does 1, 11 and 12 month-ahead forecasts annually. Because
the presented forecasts are quarterly ahead, the only comparison can be conducted is
12-month ahead from the HM Treasury and 4-quarter ahead in the presented paper. The
results are reviewed in Table 2.12. This League Table shows that all the models based
on the whole yield curve come out with similar results with HM Treasury, and these
models outperform the spread model.

Table 2.12: League Table of models out-of-sample 4-quarter ahead forecasting.

Forecastor RMSE Performance
HM Treasury forecast 0.0222 Best
Model B B-spline 0.0231 ↓

Model B Diebold-Li 0.0233 ↓

Model A B-spline 0.0240 ↓

Model A Diebold-Li 0.0242 ↓

Spread model 0.0262 Worst
Note: Selection rule: choose the model with the smallest RMSE. In-sample period: 1979q4-1999q4,
out-of-sample period: 2000q1-2009q4.

The comparison shows that the presented models are able to get comparable results
with HM Treasury forecasts, however, they are much more parsimonious.

2.6 Conclusion

This chapter proposes a model of the term structure forecasting output growth and re-
cessions in the UK by using the whole yield curve rather than just the yield spread. By
using the Diebold-Li framework and B-spline technique to fit yield curves other than
traditional yield spread, this paper presents new models to forecast recession and eco-
nomic growth. The results are satisfactory. According to the research there is strong
evidence that in terms of recession forecasting the Diebold-Li framework does better
than the yield spread and B-spline model does even better (see Fig 2.4). Secondly, from
in-sample test results, short-term yields which represent monetary policy are playing a
very important role in real GDP growth forecasting in Models A and B. Another find-
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ing of this chapter is that models based on the Diebold-Li and B-spline framework fit
the yield curve better than the yield spread model and show a good forecasting ability
in 5-quarters ahead for Model A based on the Diebold-Li framework, 4-quarters ahead
for Model A based on the B-spline framework, and 1-quarter ahead for Model B based
on both framworks. From out-of-sample tests Model B based on both the Diebold-Li
framework and the B-spline framework achieve very satisfactory results and show a sta-
ble forecasting ability for all forecasting horizons. All models based on the whole yield
curve beat the results from models based on yield spread. From the comparison, it is
important to note that Model B based on B-spline generates closest forecast results to
the one from HM Treasury. This means this chapter offers more parsimonious models
which results are comparable to the HM Treasury forecasts.

Evidence found in this chapter can be used by the government, practitioners and in-
vestors to improve both their recession forecasting and output growth forecasting model,
and adjust their policies efficiently and in a timely manner.



Chapter 3

Time series non-linearity in the real
growth / recession-term spread
relationship, some evidence from the
UK

3.1 Introduction

The ability of the yield curve to predict future real activities has been an interest to
academics since early 1990s. The intuition of these studies are, agents in the market
will invest on assets based on the expectation of the economy, so that the price changing
contains useful information about future economic growth. In the bond market, this
behaviour will lead to a shape changing of the term structure of interest rates. Therefore,
the simplest form of term structure of interest rates, term spread becomes a valid agent
to investigate the theory.

Numerous studies try to understand how well the term spread explains and forecasts
output growth and recessions. Evidence shows that term spread is a reliable predictor
under linear analysis (Dotsey, 1998, Galbraith and Tkacz, 2000, Ang et al., 2006, Bordo
and Haubrich, 2008). Nonetheless, the predictive power varies in different economies. It
is a valid predictor in the UK and Germany as well as the US from most of the literature
and it is not quite reliable in France, Canada and Japan. (Harvey, 1991, Estrella and

48
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Mishkin, 1997, Plosser and Rouwenhorst, 1994, Bernard and Gerlach, 1998). From
2000, researchers started to look at this relationship from a non-linear perspective in
order to enhance the explanatory power of yield spread. Galbraith and Tkacz (2000)
find evidence of non-linearity in this relationship in the US and Canada. Venetis et al.
(2003) discover threshold effects in the US, UK and Canada in the output growth-yield
spread relationship. Duarte et al. (2005) find significant nonlinearity exists in the output
growth-yield spread relation in the euro area as well as the US. Galvão (2006) uses
structural break threshold VAR showing models with structural break and thresholds
outperform linear models in recession forecasting in the US sample.

In the existing literature, the UK has not been tested comprehensively. This allows
me to make several contributions to the literature on the output growth / recession-term
spread relationship. Our contribution is fivefold. Firstly, we investigate the relationship
between yield spread and real economic activities involving the time series non-linearity
in the UK. Secondly, the presented research is conducted with data containing the recent
financial crisis allowing tests of the influence of this big recession to the relationship.
Thirdly, we apply VARs with non-linearity to forecast future real GDP growth as well
as recessions. Fourthly, the chapter applies two more non-linear model and various
autoregressive orders in the model search, which is more comprehensive compared to
Galvão (2006)’s research. Last but not least, this study successfully identifies the non-
linearity of the real growth-term spread relationship in the UK.

UK GDP at constant prices, 3-month UK government bond and 10-year UK govern-
ment benchmark are chosen quarterly as data from the period between the first quarter
of 1979 and the first quarter of 2013.

VARs, threshold VARs with one (TVAR) or two thresholds (2TVAR), structural
break VARs with one (SBVAR) or two breaks (2SBVAR), structural break threshold
VARs with one break and one threshold (SBTVARc) as well as structural break threshold
VARs with one break and one threshold in each broken regime (SBTVAR) are applied
to the real growth-term spread equation. The in-sample results confirm the existence of
the nonlinearity and it tends to be structural break. The out-of-sample results show the
robustness of the structural break model on arrival of new information. And they pro-
vide superior performance against the linear models in 1-quarter, 3-quarter and 4-quarter
ahead forecasting.
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The rest of this chapter is structured as follows: Section 3.2 is a brief literature
review of yield curve forecasting. In Section 3.3, the structural break threshold VARs
and introduction of methods applied for recession forecasting are presented. Section 3.4
gives the data description. Section 3.5 discusses the results and Section 3.6 concludes.

3.2 Literature Review

The yield spread containing information on future output growth and likelihood of fu-
ture recessions has been studied widely in the literature. Wheelock and Wohar (2009)
undertook a comprehensive survey regarding the ability of the term spread to forecast
output growth and recessions. The survey covers 18 papers focusing on growth fore-
casting and 13 focusing on recession forecasting. All of the papers confirm the forecast
ability of the term spreads. In terms of output growth forecasting, Harvey (1988, 1989,
1991) introduced this idea and examined the G-7 countries, and confirmed the forecast
ability of term spread as a leading indicator. Later, Estrella and Hardouvelis (1991),
Plosser and Rouwenhorst (1994), Estrella and Mishkin (1997) and Estrella et al. (2003)
start to use uni-variate or multi-variate linear models to examine the real growth-term
spread relationship.

Galbraith and Tkacz (2000) use nonlinear models and the results show the signifi-
cance of forecast ability of the yield spread as well as the non-linear behaviour in the
relationship. This brings the research into a new chapter. Tkacz (2001) applied neural
networks model on Canadian data and shows a greater forecast ability in 4-quarter ahead
forecasting than in 1-quarter ahead forecasting. Venetis et al. (2003) conduct nonlinear
procedures including smooth nonlinear transition models, regime-switching models and
time-varying models using US, UK and Canadian data and show that threshold effects
exist in the yield spread-output growth relationship. Duarte et al. (2005) use a change
point model and a nonlinear threshold model and find that the nonlinear model out-
performs the linear model and spreads achieve a better performance to predict output
growth when output growth has slowed. Giacomini and Rossi (2006) present evidence
of structural breaks in the US yield spread-output growth relationship. In Benati and
Goodhart (2008)’s research, they find the forecasting ability of the yield spread varies in
different periods of time by conducting time-varying parameters VARs. Regarding the



51

recession forecasting, Probit models are widely used. Estrella and Hardouvelis (1991),
Dotsey (1998), and Estrella and Mishkin (1998) prove the usefulness of the yield spread
in recession forecasting using similar US data set. Bernard and Gerlach (1998) and
Ahrens (2002) test the significance of yield spread as a leading indicator in eight in-
dustrialized countries. And structural break threshold VARs are delivered to predict
recession by Galvão (2006) and it suggests 2-quarter ahead forecasts has the best per-
formance in the US. According to the literature above, it is fair to say there are non-
linearities in the yield spread-output growth and yield spread-recession relationships in
the US. However, the literature that examines the UK is very limited, and the research
have been done mostly using data from before 2007. It is important to know whether
the most recent 2008 to 2010 recession has altered these relationships.

In this chapter, more comprehensive structural break threshold VARs are applied
to examine the existence and influence of non-linearities in the real growth / recession
relationship.

3.3 Methodology

3.3.1 Structural Break Threshold VARs

Structural break threshold VARs are combinations of Threshold VARs and Structural
break VARs. Threshold VARs are piecewise linear models with different autoregressive
matrices in each regime, determined by a transition variable (one of the endogenous
variables), a delay and a threshold (Tsay, 1998). Structural break models also divide
the sample into two or more regimes, but they are determined by one or more break-
points and are not recurrent, allowing different dynamics before and after the break.
Although non-linear models can capture some characteristics of structural break models
((Koop and Potter, 2000, 2001, Carrasco, 2002), it may be the case that the break also
implies changes in the parameters that determine the non-linearity. Univariate time-
varying smooth transition models have been proposed by Lundbergh et al. (2003) and
have been applied to capture changes in seasonality of industrial production by van Dijk
et al. (2003). Unlike time-varying parameters models, structural break threshold VARs
are able to identify the break point from one regime to another so that one can analyse



52

the cause of the changes.
Define xt as a m × 1 vector of m endogenous variables Xt = (x1t , x2t , . . . , xmt )′ and

define the m × (mp + 1) matrix, Xt−1 = (1,Xt−1, . . . ,Xt−p where p is the autoregressive
order. A threshold VAR with one threshold (r) with a delay (d) can be written as:

Xt = (Xt−1 β1)Iz,t−d (r) + (Xt−1 β2)(1 − Iz,t−d (r)) + ut , (3.1)

where r should be allocated in one one m variables before the estimation. And Iz,t−di (ri)
is an indicator function which depends on a transition variable z. For a threshold ri and
a delay di,

Iz,t−di (ri) =


1 if (zt−di ≤ ri)
0 if (zt−di > ri)

In the same manner, a structural break VAR with one break point (τ) can be written as:

Xt = (Xt−1 β1)Jt (τ) + (Xt−1 β2)(1 − Jt (τ)) + ut , (3.2)

where Jt (τ) is an indicator function which depends on a break-point τ,

Jt (τ) =


1 if (t ≤ τ)
0 if (t > τ)

A structural break threshold VAR with one break point and one threshold in each
structural break regime can be written as:

Xt = [(Xt−1 β1)Iz,t−d1 (r1) + (Xt−1 β2)(1 − Iz,t−d1 (r1))]Jt (τ)+ (3.3)

[(Xt−1 β3)Iz,t−d2 (r2) + (Xt−1 β4)(1 − Iz,t−d2 (r2))](1 − Jt (τ)) + ut ,

where βi is a (mp + 1) × m matrix of parameters. ut is a m × 1 vector of error term.
To estimate the threshold VAR models, structural break VAR models and struc-

tural break threshold VAR models, there are three methods. They are conditional least
squares, which is suggested by Tsay (1998), maximum likelihood which is proposed
by Hansen and Seo (2002), and maximum likelihood estimator that allows difference
variance in each regime, introduced by Galvão (2006).
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The conditional least squares estimation applies a grid search in part of the sample
of threshold and delay and the estimator should be the one that minimizes the sum of
squared residuals (Tsay, 1998). The sum of squared residuals can be calculated by the
number of observations times the estimated covariance matrix of residuals for any given
threshold. There is a limit on the sample in each regime for searching, and a proportion
of π at either end of the data is excluded. And 0 < π < 1. From the literature, 0.10
(Clements and Galvão, 2004) and 0.15 (Andrews, 1993) are usually chosen. Therefore,
the conditional least square estimators(r̂1, r̂2, τ̂) can be obtained by:

min(T ∗ trace(Σ̂(r1,r2, τ))) ∀ rl ≤ r1 ≤ ru,rl ≤ r2 ≤ ru, τl ≤ τ ≤ τu.

The maximum likelihood estimator is calculated assuming the error term is normal dis-
tributed. Similar to the approach of conditional least squares, the estimator is obtained
by a grid search in part of the sample in order to minimize log(det( ˆΣ(r))) (Hansen and
Seo, 2002). Therefore, the maximum likelihood estimators (r̂1, r̂2, τ̂) can be obtained
by:

min(log(det(Σ̂(r1,r2, τ)))) ∀ rl ≤ r1 ≤ ru,rl ≤ r2 ≤ ru, τl ≤ τ ≤ τu.

Both of the estimators are based on the assumption that the covariance matrices are the
same for each regime. However, in practice, especially when applying macroeconomic
data, the variances are different for each regimes. Galvão (2006) suggests a maximum
likelihood estimator with regime-switching variances. For instance, in a typical SBT-
VAR (contains one break-point and one threshold in each break period) which has four
separated regimes, the maximum likelihood estimator with regime-switching variances
(r̂1, r̂2, τ̂) can be obtained by:

min


 T1

2 log(det(Σ̂1(r1,r2, τ))) +
T2
2 log(det(Σ̂2(r1,r2, τ)))

T3
2 log(det(Σ̂3(r1,r2, τ))) +

T4
2 log(det(Σ̂4(r1,r2, τ)))




∀ rl ≤ r1 ≤ ru,rl ≤ r2 ≤ ru, τl ≤ τ ≤ τu.

In this chapter the maximum likelihood estimator with regime-switching variances
is applied in estimating the sample.
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3.3.2 Forecasting Recessions

The definition of recession in this chapter is the NBER definition as defined in Section
2.1. It is a period in which GDP falls (negative real economic growth) for at least two
consecutive quarters.

The probability of predicting recession is calculated by using estimated VARs to
simulate future growth. And it is the proportion of number of events which have two
consecutive periods of negative real growth over total simulated events. This procedure
is first suggested by Anderson and Vahid (2001).

