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Abstract: We present the delivery of high energy microsecond pulses 
through a hollow-core negative-curvature fiber at 2.94 µm. The energy 
densities delivered far exceed those required for biological tissue 
manipulation and are of the order of 2300 J/cm2. Tissue ablation was 
demonstrated on hard and soft tissue in dry and aqueous conditions with no 
detrimental effects to the fiber or catastrophic damage to the end facets. The 
energy is guided in a well confined single mode allowing for a small and 
controllable focused spot delivered flexibly to the point of operation. Hence, 
a mechanically and chemically robust alternative to the existing Er:YAG 
delivery systems is proposed which paves the way for new routes for 
minimally invasive surgical laser procedures. 
© 2012 Optical Society of America 
OCIS codes: (060.2270) Fiber characterization; (060.2430) Fibers, single-mode; (060.5295) 
Photonic crystal fibers; (170.1020) Ablation of tissue; (170.3890) Medical optics 
instrumentation. 
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1. Introduction 

Er:YAG lasers emitting at a wavelength of 2.94 µm are widely used in medicine. The wide 
application of this laser in medical procedures is due to the high absorption coefficient of 
water contained in biological tissue of around 12000 cm−1 at this wavelength [1]. This leads to 
the unique capability of a small penetration depth and therefore high ablation rates, with high 
precision and a minimal heat-affected zone. This is key to reducing collateral damage, or cell 
death in surrounding tissue, during surgical procedures. Additional generic advantages of laser 
based procedures are that no pressure is applied, reducing the pain for the patient, e.g., in 
dental drilling [2], and the cut geometry is not limited by the drill/scalpel geometry but is 
dictated by the focused spot size which generally can be significantly smaller than traditional 
surgical tools. 

In order to harness the advantages of lasers for medical procedures the laser light should 
ideally be delivered via a flexible guide from the laser source to the patient, allowing 
complete freedom for the surgeon. Several delivery systems are already in use to deliver the 
necessary powers to manipulate (i.e., cut and drill) biological/human tissue. The two most 
common ones are articulated arms and large core multimode optical fibers. The articulated 
arm is a system of rigid tubes connected by movable joints with built in mirrors and an 
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interchangeable hand piece. The hand piece contains optics to generate a particular beam 
profile on the tissue to be processed. There has been continued improvement of these systems 
and early issues, like beam wandering when the arm was moved, have been largely overcome. 
However, such arms can never be completely flexible in 3D space, restricting the surgeon. 
Generally, the size of the hand piece prevents the use of the articulated arm in minimally 
invasive surgery or in combination with endoscopy, although by attaching a short fiber to the 
hand piece some of these space restrictions are eliminated. 

The alternative to the articulated arm would be to use a robust and flexible fiber delivery 
system. The main drive for fiber delivery is the flexibility it gives the users and the small 
physical size and weight which would therefore drastically increase the usability of these 
surgical lasers. There are a number of solid core fibers operating at the wavelength of 2.94 
µm, that have been investigated for this application, based on chalcogenides [3,4], GeO2 [4] or 
sapphire [5]. All these fiber types were demonstrated to deliver high power multimode laser 
beams. 

In solid core fibers the laser induced damage threshold (LIDT) of the fiber material 
imposes a limit on the power handling capabilities. In order to circumvent such issues hollow 
core fibers have been developed. The main types of these fibers guide by Bragg reflection, or 
by internal reflection at a dielectric coated metallic interface in the case of the leaky tube 
waveguide [6–8]. However, these types of waveguides are limited in length due to the 
fabrication process. Hollow core photonic crystal fibers (HC-PCF) have been shown to guide 
in this wavelength region with power handling capabilities suited to laser surgery [9]. Since in 
these waveguide designs the light is mainly guided inside the hollow core of the fiber, they 
typically have a higher damage threshold than solid core fibers [10–13]. 

