
Li, Pengxiao; Chen, Hongwei; Wang, Xu; Yu, Hongchen; Chen, Minghua; Xie, Shizhong

Published in:
IEEE Photonics Technology Letters

Publication date:
2013

Link to publication in Heriot-Watt Research Gateway

Citation for published version (APA):
Abstract—We experimentally demonstrate a power-efficient ultrawideband (UWB) generation scheme using an electro-optical phase modulator. The generated UWB pulses are fully Federal Communication Commission (FCC) compliant with high power efficiency of 52.6%. Furthermore, 2 Gbit/s on-off keying (OOK) modulated modified UWB triplet signals are transmitted over 20 km optical fiber link without any obvious spectra or pulse shape distortions, and error-free transmission is achieved with power penalties less than 1.5 dB.

Index Terms—Ultrawideband (UWB), radio over fiber (RoF), microwave photonics, phase modulation, power spectral density.

I. INTRODUCTION

Impulse radio ultrawideband (UWB) over fiber technology has been proposed to extend the limited wireless transmission range of UWB systems to several or tens of kilometers [1]. The generation, modulation and transmission of UWB pulses in the optical domain have been extensively investigated in the past few years [2]–[5]. However, the power spectral densities (PSDs) of these pulses are far from satisfied with the U.S. Federal Communication Commission (FCC) regulations, especially in the global positioning system (GPS) band (0.96–1.61 GHz), where a deep notch of 35 dB is required. Recently, some UWB photonic generation schemes aimed at enhancing power spectral efficiency have been presented [6–8]. It is very interesting that power-efficient UWB pulses can be generated by means of linear sum of two time-delayed asymmetric monocycles [7] or modified doublets [8]. However, multi-wavelength operation in [7] will increase the cost of the system and suffer from fiber dispersion-induced transmission distance limitation. In [8], the balanced detection has to be applied to generate a pair of polarity-reversed doublets, which will increase the complexity of the base station. In addition, since a power-efficient pulse is only obtained in the electrical domain, this scheme cannot accommodate seamless transmission over fiber networks.

In this letter, we focus on the generation and transmission of power-efficient UWB pulses directly in the optical domain under single wavelength operation. In our experiment, a pair of complementary modified doublets is generated simultaneously under single wavelength operation. In our experiment, a pair of complementary modified doublets is generated simultaneously in the same scheme utilizing an electro-optic phase modulator (PM) in conjunction with a polarization-beam splitter (PBS), and then they are delayed and linearly combined to create a fully FCC-compliant UWB pulse with spectral power efficiency as high as 52.6%. The transmission performance of 2 Gbit/s OOK modulated UWB signals over a 20 km single mode fiber (SMF) link is also evaluated by measuring the electrical spectra, eye diagrams and bit error rate (BER). Thanks to single wavelength operation, no obvious spectra or pulse shape distortion is observed and an error-free transmission is successfully achieved with the power penalty less than 1.5 dB.

II. PRINCIPLE AND EXPERIMENTAL SETUP

A diagram of the proposed scheme for power-efficient UWB pulse generation is shown in Fig. 1(a). A linearly polarized lightwave oriented at an angle of 45° to one principal axis of the PM via a polarization controller (PC1) is sent to the PM and phase modulated by electrical Gaussian pulses. A PBS is then connected with the PM via PC2 with principal axis ±45° to those of the PM to realize pulse shaping based on polarization interference as shown in Fig. 1(b). The pulse generator shown in...
shown in Fig. 1(c) and they can be expressed by tuning the bias phase \(k \) simulation result in Fig. 2(a) shows that, when the modulator works near the nonlinear portion, as shown in Fig. 1(c). The pulses can be expressed as Fig. 2(b), which is equivalent to a dual-output-port intensity modulator, has two complementary output transfer functions as shown in Fig. 1(c) and they can be expressed by