Define X t−1 = {Xt−1,Xt−2, . . . ,X1} as the history of Xt and Xt = f (X t−1; Γ, β) + ut

as the forecasting model where Γ is the matrix of parameters. In this chapter, they
are thresholds and breaks. β is a k-vector of parameters. ut is i.i.d. with E(ut ) = 0,
Var(ut ) = Σ. For the given value of β̂ and Σ̂, a forecast of pseudo sequence values for
{xt , xt+1, xt+2, xt+3, xt+4} is conducted. The bootstrap re-sampling technique is used. We
re-sample X t−1 for 2000 times using parametric bootstrap method. Given β̂ we are able
to generate 2000 û∗t . By applying these û∗t back into Xt = f (X t−1; Γ, β) + ut , a sequence
of X̂ t can be formed. Followed by a new draw of ut+1 using the same method, from
the residuals and employed to calculated X̂∗t+1, given X̂ t and β̂, so that X̂ t+1 is formed.
The procedure continues until the sequence S1 = {X̂∗t , X̂

∗
t+1, X̂

∗
t+2, X̂

∗
t+3, X̂

∗
t+4} has been

generated. 2000 sequences of S1 will be generated after the procedure. The probability
of a recession h-quarter ahead is the proportion of these 2000 sequences, in which the
X̂t+h−1, X̂t+h are both negative.

In terms of threshold VARs and structural break VARs, the model can be transformed
as x j

t = f j (X t−1; Γ j , β j ) + u j
t , where j = 1,2 for the two regimes. While in the case of

structural break threshold VARs, j = 1,2,3,4 for the four regimes. It is important to note
that if there are thresholds in the model, all the regimes related need to be bootraped.
However, the bootstrap procedure will be only applied to the latter regime related to the
structural break if there are structural breaks in the model.

3.4 Data

The real GDP data used in this chapter is “gross domestic product (GDP) expenditure
approach, at constant price, seasonal adjusted" (yt). The GDP growth is calculated as
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Equation 2.12 in Section 2.3.2.
Term spread is calculated by Equation 2.9 in Section 2.3 using “UK Yield 10-Year

Central Government Securities" and “UK Yield Three-Month Treasury Bill".
All the data are quarterly data from 1979q1 to 2013q1 and they are collected from

Thomson Reuters ECOWIN1. The software used in this chapter are GUASS and MAT-
LAB.

3.5 Results

3.5.1 In-sample Estimation

In order to find the best estimation, VAR(1), VAR(2) and VAR(3) process with time
series non-linearity is conducted. 7 models including VARs, Threshold VARs with one
(TVAR) or two thresholds (2TVAR), Structural break VARs with one (SBVAR) or two
breaks (2SBVAR), Structural Break threshold VARs with one break and one thresh-
old (SBTVARc) and threshold VARs with one break and one threshold in each broken
regime (SBTVAR) are estimated. For those threshold models the thresholds and delays
will be chosen from the yield spreads.

In-sample Real Growth Estimation

The estimated parameters are shown in Table 3.1 to Table 3.4. In which, Table 3.1 to
Table 3.3 show the delays, thresholds and break parameters as well as the information
criteria. Models will be selected by comparing the AIC which is given in Equation 2.15.

According to the VAR(1) results (Table 3.1), it shows a increasing goodness-of-fit by
introducing more regimes. Generally speaking models with only structural break(s)(AIC
of SBVAR is -46.25 and AIC of 2SBVAR is -52.38) are better than the ones with thresh-
old(s) (AIC of TVAR is -34.05 and AIC of 2TVAR is -39.89). Cross comparing all the
AIC results from Table 3.1 to Table 3.3, 2SBVAR(2) gets the best result with a score of
-122.16. This means there are 2 structural breaks in the real growth-term spread rela-
tionship. They are the first quarter of 1986 and the third quarter of 1991. In association
with the results in Table 3.4 column 11, the dependency of real growth on its first lag

1Please see Appendix B for more information.
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Table 3.1: VAR(1) Estimated Parameters

VAR TVAR 2TVAR SBVAR 2SBVAR SBTVARc SBTVAR
d 4 4 4 4 4
r̂ 2.13 0.88 2.13 2.14 2.20 1.70
τ̂ 1988q4 1986q1 1991q3 1991q1 1991q1

3.10 3.10
σY

2 1.12 1.68 0.69 2.27 2.86 1.23 1.23
1.22 0.91 1.53 1.84 0.55 0.55

2.20 0.68 0.49 0.49
0.92 0.92

σS
2 0.64 0.64 1.58 0.76 0.34 0.24 0.24

0.24 0.64 0.22 0.78 0.58 0.58
0.24 0.20 0.14 0.14

T 133 50 83 27 22 84 31 102 20 22 91 17 23 33 60 18 22 28 65
AIC -32.79 -34.05 -39.89 -46.25 -52.38 -80.39 -81.89
Note: Sample period is from 1980Q1 to 2012Q1. σY

2 and σS
2 are the estimated variance of

output-spread equations for each regime with T observations. Model with the lowest AIC (in
bold format) is preferred.

Table 3.2: VAR(2) Estimated Parameters

VAR TVAR 2TVAR SBVAR 2SBVAR SBTVARc SBTVAR
d 4 4 4 1 2
r̂ 2.47 0.92 2.13 2.14 1.04 0.87
τ̂ 1989q2 1986q1 1991q3 1991q1 1991q1

3.71 3.71
σY

2 1.02 1.54 0.57 2.06 2.52 1.26 1.26
1.03 0.79 1.13 1.21 0.90 0.90

0.94 0.66 0.69 0.69
0.35 0.35

σS
2 0.61 0.42 1.29 0.40 0.31 0.12 0.12

0.24 0.56 0.17 0.37 0.30 0.30
0.23 0.16 0.16 0.16

T 133 57 76 29 20 84 33 100 20 22 91 17 23 33 60 9 31 20 73
AIC -42.37 -43.61 -90.56 -105.99 -122.16 -110.50 -103.74
Note: Sample period is from 1980Q1 to 2012Q1. σY

2 and σS
2 are the estimated variance of

output-spread equations for each regime with T observations. Model with the lowest AIC (in
bold format) is preferred.
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Table 3.3: VAR(3) Estimated Parameters

VAR TVAR 2TVAR SBVAR 2SBVAR SBTVARc SBTVAR
d 2 2 4 1 4
r̂ 1.99 1.99 4.01 1.05 3.39 0.87
τ̂ 1989q2 1986q1 1991q2 1991q1 1991q1

1.61 1.61
σY

2 0.92 1.15 1.15 1.98 2.43 0.98 0.98
0.69 0.69 1.03 1.15 0.24 0.24

0.49 0.57 0.30 0.30
0.34 0.34

σS
2 0.55 0.52 0.19 0.39 0.19 0.16 0.16

0.30 0.37 0.17 0.36 0.29 0.29
0.17 0.16 0.14 0.14

T 133 48 85 48 63 22 33 100 20 21 92 8 32 23 70 32 8 20 73
AIC -65.19 -88.92 -94.48 -103.03 -119.62 -107.89 -87.82
Note: Sample period is from 1980Q1 to 2012Q1. σY

2 and σS
2 are the estimated variance of

output-spread equations for each regime with T observations. Model with the lowest AIC (in
bold format) is preferred.

dropped after 1986q1 (from 0.757 to 0.486) while increase significantly after 1991q3
(from 0.486 to 1.562). The dependence of first lag of spread is increasing through the
first break (from 0.128 to 0.269) and dropping after the second break (from 0.269 to
-0.292). The second lag of spread is increasing through both the breaks (from -0.404
to 0.122 to 0.235). The first break could be related to people’s expectation changing
after the whole UK economy has been fully recovered from the early 80’s recession.
While the second break could be associated with the government’s inflation targeting
policy which altered people’s expectation using the information in the term spread and
let people foresee a longer period.

From Table 3.1 to 3.3, it is important to note that a increasing the lag order of the
model will increase models goodness-of-fit at first and then decrease. For VAR models’
AICs are decreasing by increasing the lag orders. (which will peak at VAR(5)). So do
the TVAR and the 2TVAR. While for SBVAR, 2SBVAR, SBTVARc, SBTVAR, AICs
start to drop after lag orders being increased to 3. This could be led by the parsimonious
problem. There are limited observations in some regimes.
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Table 3.4: VAR(2) Estimated coefficients

VAR TVAR 2TVAR SBVAR 2SBVAR SBTVARc SBTVAR
∆y S ∆y S ∆y S ∆y S ∆y S ∆y S ∆y S

Regime 1

constant 0.349 0.395 0.216 0.350 0.774 0.695 0.473 0.949 0.602 1.092 0.184 1.502 0.646 1.364
β∆y, t−1 1.151 -0.055 1.024 -0.087 1.301 0.031 0.777 0.015 0.757 -0.094 0.692 0.467 0.421 0.277
β∆y, t−2 -0.287 0.043 -0.102 0.148 -0.566 -0.122 0.127 0.318 0.073 0.365 0.132 -0.060 -0.264 0.114
βS, t−1 0.127 1.025 0.155 0.930 -0.255 0.933 0.215 0.549 0.128 0.354 0.374 0.046 1.649 0.521
βS, t−2 -0.147 -0.174 -0.378 -0.191 -0.130 -0.234 -0.267 -0.306 -0.404 -0.379 -0.466 -0.251 -0.535 -0.364

Regime 2

constant 0.611 0.198 -0.238 -0.160 0.500 0.301 0.568 1.936 0.844 0.278 -0.289 -0.689
β∆y, t−1 1.276 -0.068 1.218 -0.423 1.509 -0.053 0.486 -0.189 0.665 0.012 0.771 -0.016
β∆y, t−2 -0.435 0.022 -0.067 0.657 -0.677 0.014 0.086 -0.125 -0.050 0.022 0.234 0.384
βS, t−1 -0.143 1.192 2.175 1.132 -0.297 1.399 0.269 0.942 -0.026 1.017 0.331 1.032
βS, t−2 0.096 -0.249 -2.651 -0.330 0.237 -0.485 0.122 -0.126 0.295 -0.215 -0.258 -0.372

Regime 3

constant 0.725 0.138 0.473 0.256 1.190 0.586 1.890 0.495
β∆y, t−1 1.115 0.012 1.562 -0.035 1.490 -0.095 0.877 0.032
β∆y, t−2 -0.261 -0.048 -0.725 0.001 -0.852 -0.027 -0.464 -0.129
βS, t−1 0.124 1.107 -0.292 1.373 -0.190 1.557 0.049 1.230
βS, t−2 -0.197 -0.162 0.235 -0.452 -0.098 -0.705 0.067 -0.775

Regime 4

constant 0.443 -0.032 0.334 0.261
β∆y, t−1 1.547 0.011 1.629 -0.030
β∆y, t−2 -0.690 -0.043 -0.779 0.001
βS, t−1 -0.175 1.190 -0.386 1.413
βS, t−2 0.135 -0.200 0.365 -0.490

Note: ∆y is the real GDP growth, and S is the term spread.
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In-sample Recession Estimation

Figures 3.1 to 3.3 show the models’ in-sample estimation of recessions. The shaded
areas show the actual recessions. From the graphs we can see that all the models can
capture the three major recessions in the sample period (1980q1 to 2013q1). The graphs
show that the models with threshold estimate the recession period smoothly but is bumpy
during the non-recession period. In contrast, models with only structural break show
some volatility during the recession period while smoother in the non-recession period.
Linear models (VARs) show less stable in both periods. All the models display an in-
creasing probability of recession after 2010. From Figure 3.1 and 3.2, there are small
increasing in recessionary probabilities in VAR(1) and VAR(2) estimations with non-
linearity in 2003. In Figure 3.3, it is much smoother in that period of time of VAR(3)
estimation. By increasing the lag order, we can see more detailed movements of proba-
bilities, however, models are much smoother in non-recession period. This is a sign of
increasing accuracy in the recession modelling.

Summarizing, models with non-linearity are able to model real growth and reces-
sion very well. 2SBVAR(2) with break point 1986q1 and 1991q3 is the best in-sample
estimation among the models. This is an evidence of non-linear behaviour in the real
growth-term spread relationship.
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Figure 3.1: VAR(1) recession in-sample forecasting
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Figure 3.2: VAR(2) recession in-sample forecasting
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Figure 3.3: VAR(3) recession in-sample forecasting
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3.5.2 Out-of-sample forecast

In order to examine the strength of the predicted link in the real growth-term spread re-
lationship, out-of-sample tests have been conducted. Three aspects of the out-of-sample
tests are considered: sensitivity to new information, performance of real growth fore-
casting and performance of recession forecasting.

Sensitivity to New Information

In the out-of-sample tests, thanks to the recursive estimation, one can record the dynamic
relationship between the spread and output growth. Ideally, if the model is used for
forecasting, then the parameters should be robust to the introduction of new information.
Models are estimated recursively to examine the robustness.

The in-sample period is chosen from 1980q1 to 2001q2, and the out-of-sample pe-
riod is 2001q3 to 2013q1. The model will be re-estimated each time a new time point
joins the sample. Therefore the in-sample period is actually the first estimation sam-
ple. 1980q1 to 2001q3 will be the second estimation sample, and so on. The estimated
parameters of TVAR, 2TVAR, SBVAR, 2SBVAR, SBTVARc, and SBTVAR are sorted
into three sub-figures: delays, break points and thresholds.