In this paper the application of a new fiber design based on the principles of hollow core 
microstructured fibers to surgery is described. Due to the shape of the central hollow core 
geometry, as shown Fig. 1 [14], this fiber is referred to as a Negative Curvature Fiber (NCF). 
The fiber is fabricated [14] from fused silica using a conventional stack and draw technique 
similar to that used for HC-PCF. The material is Suprasil F300 which has a bulk attenuation 
of ~50 dB/m at 2.94 µm (see Fig. 2) [9]. However, as light is mainly confined to the hollow 
core the influence of this high absorption is significantly reduced allowing low-loss fibers to 
be made in this wavelength region [10,15]. Silica is a desirable material for medical 
applications as it has several advantages, e.g., it can withstand high temperatures, it is bio-
inert, mechanically and chemically robust and it has been extensively characterized for fiber 
drawing which makes it easy to handle. The broadband guidance of the fiber has been  

 

Fig. 1. SEM picture of the negative curvature fiber used in these experiments. 

t=2.66µm  

r=38µ
 

D=94µm 
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Fig. 2. Absorption spectrum of silica (Suprasil F300) in the mid IR [9]. 

previously described, with low attenuation ranges from 2 µm to 2.5 µm and from 2.8 µm to 
3.8 µm [14]. The lowest attenuation achieved was 34 dB/km at 3.05 µm. In this paper the 
fiber presented in [14] was used to demonstrate the high energy laser pulse delivery of 2.94 
µm radiation for use as a flexible delivery system for surgical lasers. 

In order to be considered as an alternative solution for flexible delivery of Er:YAG laser 
light the fiber must reliably deliver pulses of sufficient energy to ablate a wide range of 
biological tissue. The typical thresholds required as reported in the literature are shown in 
Table 1. As described in this paper, the energy density transmitted through this fiber far 
exceeds the thresholds required for hard and soft biological tissue ablation. 

Table 1. Ablation thresholds for different biological tissues 

Rep rate [Hz] Pulse length [µs] Tissue type Threshold [J/cm2] Refs. 
2 250 Human dental enamel 35 [16] 

7-10 250 Human skin 1.6 [17] 
1.7 250 Pig retina 1 [18] 
1 100-5000 Human dentine 2.69-3.66 [19,20] 
5 NA Pig skin (vitro) 3.6-5.6 [21] 
2 200 Guinea pig skin 0.6-1.5 [22] 

2. Laser and optics 

The laser used in our experiments was an Impex High Tech ERB 15 laser. The operating 
wavelength is 2.937 µm and the pulse-length is 225 µs FWHM (Fig. 3a), with an M2 of ~2.5 
at a repetition rate of ~15 Hz. The spatial profile of the laser output has a donut shape (Fig. 
3b); the low resolution in the image is a result of the relatively large pixel size of the IR 
camera used (each pixel is 50 × 50 µm). The laser light was coupled into the fiber using a lens 
of focal length f = 100 mm, giving a focused spot size diameter of 67 µm and focused cone 
angle of 70 mrad. 

This optical arrangement was found to give the best coupling efficiency but due to the 
mismatch between the laser mode and the fiber mode field profile (which is a Gaussian-like 
single mode) the maximum coupling efficiency achieved was around 35%. This coupling 
efficiency was independent from the incident energy level. It is possible to improve the laser 
beam profile, i.e., achieve a smaller M2 value by inserting an aperture in the laser cavity but 
this resulted in a significant loss of output power and consequently the donut mode was used  
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Fig. 3. (a) Temporal profile of the laser pulse (b) Spatial beam profile of the laser showing a 
donut shaped beam. 

to excite the fiber for all experiments. It is assumed that modes that have not been coupled 
into the core mode couple into cladding modes. These cladding modes are gradually absorbed 
over a short length in the outer fused silica cladding and the protective polyimide jacket on the 
outside of the fiber. The absorption of fused silica at this wavelength is around 50 dB/m [9]. 
Since the cladding modes are leaking away over a distance, the localized energy deposition in 
the fused silica cladding is reduced and no measures had to be taken to cool the fiber, and 
importantly, no damage from the absorbed energy was observed. 