\[
P_{\text{out},1,2}(t) = \frac{1}{2} P_{\text{in}} \left\{ 1 \pm \cos \left(\frac{\pi}{V_x} V(t) + \phi_b \right) \right\},
\]

where \(P_{\text{in}} \) and \(P_{\text{out},1,2} \) are the optical power of the input and two output ports, \(V(t) \) is the voltage of the applied electrical pulse, \(V_x \) is the half-wave voltage of the PM and \(\phi_b \) is the initial bias phase introduced by PC2. The shaped pulses from the two branches are combined again by a 50:50 coupler after one is delayed from the other. The output optical signals from the coupler are then detected by a photodetector (PD). When the Gaussian pulse applied to the PM is biased on the linear region of the transfer functions, only a monocycle pulse can be produced. However, two polarity-inverted modified doublets whose amplitude ratio between the positive and negative part is slightly modified \([8]\), can be generated when the modulator works near the nonlinear portion, as shown in Fig. 1(c). The pulses can be expressed as

\[
d_{1,2}(t) = \pm \left| 1 - \frac{4 \ln 2 - k^2 T_{\text{FWHM}}^2}{T_{\text{FWHM}}^2} \right| \exp\left(-\frac{2 \ln 2 - t^2}{T_{\text{FWHM}}^2} \right),
\]

where \(k \) is an arbitrary scaling parameter and \(T_{\text{FWHM}} \) denotes the input Gaussian pulsewidth (full width at half maximum). The simulation result in Fig. 2(a) shows that, \(k \) in (2) can be flexibly adjusted by tuning the bias phase \(\phi_b \) of the input Gaussian pulses with different amplitude \(V_{\text{max}} \), which is varied from \(V_x \) to 0.2\(V_x \). It indicates that as \(V_{\text{max}} \) becomes smaller \(k \) will be more sensitive to \(\phi_b \), causing problems in controlling \(k \) practically.

A spectral notch of which depth and location is determined by \(k \) can be obtained in the lower frequency band of the modified doublet PSDs \([8]\). When \(k = 1.16 \) a deep notch of about 60 dB at GPS band is achieved and the linearly combination of two such pulses with a time delay \(\tau \) between them will create a fully FCC-compliant UWB pulse called modified triplet. Fig. 2(b) shows the calculated power efficiency of such modified triplets, which is defined as the average power of the pulse normalized by the total admissible power under FCC mask within 3.1–10.6 GHz \([6]\). It is worthy to note that the maximum power spectral efficiency of 57.2% can be achieved when the input Gaussian pulsewidth is 70 ps and the time delay is about 35 ps.

The experimental setup is shown in Fig. 3. A lightwave centered at 1550 nm from a DFB laser is first sent to a PM-based power-efficient UWB pulse generator, as described in Fig. 1(a). A Gaussian-like pulse train generated from a pulse pattern generator (PPG, Anritsu MP1800A) with a modified pattern of single “1” in every 7 bits and a bit rate of 14 Gb/s, resulting in an equivalent repetition rate of 2 Gb/s is applied to the PM. The peak amplitude of the input pulse is \(-4 \) V and the pulsewidth is \(-72 \) ps. The PM has a half-wave voltage of \(-4.5 \) V. Proper time delay and equal power between the two arms are guaranteed by using a tunable delay line (TDL General Photonics VariDelayTM) with the resolution of \(-1 \) ps and delay range of 600 ps and two variable optical attenuators (VOA). In order to further evaluate the transmission performance, OOK modulated modified triplets are distributed over a 20 km SMF link and then detected by a 45 GHz PD at the receiver side. The received signal is sent to a BER tester (BERT) for BER measurement, and both a 40 GHz digital sampling oscilloscope (DSO, Tektronix TDS 8200) and an electrical spectrum analyzer (ESA, Anritsu MS2668C) with a resolution bandwidth (RBW) of 1 MHz are employed to measure the eye diagrams and spectra of the UWB pulses.