Figures 3.4 to 3.6 show the sorted recursively estimated parameters of models with
one, two and three autoregressive order(s) respectively. For VAR(1) (see Figure 3.4) de-
lays are quite stable with models with thresholds only. Structural breaks are quite stable,
one break is around late 1985 and gently increases on arrival of new information. And
the second break and the break of SBTVAR(1) is 1991. There is only very short period
of instability about the second break of 2SBVAR(1) during the financial crisis. Regard-
ing the thresholds, the model with thresholds only show a very stable pattern, one is near
1 the other a little bit over 2. Figure 3.5 shows the parameters of model with 2 autore-
gressive orders. It is quite similar to the results from Figure 3.4. Delays and thresholds
are not quite stable from all the models, especially after 2009. This may indicate that
threshold model cannot digest information well in the recent financial crisis. It is worth
mentioning that the structural breaks are more stable than VAR(1) models especially
for the 2SBVAR. The instability that happens in 2SBVAR(1) does not show up here.
This confirms 2SBVAR(2), which is the best model from in-sample estimation, enjoys
the forecast ability’s robustness as well. The two breaks estimated includes one in late
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1985 and the other break around 1992. These breaks can be explained as it is stated in
Section 3.5.1. This also indicates that the big recession that happened recently has had
very limited influence on the relationship modeled by 2SBVAR(2). The break points of
SBVAR are increasing from 1986 to 1990 along with the new information coming. This
behaviour of recursively estimated structural breaks and the stability of the two breaks
indicates there are two and only two breaks in the sample. The delay parameters of
VAR(3) (see Figure 3.6) show a fairly stable pattern in the recursive estimation except
the second threshold in SBTVAR(3). This can be the result of SBTVAR(3) being the
model with the most estimated parameters. The degree of freedom in the model will
drop significantly, which will influence the results. The threshold parameters are quite
unstable in all models with threshold(s). This shows with the increase autoregressive or-
der from 2 to 3, the performance of the model with threshold is decreasing. This is also
because the limited sample size restricted the performance of model with high autore-
gressive orders. The structural break parameters for the SBTVAR(3) keep increasing
after new information entering. This shows then model cannot identify a certain break
point and this is evidence that the structural break parameter is lack of robustness in
SBTVAR(3). In summary, the 2SBVAR(2) shows its stable performance on arrival of
new information, which confirms the robustness of the model.
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Figure 3.4: VAR(1) out-of-sample parameters movements with new information
Note: in-sample period is from 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.
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VAR(2) out−of−sample estimates for delay
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Figure 3.5: VAR(2) out-of-sample parameters movements with new information
Note: in-sample period is from 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.
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VAR(3) out−of−sample estimates for delay
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Figure 3.6: VAR(3) out-of-sample parameters movements with new information
Note: in-sample period is from 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.

Real Growth Forecasting

Figure 3.7 to Figure 3.18 present the out-of-sample forecasting of all the model with
forecasting horizon of 1 to 4 respectively.
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Figure 3.7: VAR(1) 1-quarter ahead real growth forecasts out-of-sample
Note: in-sample period is 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.

The last sub-figure in each figure is the real growth (RGro) for comparison. Across
the figures, we can see that the growth forecasted by threshold VARs are quite volatile
especially with longer forecasting horizons. This is because, as mentioned in the last
section (Section 3.5.2), the threshold parameters are quite unstable when the model
absorbs new information. It is also interesting to note that, for SBTVARcs with 2 au-
toregressive order the predictions of real growth is quite abnormal in 2009 which pick
around 25% (see Figure 3.11, 3.14 and 3.17). This could be the result of a parsimonious
problem when there a small amount of observations in one of the regimes. This issue
might also exist in SBTVAR estimation, nevertheless the impact is not as big. The linear
models’ (VARs) results are quite smooth in out-of-sample forecasts as well as structural
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Figure 3.8: VAR(2) 1-quarter ahead real growth forecasts out-of-sample
Note: in-sample period is 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.
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Figure 3.9: VAR(3) 1-quarter ahead real growth forecasts out-of-sample
Note: in-sample period is 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.



71

-4
-2

0
2

4

V
A
R

-6
-4

-2
0

2
4

T
V
A
R

-4
-2

0
2

4

2T
V
A
R

-6
-4

-2
0

2
4

2002 2004 2006 2008 2010 2012

S
B
V
A
R

Time

-1
0

-6
-2

2
4

2S
B
V
A
R

-6
-4

-2
0

2
4

S
B
T
V
A
R
c

-8
-4

0
2

4

S
B
T
V
A
R

-6
-4

-2
0

2
4

2002 2004 2006 2008 2010 2012

R
G
ro

Time

VAR(1) 2−q ahead forecast

Figure 3.10: VAR(1) 2-quarter ahead real growth forecasts out-of-sample
Note: in-sample period is 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.
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Figure 3.11: VAR(2) 2-quarter ahead real growth forecasts out-of-sample
Note: in-sample period is 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.



73

-4
-2

0
2

4

V
A
R

-4
-2

0
2

4
6

T
V
A
R

-4
0

2
4

6

2T
V
A
R

-4
-2

0
2

4

2002 2004 2006 2008 2010 2012

S
B
V
A
R

Time

-4
-2

0
2

4

2S
B
V
A
R

-6
-2

2
4

6

S
B
T
V
A
R
c

-6
-4

-2
0

2
4

S
B
T
V
A
R

-6
-4

-2
0

2
4

2002 2004 2006 2008 2010 2012

R
G
ro

Time

VAR(3) 2−q ahead forecast

Figure 3.12: VAR(3) 2-quarter ahead real growth forecasts out-of-sample
Note: in-sample period is 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.
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Figure 3.13: VAR(1) 3-quarter ahead real growth forecasts out-of-sample
Note: in-sample period is 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.
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Figure 3.14: VAR(2) 3-quarter ahead real growth forecasts out-of-sample
Note: in-sample period is 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.
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Figure 3.15: VAR(3) 3-quarter ahead real growth forecasts out-of-sample
Note: in-sample period is 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.
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Figure 3.16: VAR(1) 4-quarter ahead real growth forecasts out-of-sample
Note: in-sample period is 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.
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Figure 3.17: VAR(2) 4-quarter ahead real growth forecasts out-of-sample
Note: in-sample period is 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.
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Figure 3.18: VAR(3) 4-quarter ahead real growth forecasts out-of-sample
Note: in-sample period is 1979q1 to 2001q2; out-of-sample period is 2002q3 to 2013q1.
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break VARs. However, structural break models do better in longer horizon forecasting.
The performance of forecasting are examined and compared by Root Mean Square Er-
ror (RMSE) in this chapter. RMSE is a conventional tool to measure the efficiency of
a forecast model in out-of-sample testing. It is calculated as Equation 2.17 in Section
2.5.3

The results of forecasting performance comparison among the models are shown in
Table 3.5. In terms of 1-quarter ahead forecasting, SBVAR(1) outperforms the others
with a RMSE score of 0.1193. VAR(3) enjoys the best performance in 2-quarter ahead
forecasting. For 3-quarter and 4-quarter ahead forecasting, 2SBVAR(2) and SBVAR(2)
get the lowest RMSE respectively. Generally speaking, Structural break VARs out-
perform the linear models (VARs) out-of-sample. It is worth mentioning that SBVAR
makes a better forecasting model than 2SBVAR on average in the out-of-sample test.
By summarizing the out-of-sample results, the best in-sample model is not necessarily
the best out-of-sample. However, 2SBVAR(2) did beat the others in 3-quarter ahead
forecasting and is ranked second or third in 1-quarter 2-quarter and 4-quarter ahead
forecasting. This means 2SBVAR(2) is a stable forecasting model for UK real growth
forecast across different forecasting horizon.
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Table 3.5: Comparison of out-of-sample forecast RMSE

Autoregressive order 1 2 3
1-q ahead

VAR 0.203719 0.330491 0.507225
TVAR 0.486583 0.401619 0.670783

2TVAR 0.602432 1.50678 1.713174
SBVAR 0.119349 0.713874 0.780364
2SBVAR 0.516948 0.786495 0.807101

SBTVARc 0.771787 1.394754 1.867266
SBTVAR 1.082038 1.638453 2.002732

2-q ahead
VAR 1.10935 1.040364 0.912622

TVAR 1.294086 1.182042 1.332358
2TVAR 1.358937 2.195417 2.154308
SBVAR 1.111953 0.98902 1.08046
2SBVAR 1.544483 0.994417 1.05831

SBTVARc 1.480936 4.460788 1.355875
SBTVAR 1.604809 1.482604 2.055407

3-q ahead
VAR 1.943813 1.849534 1.663777

TVAR 2.181866 1.944179 2.126007
2TVAR 2.237575 2.46949 3.087311
SBVAR 2.045546 1.678441 1.747401
2SBVAR 2.811096 1.658131 1.711788

SBTVARc 2.226587 4.874093 2.050893
SBTVAR 2.555783 1.94023 3.067268

4-q ahead
VAR 2.577424 2.458578 2.31837

TVAR 3.018232 2.7817 2.774163
2TVAR 2.82722 3.687261 3.749341
SBVAR 2.799693 2.281595 2.368796
2SBVAR 4.075094 2.300382 2.353885

SBTVARc 3.235476 5.209555 2.655144
SBTVAR 3.351514 2.642391 3.143473

Note: Preferred model indicated by bold type.

Recession Forecasting

For this analysis, the in-sample and out-of-sample periods are the same as the studies
conducted in previous 2 sections (Section 3.5.2 and 3.5.2). Figure 3.19 to 3.21 show the
3-quarter ahead recession forecasting abilities of estimation models using 1 autoregres-
sive order to three autoregressive orders. Generally speaking, all the models can identify
the most recent financial crisis. And they are all showing an increasing probability of re-
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cession after 2010. 2TVAR(3) falsely predicts a recession in 2005, and both 2TVAR(2)
and 2TVAR(3) predict another recession in late 2012. All the abnormal forecasts are
predicted by models with only threshold(s). This result can be explained in association
with the issue threshold VAR encountered in the previous section (Section 3.5.2). That
is models with threshold(s) cannot digest new information very well in the UK output
growth-term spread relationship.
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Figure 3.19: VAR(1) recession out-of-sample forecast 3-q ahead

To sum up, in terms of recession forecasting, both linear and non-linear models work
well except threshold models.
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Figure 3.20: VAR(2) recession out-of-sample forecast 3-q ahead
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Figure 3.21: VAR(3) recession out-of-sample forecast 3-q ahead
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3.6 Concluding Remarks

This chapter examines the non-linear behaviour in the output growth / recession-term
spread relationship using UK data covering the last 34 years. The research conducts
comparisons of VAR, TVAR, 2TVAR, SBVAR, 2SBVAR, SBTVARc, and SBTVAR
with 1 to 3 autoregressive orders. The results suggest there are non-linearities in the
relationship. And evidence shows that the type of this non-linearity is a structural break.
Introducing structural break(s) into the model does improve the explanatory power of the
output growth - yield spread relationship as well as the predictive power of the model.
2SBVAR(2) (model with 2 structural breaks and 2 autoregressive orders ) is the tested
best in-sample estimating model. The breaks are located at first quarter of 1986 and the
third quarter of 1991. The first break can be explained by the expectation adjustment of
people after recovery from the early 1980s’ recession. And the second break is caused
by the decision of the government to apply inflation targeting policy.

In out-of-sample tests, the models with structure break(s) enjoy the robustness on
the arrival of new information. This also indicates the most recent financial crisis does
not change the fundamental being of the relationship. The results from out-of-sample
tests are slightly different from in-sample tests. SBVAR(1), VAR(3), 2SBVAR(2) and
SBVAR(2) enjoy the best forecast ability in 1-quarter, 2-quarter, 3-quarter and 4-quarter
ahead forecast respectively. Generally speaking SBVAR basically dominated the out-
of-sample forecasts and 2SBVAR is almost as good. In terms of recession predicting,
all models presented in the chapter except Threshold models give a fairly good perfor-
mance.

Unavoidably in this study, there are limitations about the comparison. For models
with more regimes (SBTVARc and SBTVAR) in this limited sample size, the disad-
vantage in the comparison is there might be regimes with small amounts of data in the
model. This will trigger the parsimony problem of the VAR estimations, especially for
models with higher autoregressive orders. We have seen that this problem can lead to
abnormal forecasts.



Chapter 4

Vine copulas and applications to the
European Union sovereign debt
analysis

4.1 Introduction

The ongoing European sovereign debt crisis originated in Greece, but the impact has
spread all over the European Union especially in the euro area. On 8th Dec, 2009, rat-
ing agency Fitch cut Greece’s long-term debt from A- to BBB+. Because of the lack of
confidence in investing in Greek government bonds, as one of the sovereign debt default
indicators, the yield of 10-year government bonds jumped up significantly. In the mean
time, the 10-year government bond yield of peripheral European countries Spain and
Portugal also increased along with Greece. In Ireland and Italy, however, the yields de-
creased. This phenomenon shows that yield differentials across European bond markets
have not been wiped out completely, although accelerated financial integration among
euro bond markets has been widely expected, since the macroeconomic and fiscal in-
dicators have shown significant improvement for the higher risk euro markets, creating
a potential for those members to converge with lower risk members in terms of bond
returns. ? states that because the fragility for the governance of the eurozone, being a
member of the monetary union could be easily be forced into default by financial mar-
kets. On the other hand, being non-member of the monetary union is not easily be forced

86
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into default because they are able to control over the currency in which they issue debt.
Finding the relationship between the yields of these countries’ sovereign bonds might
be a useful way to understand how they will influence each other, especially in extreme
events. This information could then be used to assess the risk level of a sovereign bond.
In order to achieve this, a GARCH based vine copula simulation method to analyse the
sovereign debts in the European Union is proposed in this chapter.

As a popular multivariate modeling tool, copula is widely used in many fields where
the multivariate dependence matters, such as actuarial science (Frees et al., 1996), biomed-
ical studies (Wang and Wells, 2000), engineering (Genest and Favre, 2007) and finance
(Embrechts et al., 2003). In finance, the misuse of the copula method in the pricing of
collateralized debt obligations (CDO) is considered by journalists to be one of the rea-
sons that led to the global financial crisis of 2008 - 2009. The copula approach provides
a method of isolating the description of the dependence structure and understanding
the dependence at a deeper level. It expresses dependence on a quantile scale, which
is useful for describing the dependence of extreme outcomes and is natural in a risk-
management context. Due to the advantages of the copula method, it is an ideal tool for
analysing the relationship of sovereign debts between countries in the European Union.

The main difficulty about sovereign debt crisis analysis is that the crisis rarely hap-
pens. It is extremely hard for statisticians to analyse an event which has never hap-
pened before. In order to solve this issue, this chapter uses simulation methods to create
unknown situations. This chapter replicates 10000 iterations of a 365 future day sim-
ulation of sovereign spreads against Germany of 11 countries in the European Union.
In the mean time, the relationships between the countries are considered. Then, the
percentage chance of the crisis events is calculated, which is the probability of future
crisis. In terms of defining crisis events, Sy (2004)’s definition of sovereign debt crisis
is adopted, which is that sovereign spread against the US is more than 1000 basis points.
In the same manner, an EU country experiencing a sovereign debt crisis is defined as
being when its sovereign spread against Germany is greater than 1000 basis points in
this research.

The contribution of this research is fourfold. Firstly, this is the first analysis of ex-
treme value and tail dependence of sovereign debt spread movement in the European
Union. Secondly, this study conducts the comparison between 11 countries in the Euro-
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pean Union at the same time. Thirdly, this chapter uses vine copulas to deal with large
numbers of dimensions and satisfies the wide range of dependence, flexible range of
upper and lower tail dependence, computationally feasible density for estimation, and
closure property under marginalization simultaneously. Fourthly, which is also the key
feature of this chapter, the research identifies the risk level of sovereign debt in different
countries in the European Union.

Daily 10-year government bond yields from 18/06/1997 to 12/03/2012 in Belgium,
Denmark, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain, Swe-
den and the UK are used in this research.

The results show that the estimated crisis probabilities of Greece and Portugal in the
next 365 days are 100% and 99.77%, which is consistent with the situation that they
are already in crisis. Spain and Italy show great potential to be the next victims in one
year’s time. France and Belgium show some instability in the results and the probability
of crisis is fairly high: 63.13% and 60.14% respectively. Netherlands is next with an
almost 1 in 4 chance of crisis and it is the most stable country in the euro area. In the
mean time, countries outside the euro area in the sample which are the UK, Sweden and
Denmark show the greatest stability in their sovereign bonds.

The remainder of the chapter is as follows. Section 4.2 is a literature review in
sovereign debt analysis and copula methods. Section 4.3 is the data description. Section
4.4 discusses the bivariate relationships of these pairs of countries. Section 4.5 explains
the vine copula approach. Section 4.6 shows the results of simulation and calculation of
the risk levels of the countries. And Section 4.7 concludes.

4.2 Literature review

The literature on sovereign debt analysis generally uses sovereign bond spread between
the target country and a benchmark country to assess the default risk level of the target
country. Structural approaches developed from the Merton model (1974) and reduced
form models such as the Jarrow and Turnbull (1995) approach are the two main streams.

The structural approaches explain the sovereign spread endogenously using enter-
prise value volatility and firm default definition (Diaz Weigel and Gemmill, 2006, Os-
hiro and Saruwatari, 2005). The pitfalls of these approaches are not only their difficulty
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and lack of accuracy to define appropriate country-specific proxy variables for the level
of indebtedness, but also they disregard the fact that default incentives of a country are
more complicated than those of enterprises. The reduced form approaches use differ-
ent macro variables as the determinants of the sovereign default risk. Literature such
as Reinhart et al. (2003), Eichengreen et al. (2003) and Goldstein and Turner (2004),
analyse the sovereign debt risk of emerging market economies. Their focus is on the
sustainability of the sovereign debt and the currency mismatches. They measure de-
fault risk by using country credit ratings. The disadvantage of these approaches is that
these credit ratings are inefficient and cannot be adjusted in a timely manner to adapt to
the market data when a big crisis is ongoing. Most recently, Dötz and Fischer (2010)
use a GARCH-in-mean based on a reduced form model to analyse the factors trigger-
ing the sovereign spreads movement in the European Union and the result shows that
the expectation of loss is the main reason sovereign spread widened during the recent
global financial crisis. Both structural and reduced form approaches face a problem:
they ignore the yields movement dependence with other countries, which is especially
important inside the European Union.

Vine copula methods can solve these problems by modeling several sovereign yield
spreads together in a single framework. They analyse countries sovereign debt risk, fo-
cusing on the interactions of countries and assess the crisis probabilities of countries
simultaneously. There is a large body of literature using copulas in a financial context
(Bouyé et al., 2000, Embrechts et al., 2003, Cherubini et al., 2004). Most of them are
used to compute Value at Risk (VaR) and expected shortfall (ES) of the stock or bond
portfolio by applying single copula families such as elliptical copulas and Archimedean
copulas. There are lots of limitations on those copula families applied in the above
literature. Elliptical copulas are widely used, but they cannot model the financial tail
dependences very well (Patton, 2008). Archimedean copulas are not satisfactory for
modeling with dimensions higher than two (Joe, 1997). Multivariate Archimedean cop-
ulas only allow exchangeable structure with a narrower range of negative dependence
in a higher dimension (McNeil and Neslehova, 2009). Partially symmetric copulas ex-
tend Archimedean to a class with a non-exchangeable structure, but the dependence they
provide are not particularly flexible (Joe, 1993). Mix-id copulas in Joe and Hu (1996)
provide flexible positive dependence by construction, but only upper tail dependence
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is flexible not lower tail. Demarta and McNeil (2005) provides multivariate skewed-t
copulas, which model well, but are computationally more involved. Vine copulas were
first was proposed by Joe (1996) and explained in detail by Bedford and Cooke (2002).
At that time, vine copulas model were a graphical model using bivariate copulas to con-
struct multivariate copulas. Aas et al. (2009) conduct statistical inference on two types
of vines: canonical vine (C-vine) and drawable vine (D-vine). This model has been
improved by Nikoloulopoulos et al. (2012) which can satisfy most of the features that
should be included in a copula model: firstly, a wide range of dependence including
both positive and negative dependence; secondly, a flexible range of upper and lower
tail dependence; thirdly, computationally feasible density for estimation and fourthly,
closure property under marginalization.

In this chapter, a GARCH based Vine copula method is used to analyse the tail
dependence and calculate probabilities of sovereign debt crisis of these countries in
certain periods of time in the European Union.

4.3 Data

Daily 10-year government bond yields from 18/06/1997 to 12/03/2012 in Belgium, Den-
mark, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain, Sweden
and the UK are used in this research. All data are collected from Thomson Reuters
ECOWIN1.

4.4 Bivariate copula analysis

4.4.1 GARCH filter

Vine copula modeling proceeds in three stages. In the first stage, the model for the
individual variables (i.i.d) is selected, which is the marginal distribution. For financial
time series data, a GARCH filter with innovation being student-t distribution is applied
for the purpose of making the data independent and identically distributed (Aas and
Berg, 2009). Using Box-Jenkins analysis method (Box and Jenkins, 1970), all ∆(i j − i∗)

1Please see Appendix D for more information.
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are determined to be MA(1) process. In order to find the best model to fit the series,
MA(1)-GARCH(1,1), MA(1)-EGARCH(1,0)2 and MA(1)-TGARCH(1,1) are proposed
in this stage. Q-statistic (Ljung and Box, 1978) and ARCH LM test (Engle, 1982) are
conducted at the same time for testing autocorrelation of residuals and squared residuals
respectively.

The MA(1)-GARCH(1,1) model can be expressed as follows:

∆(i − i∗)t,j = µ j + ε t,j + θε t−1,j , (4.1)

ε t,j = zt,jσt,j , (4.2)

σ2
t,j = α0,j + α1,jε

2
t−1,j + β1,jσ

2
t−1,j , (4.3)

where j = 1, . . . ,d, t = 1, . . . ,T , ∆(i − i∗) is sovereign spread against Germany (i∗) of
a target country (i), zt ∼ T (0,1, ν), The conditions of coefficients that ensure positive
volatility and existence of second moment are α1 > 0, β1 > 0 and α1 + β1 < 1.

The MA(1)-EGARCH(1,0) model may generally be specified as follows:

∆(i − i∗)t,j = µ + ε t,j + θε t−1,j , (4.4)

ε t,j = zt,jσt,j , (4.5)

lnσ2
t,j = α0,j + γ1,j ( |

ε t−1,j

σt−1,j
| − E |

ε t−1,j

σt−1,j
|) + β1,j lnσ2

t−1,j , (4.6)

where j = 1, . . . ,d, t = 1, . . . ,T , ∆(i − i∗) is sovereign spread against Germany (i∗) of a
target country (i), zt ∼ T (0,1, ν).

The MA(1)-TGARCH(1,1) model is represented by the expression:

∆(i − i∗)t,j = µ + ε t,j + θε t−1,j , (4.7)

ε t,j = zt,jσt,j , (4.8)

σt,j = α0,j + α1,j |zt−1,j | + β1,jσt−1,j + δ1,j zt−1,j , (4.9)

where j = 1, . . . ,d, t = 1, . . . ,T , ∆(i − i∗) is sovereign spread against Germany (i∗)
of a target country (i), zt ∼ T (0,1, ν). The conditions of coefficients which guarantee
positive conditional volatility are α0 > 0, α1 > 0, β1 > 0, |δ1 | < α1 and α1

2 + β1
2 +

2MA(1)-EGARCH(1,1) was also considered, and all the coefficients α1 are insignificant.
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δ1
2 + 2α1 β1ν1 < 1, where ν1 =

√
ν−2
π

Γ( ν−1
2 )

Γ( ν2 ) for zt is student-t distributed (Rodriguez
and Ruiz, 2012).

Table 4.1,4.2 and 4.3 present the results of MA(1)-GARCH(1,1), MA(1)-EGARCH(1,0),
MA(1)-TGARCH(1,1), respectively. In Table 4.1, all the coefficients satisfy the condi-
tion α1 > 0, β1 > 0 and α1 + β1 < 1, which ensure the positive conditional volatility
and confirm the existence of second moment of a standard GARCH model. In Table
4.3, all the coefficients meet the requirements α0 > 0, α1 > 0, β1 > 0,|δ1 | < α1
and α1

2 + β1
2 + δ1

2 + 2α1 β1ν1 < 1, which guarantees positive conditional volatil-
ity as well as the existence of the second moment of a TGARCH model. According
to Akaike information criterion (Akaike, 1974), MA(1)-TGARCH(1,1) model fits the
data the best, and then MA(1)-EGARCH(1,0), and last place is MA(1)-GARCH(1,1).
However, in MA(1)-TGARCH(1,1) model, coefficients δ of DEN, FRA, and POR are
insignificant in 95% confidence interval, which means there is no threshold effect in
these models. In the mean time, ARCH LM tests of MA(1)-TGARCH(1,1) in FRA,
POR and UK indicate autocorrelation of squared standardized residuals. The above re-
sults suggest that MA(1)-TGARCH(1,1) fit for BEL, GRE, IRE, ITA, NET, SPA, SWE
the best. The next best model MA(1)-EGARCH(1,0) is considered for DEN, FRA, POR
and UK. ARCH LM tests of MA(1)-EGARCH(1,0) imply that there are autocorrelations
in squared standardized residuals for FRA and UK. With the insignificant coefficients
of threshold parameter in MA(1)-TGARCH(1,1), this suggests the series of FRA and
UK could be symmetric. Q-Statistics are mostly insignificant in 95% significance level,
which represents no autocorrelation in the residuals.

In summary, the best model fit for BEL, GRE, IRE, ITA, NET, SPA and SWE is
MA(1)-TGARCH(1,1); the best model fit for DEN and POR is MA(1)-EGARCH(1,0);
and the best model fit for FRA and UK is MA(1)-GARCH(1,1).
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Table 4.1: Results of MA(1)-GARCH(1,1)

BEL DEN FRA GRE IRE ITA NET POR SPA SWE UK
µ -0.0002 -0.00031 2.07E-05 -0.00031 -0.00024 -0.00027 -0.00014 -0.00016 -0.0003 -0.00046 2.32E-05
θ -0.35547∗ -0.46821∗ -0.47978∗ -0.27817∗ -0.33931∗ -0.28703∗ -0.49628∗ -0.35214∗ -0.31153∗ -0.23441∗ -0.19524∗

α0 3.49E-06∗ 3.12E-05∗ 2.82E-06∗ 3.31E-05∗ 8.15E-06∗ 1.91E-06∗ 2.46E-06 2.15E-05∗ 2.83E-06∗ 5.02E-05∗ 2.13E-05∗

α1 0.142989∗ 0.169135∗ 0.113557∗ 0.192742∗ 0.154521∗ 0.098451∗ 0.135867∗ 0.206958∗ 0.117413∗ 0.125711∗ 0.055155∗

β1 0.856011∗ 0.806349∗ 0.885443∗ 0.806258∗ 0.844479∗ 0.900549∗ 0.863133∗ 0.792042∗ 0.881587∗ 0.835442∗ 0.930337∗

ν 4.74224∗ 5.109619∗ 4.925748∗ 4.378324∗ 4.900171∗ 5.2668∗ 4.430659∗ 4.015165∗ 4.774563∗ 5.781193∗ 5.646772∗

α1 + β1 0.999 0.975484 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.961153 0.985493
AIC -4.87767 -4.57883 -4.99516 -2.75439 -4.16988 -4.34567 -5.3233 -3.96323 -4.56947 -4.1455 -3.9174
Q-stat for standardized residuals
lag1 2.653 0.406 0.307 2.998 6.952 0.008 0.005 1.299 1.367 1.368 0.645
lag3 2.999 0.828 0.772 4.339 7.494 0.586 0.793 2.442 3.087 3.603 2.808
lag7 10.323 7.547 6.528 6.456 10.531 4.343 3.125 4.442 5.409 9.304 6.06
ARCH LM test
lag2 0.5451 0.059 4.324 0.003 1.692 0.826 0.047 1.497 1.244 5.369 3.268
lag5 1.3756 0.223 9.373 0.241 3.104 2.16 0.348 4.204 4.48 6.654 4.043
lag10 3.862 0.562 11.387 0.582 4.894 3.05 1.111 9.164 6.899 7.933 7.527
Note:* is significant in the 95% confidence interval.
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Table 4.2: Results of MA(1)-EGARCH(1,0)

BEL DEN FRA GRE IRE ITA NET POR SPA SWE UK
µ -0.00019 -0.00029 1.92E-05 0.000187 -0.00014 -0.00017 -0.00018 -0.00014 -0.00026 -0.00039 -0.00011
θ -0.34243∗ -0.45268∗ -0.48048∗ -0.24924∗ -0.33173∗ -0.27014∗ -0.48491∗ -0.33622∗ -0.30217∗ -0.23033∗ -0.18705∗

α0 -0.05887∗ -0.15162∗ -0.06527∗ -0.06603∗ -0.03301∗ -0.01592∗ -0.03989 -0.05047∗ -0.02427∗ -0.24019∗ -0.05975∗

β1 0.992167∗ 0.979542∗ 0.991508∗ 0.987961∗ 0.995293∗ 0.997969∗ 0.995033∗ 0.992279∗ 0.99662∗ 0.965449∗ 0.991166∗