III. EXPERIMENTAL RESULTS AND DISCUSSION

When the proposed UWB generator is working in the linear region, both positive and negative Gaussian-like pulses are observed at the two output ports of PBS. The polarity-inverted Gaussian pulses are then delayed and combined to generate a monocycle pulse with time duration of about 250 ps, as shown in Fig. 4(a). The PC2 is then carefully tuned while observing the output PSDs of the generated UWB pulses, which is equivalent to adjusting the parameter \(k \) in (2). When the input Gaussian pulse is biased near the nonlinear portion, modified doublets are
Comparing Fig. 5(a) and (b) with Fig. 5(c) and (d) respectively, and a good agreement between the measured and calculated modified triplet pulses are fully compliant with FCC regulation, except for the power reduction of about 50 ps are also displayed in Fig. 4(b). The pulse asymmetry and deviation from the theoretical pulses is caused by the nonideal input Gaussian pulse shape and pulsewidth limited by the bandwidth of PPG and inconsistent performance of the two branches. Moreover, the polarity of the generated modified triplets can be changed simply by adjusting PC2. Fig. 4(c) clearly shows 2 Gbit/s OOK modulated UWB pulses with a bit pattern of “101101001”, where the bit “1” and “0” consist of a sequence of Gaussian bit pattern “1000000” and “0000000” edited by the PPG, respectively.

The measured PSDs of the OOK modulated UWB signals following a data pattern of 2^{11} – 1 pseudo-random bit sequence (PRBS) in cases of back to back (B2B) and after 20 km SMF transmission are shown in Fig. 5. As can be seen from Fig. 5(a) and (b), the electrical spectra of both positive and negative modified triplets are fully compliant with FCC regulation, and a good agreement between the measured and calculated PSDs is obtained with $k = 1.16$, $T_{\text{FWHM}} = 72$ ps and $\tau = 35$ ps. The central frequency of the pulses is about 6.3 GHz, with 10 dB bandwidth of 7.2 GHz, indicating about 114% fractional bandwidth. The measured power efficiency within 3.1–10.6 GHz band is about 52.6% slightly less than the maximum one. Comparing Fig. 5(a) and (b) with Fig. 5(c) and (d) respectively, no obvious distortion is observed in the continuous spectral components of the PSDs, which contain the data information of the modulated UWB signals, except for the power reduction after fiber transmission.

BER performance of both the positive and negative 2 Gbit/s FCC-compliant UWB signals for B2B and fiber transmission is also experimentally investigated, as shown in Fig. 6. To well maintain the temporal shape of the signal and avoid spectral distortion, the detected UWB signals are directly sent into a BER and only the large positive peak of the UWB pulse is used for BER estimation since the modulation format is OOK. Almost an error-free transmission of 3.2×10^{-9} and 2.5×10^{-9} can be achieved for the both polarities, respectively, and the power penalties are less than 1.5 dB, mainly due to the reduction of signal to noise ratio (SNR) induced by the optical fiber loss and chromatic dispersion. Additionally, the received eye diagrams also confirm the error free operation and negligible pulse shape distortion after transmission, comparing the results shown in the Fig. 6 insets (c) and (d) with (a) and (b), respectively.

IV. CONCLUSION

In conclusion, a PM-based power-efficient UWB generation scheme is experimentally demonstrated. High flexibility of the proposed scheme allows photonic generation of monocycles, modified doublets and modified triplets with opposite polarities. A spectral power efficiency of 52.6% for the FCC-compliant UWB pulse is realized. The OOK modulated modified triplets are transmitted at 2 Gbit/s over 20 km SMF without any obvious spectra and pulse shape distortion benefiting from the single wavelength operation. An error-free transmission is achieved with power penalties less than 1.5 dB. Furthermore, study on the wireless transmission with multiple modulation formats based on this photonic generation scheme will also be investigated in our future work.

REFERENCES