γ1 0.276111∗ 0.173309∗ 0.257267∗ 0.265489∗ 0.198386∗ 0.162121∗ 0.189471∗ 0.273383∗ 0.208379∗ 0.200036∗ 0.092029∗

ν 3.996966∗ 5.207032∗ 4.26362∗ 3.466955∗ 4.458685∗ 4.523871∗ 3.726167∗ 3.519717∗ 4.033725∗ 5.839347∗ 5.807454∗

AIC -4.88445 -4.58675 -5.00522 -2.78533 -4.16871 -4.36446 -5.33835 -3.97388 -4.58738 -4.14811 -3.92529
Q-stat for standardized residuals
lag1 2.29 1.158 0.12 2.065 2.995 0.222 0.029 0.001 2.058 2.011 0.001
lag3 2.676 1.911 0.409 3.76 3.824 1.289 0.307 0.098 6.505 4.747∗ 1.731
lag7 10.442 8.312 6.89 7.761 8.618 5.067 2.124 2.291 7.725 10.026 5.45
ARCH LM test
lag2 0.581 0.592 7.594∗ 0.173 0.611 2.05 0.0097 5.552 1.698 5.609 42.111∗

lag5 0.914 0.72 12.381∗ 0.327 0.801 2.788 0.202 6.975 3.048 6.075 42.579∗

lag10 2.151 1.147 18.847∗ 0.584 1.195 3.239 0.49 12.208 4.343 6.561 45.534∗

Note:* is significant in the 95% confidence interval.
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Table 4.3: Results of MA(1)-TGARCH(1,1)

BEL DEN FRA GRE IRE ITA NET POR SPA SWE UK
µ -0.00013 -0.00034 1.68E-05 4.19E-05 -0.0001 -0.00015 -0.00014 -0.00016 -0.00024 -0.00044 -0.00012
θ -0.34019∗ -0.44969∗ -0.48155∗ -0.24573∗ -0.33402∗ -0.26643∗ -0.48293∗ -0.33827∗ -0.30044∗ -0.22685∗ -0.18653∗

α0 0.000142∗ 0.000588∗ 0.000174∗ 0.000535∗ 0.000158∗ 6.12E-05∗ 0.000101 0.000345∗ 0.00011∗ 0.000913∗ 0.000357
α1 0.156665∗ 0.113818∗ 0.14433∗ 0.19591∗ 0.125661∗ 0.108066∗ 0.144631∗ 0.174769∗ 0.139214∗ 0.105767∗ 0.053928∗

β1 0.876154∗ 0.890765∗ 0.89129∗ 0.851958∗ 0.894857∗ 0.910654∗ 0.891647∗ 0.870463∗ 0.8955∗ 0.892559∗ 0.949712∗

δ1 -0.02407∗ -0.0016 -0.01639 -0.03508∗ -0.02487∗ -0.02553∗ -0.01252∗ -0.01672 -0.02581∗ 0.00323∗ 0.00139∗

ν 3.937861∗ 5.176186∗ 4.265713∗ 3.5826∗ 4.623747∗ 4.55136∗ 3.770753∗ 3.598538∗ 4.161302∗ 5.829874∗ 5.724568∗

condition 0.986182 0.956137 0.999887 0.994651 0.980641 0.984313 0.995846 0.997733 0.999783 0.949083 0.981343
AIC -4.89272 -4.5909 -5.00669 -2.7918 -4.17984 -4.37049 -5.35006 -3.98503 -4.59574 -4.15006 -3.92382
Q-stat for standardized residuals
lag1 1.133 1.59 0.025 2.935 2.621 0.272 0.085 0.142 3.204 1.923 0.022
lag3 1.702 2.183 0.353 3.066 3.093 0.923 0.591 0.231 5.182 4.702 1.722
lag7 9.507 9.011 6.984 10.861 7.329 4.623 3.03 2.062 7.576 9.93 5.643
ARCH LM test
lag2 1.818 1.086 10.45∗ 0.697 1.277 2.241 0.432 9.936∗ 1.269 5.387 42.88∗

lag5 2.603 1.189 15.02∗ 0.907 1.601 3.219 0.555 11.554∗ 2.601 5.752 43.48∗

lag10 4.145 1.479 21.17∗ 1.201 2.162 3.669 0.891 16.062∗ 3.963 6.123 46.99∗

Note:* is significant in the 95% confidence interval. The “condition” is the calculated condition α1
2 + β1

2 + δ1
2 + 2α1 β1ν1, where ν1 =

√
ν−2
π

Γ( ν−1
2 )

Γ( ν2 ) and if
it is smaller than 1, there will be guaranteed positive conditional volatility and second moment for TGARCH model.
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4.4.2 Bivariate copula analysis

In the second stage, pairs of data using various families are modeled in order to select the
proper copula family by goodness-of-fit tests. Different copula families have different
characteristics of tail dependence that allow us to identify the tail-dependence between
different pairs.

A copula is a multivariate probability distribution for which the marginal probability
distribution of each variable is uniform. Copulas are used to describe the dependence
between random variables.

A d-variate copula C(u1, . . . ,ud) is a cumulative distribution function (cdf) with
uniform marginals on the unit interval. According to Sklar (1959), if Fj (x j ) is the
cdf of a univariate continuous random variable X j , then C(F1(x1), . . . ,Fd (xd)) is a d-
variate distribution for X = (X1, . . . ,Xd) with marginal distributions Fj , j = 1, . . . ,d.
Conversely, if Fj , j = 1, . . . ,d is continuous, then there exists a unique copula C as

F (x) = C(F1(x1), . . . ,Fd (xd)),∀x = (x1, . . . , xd), (4.10)

which is called the theorem of Sklar (1959).
Sklar’s Theorem states that any multivariate joint distribution can be written in terms

of univariate marginal distribution functions and a copula which describes the depen-
dence structure between the variables.

In the first stage, the different GARCH filters are applied in this research. In the
second stage, the Vuong (1989) test and the Clarke (2007) test are used to select the best
copulas that fit the pairs as goodness-of-fit tests. These two tests compare two models
against each other. Based on their null hypothesis, the tests will identify the better model
by a statistically significant decision. Belgorodski (2010) proposes a method using these
two tests for copula selection.

Using this method, a bivariate copula model A is compared with all other possible
bivariate copula models. If copula model A outperforms another copula model, a score
of “+1” is assigned to model A, and at the same time a score of “−1” will be added to the
other copula model. No score will be added when the test cannot identify which model
is better. There is a total score which sums up the scores we get from all these pairwise
comparisons. Both the Vuong test and the Clarke test are likelihood ratio based and
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use the common Kullback-Leibler information criterion, which measures the distance
between two statistical models. For instance, c1 and c2 are two bivariate copula with
estimated parameters θ̂1 and θ̂2 respectively. The Vuong test requires a sum, ν, of the
log differences of their point-wise likelihoods mi. For observations ui,j , i = 1, . . . ,N ,
j = 1,2,

mi = log
[
c1(ui,1,ui,2 |θ̂1)

c2(ui,1,ui,2 |θ̂2)

]
, (4.11)

and then

ν =

1
n
∑N

i=1 mi√∑N
i=1(mi − m̄)2

. (4.12)

The null hypothesis of the Vuong test is

H0 : E(mi) = 0,∀i = 1, . . . ,N.

Vuong (1989) shows that ν is asymptotically standard normal distributed. Therefore,
model A is preferred against model B at level α if

ν > Φ−1
(
1 −

α

2

)
. (4.13)

In the same manner, if ν < −Φ−1
(
1 − α

2

)
,then model B is chosen. Nonetheless, if

|ν | ≤ Φ−1
(
1 − α

2

)
, then the test cannot identify if there is a better one which will not

reject the null hypothesis of the test as well.
On the other hand, the null hypothesis of the Clarke test is

H0 : P(mi > 0) = 0.5,∀i = 1, . . . ,N,

and the test statistic is specified as

B =

N∑
i=1

1(0,∞) (mi), (4.14)

where 1 is proposed by Clarke (2007) as the indicator of the function. It is binomial
distributed with parameters N and p = 0.5. Based on this, the critical values can be
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obtained. Model A is considered statistically equivalent with model B if B is not signif-
icantly different from the expected value N p = N

2 . Both test statistics from equations
(4.13) and (4.14) can be corrected for the number of parameters used in the models by
using AIC.

Table 4.4 and Table 4.5 show the goodness-of-fit test results of bivariate copula mod-
elling. 11 copula families are chosen which include Gaussian, Student-t, Clayton, Gum-
bel, Frank, BB1, BB7, and the survival copulas of the Clayton (s.Clayton), Gumbel
(s.Gumbel), BB1 (s.BB1) and BB7 (s.BB7)3 in both tests. In these candidates, families
represent various strengths of tail behaviour. For instance, Frank copulas show tail inde-
pendence which is also considered as a benchmark for tail dependence, Gumbel copulas
show only upper tail dependence while Clayton copulas show only lower tail depen-
dence. Student-t copulas show reflection symmetric upper and lower tail dependence
and BB families show different upper and lower tail dependence. From the results of the
Vuong test, student-t copula family fits 53 out of 55 pairs best in all 11 copula families,
although t copula of three pairs (NET.SWE, SPA.SWE, NET.DEN) share the highest
score with both survival form of BB1 and survival form of BB7 families. Additionally,
both survival form of BB1 and survival form of BB7 families indicate asymmetric up-
per and lower tail dependence. GRE.SWE and POR.SWE are modeled best by Frank
copula, which shows no tail dependence of the pairs, according to Vuong test. On the
other hand, the Clarke test shows that student-t copula family fits all 55 pairs better
than the others, which means these pairs tend to have symmetric upper and lower tail
dependence.

3In terms of bivariate copula families and their functions and properties, please see Appendix F.
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Table 4.4: Bivariate goodness-of-fit Vuong test

Pairs Gaussian t Clayton Gumbel Frank BB1 BB7 s.Clayton s.Gumbel s.BB1 s.BB7

BEL.DEN -6 10 -3 -5 -7 4 4 -9 4 4 4
BEL.FRA -7 10 -8 -2 -3 6 2 -9 2 7 2
BEL.GRE -7 10 -7 0 -7 4 6 -6 -2 4 5
BEL.IRE -8 10 -7 -1 -5 4 4 -8 1 5 5
BEL.ITA -6 10 -9 -1 -6 5 5 -7 -1 5 5
BEL.NET -7 10 -8 0 2 5 0 -9 1 6 0
BEL.POR -8 10 -8 -3 -3 4 2 -8 3 7 4
BEL.SPA -8 10 -8 0 -4 5 4 -8 -1 5 5
BEL.SWE -2 7 -2 -1 0 -1 -1 -1 1 1 -1
BEL.UK -5 8 -5 -4 0 4 2 -10 3 5 2
DEN.FRA -6 10 -6 -3 -7 4 4 -7 3 4 4
DEN.GRE -6 10 -7 -5 3 3 -1 -9 4 6 2
DEN.IRE -6 10 -6 -1 -4 4 2 -8 3 3 3
DEN.ITA -7 10 -6 -3 -6 4 4 -7 3 4 4
DEN.NET -4 6 -6 -3 -8 5 5 -8 1 6 6
DEN.POR -7 10 -7 -3 3 4 0 -8 2 5 1
DEN.SPA -6 10 -6 -4 -6 4 4 -7 3 4 4
DEN.SWE -4 10 -9 -3 -4 6 2 -9 1 7 3
DEN.UK -5 10 -8 0 -2 4 2 -6 -1 4 2
FRA.GRE -8 10 -8 3 -4 3 3 -6 -1 4 4

Continued on next page
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Table 4.4 –continued from previous page

Pairs Gaussian t Clayton Gumbel Frank BB1 BB7 s.Clayton s.Gumbel s.BB1 s.BB7

FRA.IRE -8 10 -8 0 2 4 1 -8 1 5 1
FRA.ITA -6 10 -9 -1 -5 5 5 -8 -1 5 5
FRA.NET -7 10 -7 -2 -1 6 1 -10 3 6 1
FRA.POR -7 10 -7 -2 2 5 1 -10 2 5 1
FRA.SPA -8 10 -8 0 0 7 0 -8 0 7 0
FRA.SWE -6 9 -3 -1 -1 0 -1 -3 2 3 1
FRA.UK -5 8 -6 -4 -5 4 4 -9 4 5 4
GRE.IRE -7 10 -7 0 -7 4 6 -7 -1 3 6
GRE.ITA -8 10 -8 0 -5 5 3 -7 0 5 5
GRE.NET -6 10 -6 -1 -4 3 2 -6 0 5 3
GRE.POR -7 10 -10 4 -5 4 4 -5 -3 4 4
GRE.SPA -7 10 -7 0 -7 4 6 -6 -2 4 5
GRE.SWE -1 7 -6 -6 8 1 -4 -9 3 7 0
GRE.UK -3 9 -5 0 0 3 -1 -6 0 3 0
IRE.ITA -7 10 -7 -1 -7 4 4 -7 1 5 5
IRE.NET -8 10 -8 1 2 5 1 -8 1 4 0
IRE.POR -7 10 -7 -1 -7 5 5 -7 -1 5 5
IRE.SPA -8 10 -7 -1 -5 4 4 -8 1 5 5
IRE.SWE 0 7 -1 -3 2 -1 -1 -3 -1 3 -2
IRE.UK -6 10 -5 0 2 3 0 -8 2 3 -1

Continued on next page
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Table 4.4 –continued from previous page

Pairs Gaussian t Clayton Gumbel Frank BB1 BB7 s.Clayton s.Gumbel s.BB1 s.BB7

ITA.NET -8 10 -8 1 0 6 1 -8 1 5 0
ITA.POR -8 10 -8 -2 -3 5 2 -8 2 7 3
ITA.SPA -6 10 -9 -1 -6 5 6 -7 -1 5 4
ITA.SWE -3 10 -7 0 0 2 -1 -6 0 3 2
ITA.UK -6 10 -6 0 -6 3 3 -7 3 3 3
NET.POR -7 10 -8 -1 3 5 0 -9 1 6 0
NET.SPA -7 10 -8 -1 3 5 0 -9 2 5 0
NET.SWE -6 7 -4 -5 -6 1 1 -6 4 7 7
NET.UK -5 10 -6 -4 -6 4 4 -8 3 4 4
POR.SPA -9 10 -7 -2 -3 5 2 -8 2 7 3
POR.SWE 2 6 -4 -4 10 0 -6 -5 1 3 -3
POR.UK -4 8 -4 -4 7 3 -4 -10 6 5 -3
SPA.SWE 1 2 0 -3 1 0 0 -5 0 2 2
SPA.UK -5 8 -5 -5 -1 4 2 -10 4 6 2
SWE.UK -4 7 -6 0 -3 4 3 -6 0 4 1

Note: There are no order in the pair names.
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Table 4.5: Bivariate goodness-of-fit Clarke test

Pairs Gaussian t Clayton Gumbel Frank BB1 BB7 s.Clayton s.Gumbel s.BB1 s.BB7

BEL.DEN -9 10 -3 -3 -6 3 6 -9 2 1 8
BEL.FRA -6 10 -8 -2 8 6 -3 -10 2 4 -1
BEL.GRE -9 10 -8 0 -4 3 7 -7 -2 5 5
BEL.IRE -9 10 -6 -4 6 5 2 -9 0 3 2
BEL.ITA -6 10 -10 -1 8 5 -1 -8 -1 5 -1
BEL.NET -6 10 -8 0 8 6 -3 -10 2 4 -3
BEL.POR -9 10 -6 -4 8 6 0 -9 0 4 0
BEL.SPA -6 10 -9 0 4 7 -1 -9 -1 7 -2
BEL.SWE -10 10 -5 -1 -6 3 1 -6 6 2 6
BEL.UK -8 10 -5 -4 -3 5 4 -10 3 3 5
DEN.FRA -9 10 -5 -2 -5 3 6 -9 0 4 7
DEN.GRE -8 10 -6 -3 4 3 -2 -10 5 4 3
DEN.IRE -9 10 -6 -2 -5 4 5 -8 2 3 6
DEN.ITA -9 10 -6 -2 -5 5 5 -8 0 3 7
DEN.NET -8 10 -5 -2 -5 3 7 -10 0 4 6
DEN.POR -9 10 -6 -3 4 2 -2 -9 5 5 3
DEN.SPA -9 10 -4 -2 -7 3 6 -8 2 1 8
DEN.SWE -6 10 -8 -3 8 6 1 -10 0 3 -1
DEN.UK -8 10 -8 0 -3 4 4 -8 -1 6 4
FRA.GRE -10 10 -7 -1 -4 4 6 -7 -1 6 4

Continued on next page
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Table 4.5 –continued from previous page

Pairs Gaussian t Clayton Gumbel Frank BB1 BB7 s.Clayton s.Gumbel s.BB1 s.BB7

FRA.IRE -9 10 -6 -3 8 4 0 -9 1 2 2
FRA.ITA -6 10 -9 -1 8 3 1 -9 -1 4 0
FRA.NET -6 10 -8 -1 8 5 -2 -10 2 5 -3
FRA.POR -8 10 -6 -3 8 4 -3 -10 2 4 2
FRA.SPA -6 10 -8 -1 8 5 -3 -10 2 5 -2
FRA.SWE -10 10 -6 -1 -6 2 3 -6 5 2 7
FRA.UK -8 10 -6 -3 -3 6 4 -10 1 4 5
GRE.IRE -10 10 -8 0 -4 2 7 -6 -2 5 6
GRE.ITA -10 10 -8 -2 7 3 2 -6 -1 4 1
GRE.NET -10 10 -7 -1 -4 6 5 -7 -1 4 5
GRE.POR -9 10 -9 0 7 4 2 -6 -4 3 2
GRE.SPA -9 10 -9 0 -4 4 6 -6 -2 6 4
GRE.SWE -7 10 -7 -3 7 2 -3 -10 4 5 2
GRE.UK -9 10 -7 -1 -4 4 2 -8 6 3 4
IRE.ITA -9 10 -6 -4 1 6 3 -9 0 4 4
IRE.NET -9 10 -7 -1 8 6 0 -8 0 2 -1
IRE.POR -10 10 -7 -2 1 5 3 -7 -1 5 3
IRE.SPA -10 10 -6 -4 6 5 2 -8 0 3 2
IRE.SWE -9 10 -6 -1 -4 2 0 -7 4 6 5
IRE.UK -9 10 -6 -3 -1 3 1 -9 7 3 4

Continued on next page
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Table 4.5 –continued from previous page

Pairs Gaussian t Clayton Gumbel Frank BB1 BB7 s.Clayton s.Gumbel s.BB1 s.BB7

ITA.NET -7 10 -7 -2 8 5 -1 -10 0 4 0
ITA.POR -9 10 -6 -2 8 6 -2 -9 0 4 0
ITA.SPA -6 10 -10 -1 5 7 -1 -8 -2 6 0
ITA.SWE -8 10 -8 -2 -4 6 4 -8 2 4 4
ITA.UK -9 10 -5 -2 -5 3 6 -9 3 2 6
NET.POR -8 10 -6 -2 8 4 -4 -10 2 5 1
NET.SPA -8 10 -6 -1 8 5 -4 -10 2 5 -1
NET.SWE -10 10 -4 -3 -7 1 5 -6 2 4 8
NET.UK -8 10 -6 -2 -4 5 5 -10 0 3 7
POR.SPA -10 10 -6 -3 8 6 -1 -8 0 4 0
POR.SWE -7 9 -8 -2 7 2 -3 -9 6 4 1
POR.UK -8 10 -6 -3 6 1 -3 -10 6 5 2
SPA.SWE -9 10 -5 -2 -6 4 0 -7 4 5 6
SPA.UK -8 10 -6 -3 -3 5 4 -10 2 4 5
SWE.UK -8 10 -8 -1 -4 4 6 -8 0 5 4

Note: There are no order in the pair names.
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4.5 Vine Copula approach

4.5.1 Introduction of Vine Copulas

In order to improve the copula method with regard to a wider range of dependence,
a more flexible range of upper and lower tail dependence, a larger dimension and a
computationally feasible density for estimation, vine copulas became a handy copula
technique.

Source: Brechmann and Schepsmeier (2012)

Figure 4.1: Examples of 5-dimensional C- (left) and D-vine (right)

A d-dimensional vine copula are built by d(d − 1) bivariate copulas in a d − 1-level
tree form. There are different ways to construct a copula tree. C-vines and D-vines are
the selected tree types in this chapter. In a C-vine tree, the dependence with respect
to one particular variable, called first root node, is modeled using bivariate copulas for
each pair. Conditioned on this variable, pair wise dependencies with respect to a second
variable are modeled, which is called the second root node. In general, a root node is
chosen in each tree and all pairwise dependencies with respect to this node are modeled
conditioned on all previous root nodes (see Figure 4.1 left panel). According to Aas
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et al. (2009) this gives the following decomposition of a multivariate density,

f (x) =

d∏
k=1

f k (xk )×
d−1∏
i=1

d−i∏
j=1

ci,i+ j |1:(i−1) (F (xi |x1, . . . , xi−1), (F (xi+ j |x1, . . . , xi−1) |θi,i+ j |1:(i−1)),

(4.15)
where f k ,k = 1, . . . ,d, denote the marginal densities and ci,i+ j |1:(i−1) bivariate copula
densities with parameter(s) θi,i+ j |1:(i−1) (here ik : im means ik , . . . , im. And the outer
product runs over the d − 1 trees and root nodes i, while the inner product refers to the
d − i pair-copulas in each tree i = 1, . . . ,d − 1.

A D-vine chooses the order of these pairs in a different way (see Figure 4.1 right
panel). In the first level of the tree, the dependence of the first and second variable,
the second and the third, the third and the fourth, and so on, are used. That means in
a 5-dimensional vine copula, in the first level of the tree, pairs (1,2), (2,3), (3,4), (4,5)
have been modeled. While in the second level of the tree, conditional dependence of the
first and third given the second variable (pair (1,3|2)), the second and fourth given the
third (pair (2,4|3)), and so on. In this way it continues to construct the third level up to
the d − 1 level. According to Aas et al. (2009) the density of a D-vine is,

f (x) =

d∏
k=1

f k (xk )×

d−1∏
i=1

d−i∏
j=1

c j,i+i |( j+1):( j+i−1) (F (x j |x j+1, . . . , x j+i−1), (F (x j+i |x j+1, . . . , x j+i−1) |θ j,j+i |x j+1,...,x j+i−1 ),

(4.16)

where the outer product runs over the d − 1 trees, while the pairs in each tree are desig-
nated by the inner product. In order to get the conditional distribution functions F (x |v)
for an m-dimensional vector v, one can sequentially apply the following relationship,

h(x |v,θ) := F (x |v) =
∂Cxv j |v− j (F (x |v− j ),F (v j |v− j ) |θ)

∂F (v j |v− j
(4.17)

where v j is an arbitrary component of v and v− j denotes the (m − 1)-dimensional vector
v excluding v j . Further Cxv j |v− j is a bivariate copula distribution function with parame-
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ter(s) θ specified in tree m.

4.5.2 Vine copula estimation

Vine copulas can be constructed by the bivariate copulas estimated in section 4.4. 2
types of vine are chosen to be estimated, C-vine and D-vine, and then one will choose
the better one base on their value of log-likelihood. First, a C-vine has been conducted.
In order to achieve the best performance of the C-vine, d − 1 pairs of countries should
be carefully chosen. According to Aas and Berg (2009) empirical rules can be applied
to select to vine order.

1. Select the first root node that has strong dependence with all other variables;

2. List the most dependent variables with the first root node as decreasing in depen-
dence order;

3. List the least dependent variables with the first root node as increasing in depen-
dence order;

4. Sequentially list the least dependent variable with the previous selected.

Table 4.6 shows the dependence of pairs according to Kendall’s τ. Kendall’s τ is a rank
correlation coefficient which introduced by Kendall (1938). It is calculated as follows.
Let (x1, y1), (x2, y2), . . ., (xn, yn) be a set of observations of the joint random variables
X and Y respectively, such that all the values of (xi) and (yi) are unique. Any pair of
observations (xi, yi) and (x j , y j ) are said to be concordant if the ranks for both elements
agree: that is, if both xi > x j and yi > y j or if both xi < x j and yi < y j . They are said
to be discordant, if xi > x j and yi < y j or if xi < x j and yi > y j . If xi = x j or yi = y j ,
the pair is neither concordant nor discordant.

τ =
(number of concordant pair) − (number of discordant pair)

1
2 n(n − 1)

The first root node should have strong dependence with all other variables. In this case
Spain shows the strongest dependence with others. Applying the rest of rules the order
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Table 4.6: Country-pair dependence base on Kendall’s τ

Pair τ Pair τ Pair τ

BEL.DEN 0.113469 FRA.GRE 0.165981 IRE.SWE 0.08461
BEL.FRA 0.526231 FRA.IRE 0.250222 IRE.UK 0.122281
BEL.GRE 0.193722 FRA.ITA 0.337805 ITA.NET 0.313732
BEL.IRE 0.29413 FRA.NET 0.56691 ITA.POR 0.358453
BEL.ITA 0.412142 FRA.POR 0.310606 ITA.SPA 0.507106
BEL.NET 0.523141 FRA.SPA 0.461769 ITA.SWE 0.126307
BEL.POR 0.356663 FRA.SWE 0.066616 ITA.UK 0.107109
BEL.SPA 0.537487 FRA.UK 0.154579 NET.POR 0.299719
BEL.SWE 0.058031 GRE.IRE 0.202541 NET.SPA 0.443678
BEL.UK 0.151617 GRE.ITA 0.299755 NET.SWE 0.071075
DEN.FRA 0.13127 GRE.NET 0.13684 NET.UK 0.160818
DEN.GRE 0.201002 GRE.POR 0.297087 POR.SPA 0.384536
DEN.IRE 0.112917 GRE.SPA 0.228495 POR.SWE 0.12385
DEN.ITA 0.123432 GRE.SWE 0.198992 POR.UK 0.193094
DEN.NET 0.16681 GRE.UK 0.114702 SPA.SWE 0.082487
DEN.POR 0.179232 IRE.ITA 0.274777 SPA.UK 0.139775
DEN.SPA 0.103206 IRE.NET 0.255291 SWE.UK 0.127193
DEN.SWE 0.348671 IRE.POR 0.337959
DEN.UK 0.180609 IRE.SPA 0.314839
Note: There are no order in the pair names.

of the C-vine is chosen as SPA, BEL, DEN, FRA, GRE, IRE, ITA, NET, POR, SWE,
UK.4 The log-likelihood function with parameter θCV is as follows:

`CV (θCV |u) =

N∑
k=1

d−1∑
i=1

d−i∑
j=1

log[ci,i+ j |1:(i−1) (Fi |1:(i−1),Fi+ j |1:(i−1) |θi,i+ j |1:(i−1))], (4.18)

where Fj |i1:im := F (uk,j |uk,i1 , · · · ,uk,im ) and the marginal distribution are uniform.
In the case of D-vine, the empirical rule for first tree selection is choosing an order of

the variables that intends to capture as much dependence as possible. According to It is
equivalent to solve the Traveling Salesman Problem (TSP). The TSP is solved using the
Cheapest Insertion Algorithm5 . Using information from Table 4.6 with the algorithm,

4The estimated dependence parameters are shown in Table G.1. Figure H.1 to H.3 show the C-vine
tree structure of each level.

5see Appendix E for details
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the order of D-vine is chosen as IRE, POR, GRE, ITA, SPA, BEL, FRA, NET, UK,
DEN, SWE.6

The log-likelihood with parameter θDV is as follows:

`DV (θDV |u) = (4.19)
N∑

k=1

d−1∑
i=1

d−i∑
j=1

log[c j,j+i |( j+1):( j+i−1) (Fj |( j+1):( j+i−1),Fj+i |( j+1):( j+i−1) |θ j,j+i |( j+1):( j+i−1))].

The estimatied log-likelihood of C-vine is 12934.83, while the log-likelihood of D-vine
is 12805.13. Therefore, C-vine is superior to D-vine.

4.6 Simulation

In this chapter, we intend to forecast the probabilities of sovereign crisis in these 11
countries in the future year. Therefore, the sovereign spreads of each country for the
next 365 days need to be generated. 365 groups of error terms based on the C-vine
copula parameters are simulated. 365 is the forecast horizon of this research and it can be
changed depending on the purpose of forecast. We apply these group of error terms back
into the GARCH filters estimated in Section 4.4.1 to get the next 365 days’ sovereign
spreads movements of each country. Future sovereign spreads can be calculated by
adding spreads movement to the spreads of previous day from 12/03/2012 which is the
last day in the sample. We apply the definition of sovereign crisis is stated in Section
4.1, which is that sovereign spread against Germany is more than 1000 basis points.
Therefore, if one or more of these simulated spreads are greater than 10%, the sovereign
crisis in the following year will be counted. This process is repeated 10000 times, and
the times with sovereign crisis divided by 10000 will be the probabilities of sovereign
debt crisis. The relationship can be represented by the expression as follows:

ki =


1 if there is at least one crisis event in future h-day simulation
0 if there is no event in future h-day simulation

6Table ?? shows the estimated dependence parameters. Figure ?? to ?? show the D-vine tree structure
of each level.
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The probability of the soveriegn debt crisis is expressed as

Pr =

∑N
i=1 ki

N
,

where k is a dummy in order to identify whether there will be one or more crisis in the
forecasting horizon, h is the forecast horizon (365 days) , i is the ith simulation, Pr is the
probability of sovereign crisis in target country and N is the total number of simulations
(10000).
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Table 4.7: Probability of sovereign debt crisis in next 365 days

Countries BEL DEN FRA GRE IRE ITA NET POR SPA SWE UK
Probability 60.14% 8.74% 62.13% 100% 71.60% 81.08% 25.86% 99.77% 87.17% 5.45% 12.87%
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Table 4.7 presents the results of the estimated probabilities of sovereign crisis in the
next 365 days. According to the results, Greece has the highest probability which is
100% and is followed by Portugal (99.77%), which are consistent with the fact that they
are already in crisis. Spain (87.17%) and Italy (81.08%) have extremely high probabil-
ities of entering crisis. Ireland has a 71.06% chance of entering crisis. The probability
of crisis in France and Belgium are 62.13% and 60.14% which are fairly high, and for
France it is higher than expected. Netherlands (25.86%) shows a fairly low probability
of crisis, the most stable in the euro area. The probability of countries outside the euro
area such as the UK (12.87%), Denmark (8.74%) and Sweden (5.45%) are very low
which reveals the stability of sovereign debt in these countries. The results confirm the
observation of ? which is being non-members of a monetary union is not easily forced
to default by the financial market. The reason is that these countries are able to control
the currency by which they issue debt.

4.7 Conclusion

This chapter provides a method to calculate the probability of sovereign debt crisis
which is an infrequent event. The sovereign spreads against Germany are simulated
and the dependence of those time series is considered by applying vine copula models
in the mean time. It is extremely useful in assessing the risk level of sovereign debt
crisis in the European Union. We examined 11 countries in the European Union. Re-
sults show that Greece and Portugal have an extremely high probability of sovereign
debt crisis. Spain and Italy are potentially the next victims of sovereign debt crisis. Un-
expectedly, France and Belgium show a fairly high risk level. Netherlands enjoys the
lowest probability of crisis in the euro area in the sample. The UK, Denmark and Swe-
den show strong stability of their sovereign debt and being outside the euro area might
be the reason for this. According to the results, the probability calculated in this paper
appears to be a very good indicator of sovereign debt default risk level. In addition, it
is a better indicator than sovereign credit default swap (CDS), because sovereign CDS
is an over the counter (OTC) traded financial instrument, which makes tracking all the
trades difficult to achieve. This indicator can make a contribution to alerting the Eu-
ropean Central Bank (ECB) or governments of those countries in the European Union,
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as well as ranking the risk level of each government bond in the European Union for
investors.



Chapter 5

Conclusion

5.1 Main findings and contributions

This thesis makes a number of contributions to the literature in government bond yields
analysis by exploring and making use of the information contained in them.

Chapter 2 proposes a model of the term structure of interest rates forecasting output
growth and recessions in the UK by using the whole yield curve rather than just the yield
spread. The idea is to use the Diebold-Li framework, which can extract short-, mid- and
long-term factors as yield curve variables, and the B-spline technique to form a yield
curve other than traditional yield spread to forecast recession and economic growth, and
we get satisfactory results. The research shows strong evidence that in terms of recession
forecasting the Diebold-Li framework does better than the yield spread and the B-spline
model shows even better performance. Furthermore, from the economic explanation
perspective, the in-sample test results suggest short-term yields, which represent mone-
tary policy play a very important role in real GDP growth forecasting in both Model A
and B. It is interesting to note that the Diebold-Li and B-spline frameworks enjoy better
fitting of the yield curve than the yield spread model. This also leads to a better fore-
casting ability in mid horizon forecast especially, 5-quarter ahead for Model A based
on the Diebold-Li framework and 4-quarter ahead fro Model A based on the B-spline
framework. The forecast ability peaks 1-quarter ahead forecasting for Model B. From
out-of-sample tests Model B based on both the Diebold-Li framework and the B-spline
framework achieves very satisfactory results and shows a stable forecasting ability in all

114
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forecasting horizons (1- to 8-quarters ahead). The whole yield curve models outperform
those results from the models based on yield spread. From the comparison, it is impor-
tant to note that Model B based on the B-spline framework generates the closest forecast
results to those from HM Treasury.

Following Chapter 2, Chapter 3 examines the non-linear behaviour in output growth
/ recession-term spread relationship using UK data covering the last 34 years. The re-
search conducts comparisons of VAR, TVAR, 2TVAR, SBVAR, 2SBVAR, SBTVARc,
SBTVAR with 1 to 3 autoregressive orders. The results suggest there are non-linearities
in the relationship. And evidence shows that the type of this non-linearity is struc-
tural break. Introducing structural break(s) into the model does improve the explanatory
power of the output growth - yield spread relationship, as well as the predictive power
of the model. 2SBVAR(2) (model with 2 structural breaks and 2 autoregressive orders)
is the best tested in-sample estimating model. The breaks are located at first quarter of
1986 and the third quarter of 1991. The first break can be explained by the expectation
adjustment of people after recovery from the early 1980s’ recession. And the second
break is caused by the decision of the government to apply inflation targeting policy. In
out-of-sample tests, the models with structure break(s) enjoy the robustness on arrival of
new information. This also indicates the most recent financial crisis does not change the
fundamental being of the relationship. The results from out-of-sample tests are slightly
different from in-sample tests. SBVAR(1), VAR(3), 2SBVAR(2) and SBVAR(2) enjoy
the best forecast ability in 1-quarter, 2-quarter, 3-quarter and 4-quarter ahead forecast re-
spectively. Generally speaking SBVAR basically dominated the out-of-sample forecasts
and 2SBVAR is almost as good. In terms of recession predicting, all models presented
in the paper except Threshold models give a fairly good performance.

By analysing government bond yields, Chapter 4 proposes a method for calculating
the probability of an infrequent event such as a sovereign debt crisis. A simulation of
the sovereign spreads for European countries against Germany has been done in the
chapter and with the consideration of the dependence of those time series by applying
vine copula models in the mean time. This is extremely useful in assessing the risk
level of sovereign debt crisis in the European Union which contains a one and only
actual monetary union – the European Monetary Union (EMU). Eleven countries in the
European Union are examined, and the results are quite consistent with the situation
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experienced at that moment as of March 2012. Results show that Greece and Portugal
have an extremely high probability of sovereign debt crisis. Spain and Italy seem to be
the next mostly likely victims of sovereign debt crisis from the end of the sample period.
Unexpectedly, France and Belgium show a fairly high risk level. Netherlands enjoys
the lowest probability of crisis in the Eurozone in the sample. The UK, Denmark and
Sweden show strong stability of their sovereign debt and being outside the Eurozone
might be the reason for this. According to the results, the probabilities calculated in
this paper make very good indicators of sovereign debt default risk level. And it is a
better indicator than sovereign CDS. After all, sovereign CDS is an over the counter
(OTC) traded financial instrument, and it is hard to track all the trades. The proposed
indicator can make a contribution to alert the ECB or government of those countries in
the European Union, as well as ranking the risk level of each government bond in the
European Union for investors.

5.2 Limitations and Future Research

It is unavoidable that in these studies there are limitations and these limitations form the
basis of very good directions of further research about the subject.

In Chapter 2, regarding the comparison of forecasting with HM Treasury, there will
be some of the difficulties in interpreting evidence in forecast performance comparisons.
This is one of the limitations of this chapter. Because when we make this comparison,
it is actually after-the-fact, in which the rules and objective of the competition were not
specified ahead of time to the players. In this situation, there is an obvious potential
risk that by selective reporting of results, one could give a misleading picture of the
results for various reasons. This is especially true here, since different models, designed
for different purposes, are specified at different levels of aggregation, and are used to
forecast over various horizons. Secondly, the timing of the release of economic forecasts
is another important consideration in any forecasting comparison. Forecasts are not
generally published on the same date, so they will to some extent be based on slightly
different information sets. It would be nice to have a model that outperforms the HM
Treasury forecasts. It is hard to address this limitation, however, using real-time GDP
growth could make the comparison more reasonable. After all, it is the real-time growth
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we are trying to forecast.
A second limitation of Chapter 2 is that in the sample period there could be non-

linearity behavior about the relationship between the yield curve and recession or output
growth. And this limitation has been researched in Chapter 3.

In Chapter 3, there are limitations about the comparison as well but from a different
perspective. For models with more regimes (SBTVARc and SBTVAR) in this limited
sample size research, the disadvantage in the comparison is there might be regimes with
a small amount of data in the model. This will trigger the parsimony problem of the VAR
estimations, especially for models with higher autoregressive orders. We have seen that
this problem can lead to abnormal forecasts as was discussed in the results section. And
also because of the sample size, the author is not able to use the model from Chapter 2
which uses a more advanced form of yield curve to do the forecasting. However, when
the data availability is better, it could be a promising further research direction. From the
future research perspective, the yield curve with non-linearities can be used as a leading
indicator not only in GDP or recession forecasting but also other macro variable such as
inflation, exchange rates and so on.

In Chapter 4, despite the result of GARCH based vine-copula method being satisfac-
tory, there are two limitations worth mentioning. Firstly, GARCH may not be the best
model to describe the volatility of yield movements of these countries. There are more
sophisticated models such as GARCH-in-mean, fGARCH, TGARCH, GJR-GARCH
which may enjoy a better goodness-of-fit. This is worth digging up in further research.
Secondly, events like a sovereign debt crisis tend to have a contagious effect, which can-
not be captured by the model brought in this chapter although the research does capture
dependence. This dependence is without time difference and tends to be a one-time one-
way dependence. It is more likely that contagion effects happen with lag of time and it
can pass back in a manner similar to the transmission of a medical disease. This is an
interesting topic to pursue in the future.
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Appendix A

Data source of Chapter 2

Here are the data source code from ECOWIN.
ew:gbr01021 United Kingdom, Expenditure Approach, Gross Domestic Product,

Total, Constant Prices, GBP, 2005 CHND PRC
ew:gbr40312 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 3 month

(0.25 year), Yield, GBP
ew:gbr40315 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 6 month

(0.50 year), Yield, GBP
ew:gbr40318 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 9 month

(0.75 year), Yield, GBP
ew:gbr40321 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 12 month

(1.00 year), Yield, GBP
ew:gbr40324 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 15 month

(1.25 year), Yield, GBP
ew:gbr40327 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 18 month

(1.50 year), Yield, GBP
ew:gbr40330 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 21 month

(1.75 year), Yield, GBP
ew:gbr40333 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 24 month

(2.00 year), Yield, GBP
ew:gbr40339 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 30 month

(2.50 year), Yield, GBP
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ew:gbr40345 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 36 month
(3.00 year), Yield, GBP

ew:gbr40351 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 42 month
(3.50 year), Yield, GBP

ew:gbr40357 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 48 month
(4.00 year), Yield, GBP

ew:gbr40363 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 54 month
(4.50 year), Yield, GBP

ew:gbr40369 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 60 month
(5.00 year), Yield, GBP

ew:gbr40381 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 6.0 year,
Yield, GBP

ew:gbr40383 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 7.0 year,
Yield, GBP

ew:gbr40385 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 8.0 year,
Yield, GBP

ew:gbr40387 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 9.0 year,
Yield, GBP

ew:gbr40389 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 10.0 year,
Yield, GBP

ew:gbr40399 United Kingdom, Zero Coupon Yields, Nominal, Spot Rate, 15.0 year,
Yield, GBP



Appendix B

Data source of Chapter 3

Here are the data source code from ECOWIN.
ew:gbr01021 United Kingdom, Expenditure Approach, Gross Domestic Product,

Total, Constant Prices, GBP, 2005 CHND PRC
ew:gbr14200 United Kingdom, Treasury Bills, Bid, 3 Month, Yield, Close, GBP
ew:gbr14130 United Kingdom, Government Benchmarks, Bid, 10 Year, Yield, Close,

GBP
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Appendix C

Other analysising results of Chapter 3
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Table C.1: VAR(1) Estimated coefficients

VAR TVAR 2TVAR SBVAR 2SBVAR SBTVARc SBTVAR
∆y S ∆y S ∆y S ∆y S ∆y S ∆y S ∆y S

Regime 1
constant 0.203 0.355 -0.206 0.331 0.503 0.421 0.279 0.695 0.251 0.705 -0.403 1.135 -0.355 1.116
β∆y, t−1 0.896 -0.017 1.019 0.059 0.828 0.003 0.828 0.213 0.788 0.157 0.915 0.454 0.931 0.447
βS, t−1 0.008 0.871 -0.120 0.806 -0.110 0.797 0.101 0.479 -0.003 0.333 0.109 -0.046 0.115 -0.049

Regime 2
constant 0.610 0.041 -2.405 0.038 0.123 0.266 0.687 1.757 0.931 0.215 0.873 0.237
β∆y, t−1 0.867 -0.040 1.456 0.187 0.913 -0.047 0.600 -0.340 0.720 -0.037 0.720 -0.036
βS, t−1 -0.049 0.972 0.336 0.843 0.009 0.933 0.310 0.914 0.094 0.921 0.102 0.918

Regime 3
constant 0.603 0.061 0.130 0.223 -0.241 0.427 -0.446 0.301
β∆y, t−1 0.868 -0.041 0.921 -0.040 1.056 -0.078 1.114 -0.029
βS, t−1 -0.048 0.969 0.004 0.936 -0.182 1.022 -0.186 1.097

Regime 4
constant 0.248 -0.165 0.280 -0.154
β∆y, t−1 0.903 -0.033 0.897 -0.037
βS, t−1 0.017 1.024 0.004 1.024
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Table C.2: VAR(3) Estimated coefficients

VAR TVAR 2TVAR SBVAR 2SBVAR SBTVARc SBTVAR
∆y S ∆y S ∆y S ∆y S ∆y S ∆y S ∆y S

Regime 1

constant 0.367 0.407 0.495 1.105 0.495 1.105 0.297 0.705 0.607 1.074 1.045 2.071 0.294 0.728
β∆y, t−1 1.102 -0.096 0.952 -0.182 0.952 -0.182 0.812 0.064 0.752 -0.092 0.820 1.669 0.773 0.181
β∆y, t−2 -0.029 0.260 -0.266 -0.014 -0.266 -0.014 0.189 0.368 0.195 0.466 -0.450 -4.030 -0.296 0.118
β∆y, t−3 -0.240 -0.203 0.115 -0.029 0.115 -0.029 -0.181 -0.198 -0.164 -0.144 0.301 1.478 0.078 -0.141
βS, t−1 0.177 1.068 0.424 0.635 0.424 0.635 0.318 0.678 0.177 0.406 0.009 -0.050 0.589 0.616
βS, t−2 -0.377 -0.378 -0.683 0.666 -0.683 0.666 -0.334 -0.417 -0.320 -0.315 0.212 -0.214 -0.083 -0.193
βS, t−3 0.205 0.183 0.015 -0.328 0.015 -0.328 0.130 0.196 -0.082 -0.054 -0.485 0.639 -0.016 0.056

Regime 2

constant 0.546 0.402 0.533 -0.118 0.516 0.319 0.974 2.524 -0.218 0.566 3.505 -0.563
β∆y, t−1 1.343 -0.250 1.438 -0.094 1.459 -0.048 0.370 -0.259 0.875 0.008 0.791 0.061
β∆y, t−2 -0.246 0.487 -0.468 0.172 -0.569 0.008 0.185 0.121 0.135 0.418 0.544 0.232
β∆y, t−3 -0.234 -0.296 -0.099 -0.109 -0.067 0.000 -0.264 -0.441 -0.216 -0.335 -0.466 -0.311
βS, t−1 -0.217 1.329 -0.240 1.297 -0.238 1.352 0.449 1.039 0.515 0.840 -0.453 1.009
βS, t−2 -0.148 -0.730 0.101 -0.262 0.065 -0.351 -0.424 -0.756 -0.690 -0.418 -0.276 -0.793
βS, t−3 0.301 0.297 0.066 0.000 0.115 -0.094 0.637 0.715 0.479 0.225 -0.027 0.891

Regime 3

constant -0.665 3.120 0.438 0.249 2.713 -0.485 3.111 -0.315
β∆y, t−1 1.269 -0.328 1.566 0.008 1.111 0.153 0.754 0.023
β∆y, t−2 -0.192 0.684 -0.744 -0.079 -0.572 -0.320 -0.186 -0.183
β∆y, t−3 -0.230 -0.640 0.019 0.045 -0.343 0.369 -0.486 0.316
βS, t−1 -0.349 0.614 -0.232 1.343 -0.449 1.548 -0.604 1.511
βS, t−2 -0.037 -0.749 0.053 -0.316 -0.001 -0.466 0.368 -0.402
βS, t−3 0.598 0.529 0.132 -0.107 -0.025 -0.224 -0.295 -0.261

Regime 4

constant 0.223 0.108 0.219 0.108
β∆y, t−1 1.645 -0.042 1.723 -0.002
β∆y, t−2 -0.871 0.022 -0.998 -0.052
β∆y, t−3 0.098 -0.019 0.154 0.021
βS, t−1 -0.184 1.257 -0.194 1.270
βS, t−2 0.117 -0.259 0.085 -0.249
βS, t−3 0.073 -0.035 0.112 -0.060



Appendix D

Data source of Chapter 4

Here are the data source code from ECOWIN.
ew:bel14130 Belgium, Government Benchmarks, Bid, 10 Year, Yield, Close, EUR
ew:dnk14130 Denmark, Government Benchmarks, Bid, 10 Year, Yield, Close, DKK
ew:fra14130 France, Government Benchmarks, Bid, 10 Year, Yield, Close, EUR
ew:deu14130 Germany, Government Benchmarks, Bid, 10 Year, Yield, Close, EUR
ew:grd14130 Greece, Government Benchmarks, Bid, 10 Year, Yield, Close, EUR
ew:irl14130 Ireland, Government Benchmarks, Bid, 10 Year, Yield, Close, EUR
ew:ita14130 Italy, Government Benchmarks, Bid, 10 Year, Yield, Close, EUR
ew:nld14130 Netherlands, Government Benchmarks, Bid, 10 Year, Yield, Close,

EUR
ew:prt14130 Portugal, Government Benchmarks, Bid, 10 Year, Yield, Close, EUR
ew:esp14130 Spain, Government Benchmarks, Bid, 10 Year, Yield, Close, EUR
ew:swe14130 Sweden, Government Benchmarks, Bid, 10 Year, Yield, Close, SEK
ew:gbr14130 United Kingdom, Government Benchmarks, Bid, 10 Year, Yield, Close,

GBP
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Appendix E

Cheapest Insertion Algorithm

Cheapest insertion algorithms for a symmetric and asymmetric TSP (Rosenkrantz et al.,
1977).

The distances between cities are stored in a cost matrix E with elements e(i, j). All
insertion algorithms start with a tour consisting of an arbitrary city and choose in each
step a city k not yet on the tour. This city is inserted into the existing tour between two
consecutive cities i and j, such that

e(i, k) + e(k, j) − e(i, j)

is minimized. The algorithms stops when all cities are on the tour. Cheapest insertion
chooses the city k such that the cost of inserting the new city (i.e., the increase in the
tour’s length) is minimal and tries to build the tour using cities which fit well into the
partial tour constructed so far as well.
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Appendix F

Properties of the Bivariate Copula
Families

F.1 Elliptical copulas

Gaussian copula function is as follows:

C(u1,u2) = Φρ(Φ−1(u1),Φ−1(u2))

Bivariate Student-t copula is as follows:

C(u1,u2) = t ρ,ν (t−1(u1), t−1(u2))

Table F.1: Properties of the elliptical copula families

Name Parameter range Kendall’s τ Tail dep.(l,u)
Gaussian ρ ∈ (−1,1) 2

πarcsin(ρ) (0,0)
Student-t ρ ∈ (−1,1), ν > 2 2

πarcsin(ρ)
(
2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
, 2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

))

F.2 Archimedean copulas

The bivariate acrchimedean copulas function is:
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Table F.2: Properties of bivariate Archimedean copula families

Name Function Para. range Kendall’s τ Tail dep.(l,u)
Clayton 1

θ (t−θ − 1) θ > 0 θ
θ+2 (2−

1
θ )

Gumbel (−logt)θ θ ≥ 1 1 − 1
θ (0,2 − 2

1
θ )

Frank −log
(
e−θt−1
e−θ−1

)
θ ∈ < 1 − 4

θ +
4D1 (θ)
θ

∗
(0,0)

Joe −log(1 − (1 − t)t heta) θ > 1 1 + 4
θ2

∫ 1
0 tlog(t)(1 − t)

2(1−θ)
θ dt (0,2 − 2

1
θ )

BB1 (t−θ − 1)−δ θ > 0, δ ≥ 1 1 − 2
δ (θ+2) (2−

1
θδ ,2 − 2

1
θ )

BB6 (−log(1 − (1 − t)θ ))δ θ ≥ 1, δ ≥ 1 1 + 4
θδ

∫ 1
0 (−log(1 − (1 − t)θ ) ×

(1 − t)(1 − (1 − t−θ )))dt
(0,2 − 2

1
θδ )

BB7 (1 − (1 − t)θ )−δ θ ≥ 1, δ > 0 1 + 4
θδ

∫ 1
0 (−(1 − (1 − t)θ )δ+1 ×

(1−(1−t )θ )−δ−1
(1−t )θ−1 )dt

(2−
1
θ ,2 − 2

1
θ )

BB8 −log
(

1−(1−δt )θ

1−(1−δ)θ

)
θ ≥ 1, δ ∈ (0,1] 1 + 4

θδ

∫ 1
0 (−log

(
(1−tδ)θ−1
(1−δθ−1)

)
×

(1 − tδ)(1 − (1 − tδ−θ )))dt

(0,0)∗∗

Note: ∗ D1(θ) =
∫ θ

0
c/θ

exp(x)−1 dx is the Debye function.
∗∗ For δ = 1 the upper tail dependence coefficient is 2 − 2

1
θ .

C(u1,u2) = ϕ[−1](ϕ(u1) + ϕ(u2))

where ϕ : [0,1] → [0,∞] is a continuous strictly decreasing convex such that ϕ(1) = 0
and ϕ[−1] is the pseudo-inverse as follows:

ϕ[−1](t) =

ϕ−1(t), 0 ≤ t ≤ ϕ(0),
0, ϕ(0) ≤ t ≤ ∞

F.3 Rotations of the copulas

In addition to the families presented in the last 2 sections, there are rotated versions of
Clayton, Gumbel, Joe, BB1, BB6, BB7 and BB8 families in order to deal with more de-
pendence structure. When the families are rotated by 180 degrees, they are also called
the survival forms of the families. The copula function of these copulas will be calcu-
lated as follows:
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C90(u1,u2) = u2 − C(1 − u1,u2),

C180(u1,u2) = u1 + u2 − 1 + C(1 − u1,1 − u2),

C270(u1,u2) = u1 − C(u1,1 − u2),

Where C90,C180 and C270 are the copula C rotated by 90,180 and 270 degree respec-
tively.



Appendix G

Estimated Parameters of C-vine and
D-vine copulas
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Table G.1: Estimated C-vine copula parameters (Log-likelihood = 12934.83)

Level-1
margin∗ : 91 92 93 94 95 96 97 98 9a 9b
family: t t t t t t t t t t
θ̂1 0.785636 0.162843 0.692354 0.343322 0.508532 0.757037 0.65892 0.616534 0.124844 0.215362
θ̂2 2.0001 4.599867 2.0001 2.126921 2.0001 2.0001 2.03829 2.0001 15.77393 7.204589

Level-2
margin: 12|9 13|9 14|9 15|9 16|9 17|9 18|9 1a|9 1b|9
family: t t t t t t t t t
θ̂1 0.078301 0.494936 0.045666 0.168873 0.181871 0.525246 0.206182 0.00662 0.109588
θ̂2 8.578611 3.110824 4.048904 3.658444 3.96442 3.452198 3.831343 16.10222 9.224822

Level-3
margin: 23|19 24|19 25|19 26|19 27|19 28|19 2a|19 2b|19
family: t t t t t t t t
θ̂1 0.079817 0.28738 0.112875 0.088872 0.129475 0.208854 0.525698 0.242231
θ̂2 11.87698 8.23072 11.3741 15.98879 11.707 9.281302 3.867485 7.188617

Level-4
margin: 34|129 35|129 36|129 37|129 38|129 3a|129 3b|129
family: t t t t t 90.Clayton Frank
θ̂1 -0.01066 0.021689 -0.00146 0.507135 0.025434 -0.01267 0.49029
θ̂2 8.751509 11.44785 8.198117 4.60616 8.407895 0 0

Level-5
margin: 45|1239 46|1239 47|1239 48|1239 4a|1239 4b|1239
family: t t Frank t Frank t
θ̂1 0.173071 0.234101 -0.41015 0.27752 1.047847 0.047483
θ̂2 6.216486 8.23026 0 4.326902 0 16.16467

Level-6 Level-7
margin: 56|12349 57|12349 58|12349 5a|12349 5b|12349 67|123459 68|123459 6a|123459 6b|123459
family: Frank t t 270.Joe t t t t t
θ̂1 0.553639 0.023637 0.283618 -1.01931 0.04726 -0.02059 0.117399 0.094077 -0.02442
θ̂2 0 23.86815 7.225896 0 20.07778 16.18606 12.6435 16.46889 16.44031

Level-8 (|9123456) Level-9 (|91234567) Level-10 (|912345678)
margin: 78 7a 7b 8a 8b ab
family: Joe t t 270.Clayton Frank Gaussian
θ̂1 1.003137 -0.00739 0.046393 -0.0234 0.807638 0.072738
θ̂2 0 25.25985 13.24346 0 0 0

Note(∗): It shows the bivariate margin under condition, and 1=Belgium, 2=Denmark, 3=France, 4=Greece, 5=Ireland, 6=Italy, 7=Netherlands, 8=Portugal, 9=Spain, a=Sweden and b=UK.
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Estimated Vine Graphs
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Figure H.1: C-vine tree structure Level 1 - 4
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Tree 5
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Figure H.2: C-vine tree structure Level 5 - 8
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Tree 9
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Tree 10
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Figure H.3: C-vine tree structure Level 9 - 10
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Tree 5

Ir,S|P,G,I

P,B|G,I,S

G,F|I,S,B

I,N|S,B,FS,U|B,F,N

B,D|F,N,U

F,Sw|N,U,D

Tree 6

Ir,B|P,G,I,S

P,F|G,I,S,B

G,N|I,S,B,F

I,U|S,B,F,N

S,D|B,F,N,U

B,Sw|F,N,U,D

Tree 7

Ir,F|P,G,I,S,B

P,N|G,I,S,B,F

G,U|I,S,B,F,N

I,D|S,B,F,N,U

S,Sw|B,F,N,U,D

Tree 8

Ir,N|P,G,I,S,B,F

P,U|G,I,S,B,F,N

G,D|I,S,B,F,N,U

I,Sw|S,B,F,N,U,D

Figure H.5: D-vine tree structure Level 5 - 8
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Tree 9

Ir,U|P,G,I,S,B,F,N

P,D|G,I,S,B,F,N,U

G,Sw|I,S,B,F,N,U,D

Tree 10

Ir,D|P,G,I,S,B,F,N,U

P,Sw|G,I,S,B,F,N,U,D

Figure H.6: D-vine tree structure Level 9 - 10
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