3. Fiber 

The guidance of this fiber can be explained by the Anti-resonant reflecting optical waveguide 
(ARROW) principle [23]. As described by Litchinitser et al. [23], wavelengths which are in 
resonance with the core wall cannot be confined in the core but leak away thought the wall, 
resulting in a high attenuation. However, frequencies that are anti-resonant with the wall 
cannot propagate within it and will be more confined inside the core. The two interfaces of 
wall and air can be described as a Fabry-Perot-like resonator. Anti-resonant wavelengths 
experience a low leakage through the wall and hence a lower attenuation as a result of 
destructive interference in the Fabry-Perot resonator. 

Fabrication of the fiber was performed using a standard stack and draw method, as 
described in reference [14]. The core diameter (defined as the shortest distance inside the 
core) is 94 µm, and the angle of the full acceptance cone is 60 mrad (NA of 0.03). 

3.1. Attenuation 

To measure the attenuation of the fiber at 2.94 µm a cut back measurement was carried out, 
using a tunable laser as the optical source. The total attenuation in these NCF fibers is a 
combination of confinement and absorptive losses and bend induced losses. We therefore took 
great care to ensure the fiber was bent in a known and defined manner. The ends of the fiber 
were held straight and the fiber was bent with a diameter of 50 cm. The bent part of the fiber 
consisted of 5.5 full circles. The initial length of the fiber was 9.55 m and a 3 m long piece 
was cut back, which corresponds to two full circles. The attenuation measured for this 
configuration, where 5.5 m of the fiber is coiled with a diameter of 0.5 m and 0.5 m straight 
fiber at either end, was measured to be 0.183 dB/m ± 0.05 dB/m. 

Figure 4 shows the additional losses that accrue if the fiber is bent by 180° with diameters 
from 50 cm down to 5 cm for 1.23 m long fiber piece. As can be seen there are no significant 
additional loses if the bend diameter is >30 cm, which is sufficient for many applications. The 
bending losses are most likely from core mode(s) coupling into cladding modes which are 
strongly absorbed. From the same graph it is noticeable that the attenuation for shorter 
wavelengths for a bend diameter of 20 cm is higher than for 10 cm. The details of this  
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Fig. 4. Additional losses due to fiber bend in dB for a 1.23 m long fiber piece. The bend 
diameter is given for one 180° bend. 

unexpected behavior—which is presumably due to coupling to other modes in the fiber—are 
yet to be investigated. Output beam mode profiles for shorter wavelengths could give an 
indication of the potential mode coupling at tighter bends, and it is our intention to address 
this in future work. 

Typical bend diameters needed for endoscopy applications, such as endourology are of the 
order of 15 cm [24]. Such bend radii are possible with solid core sapphire fibers but for 
flexibility need core diameters below 600 μm which therefore imposes a damage threshold on 
the fiber [25]. State-of-the-art multimode solid core fiber delivery systems based on fluoride 
glasses can achieve a bending diameter of 20 cm with very weak dependence on the bend 
diameter [26] and having an attenuation of ~0.2 dB/m. Alternatively, multimode hollow core 
waveguides have shown a higher dependence between the bend diameter and losses. The 
attenuation for a hollow core waveguide with a 750 µm core has been reported as 1.9 dB/m 
(90° bend) and 2.9 dB/m (180° bend) when the bend diameter was 30 cm [27]. However, it is 
envisaged that in order to develop novel minimally invasive procedures it may be necessary 
have bend diameters in the order of 10’s mm. 

3.2. Fiber output beam profile 

An investigation of the fiber output beam profile was carried out by moving a second fiber 
transversal to the negative curvature fiber (NCF). The “measuring” fiber used was a 
previously reported HC-PCF with a band gap at 2.94 µm, core diameter of 24 µm and a single 
mode core profile [15]. This measurement, using a smaller-core fiber for signal collection, 
significantly increase the fidelity of the convolution which was present in the earlier similar 
measurement [14] using two identical fibers. The output power of the HC-PCF was measured 
with a pyroelectric detector (Coherent P5-01). The position of the fiber was controlled with a 
LVDT (Linear Variable Differential Transformer) (Tesa Tronic TTD20). The relative output 
power versus the fiber position is shown in Fig. 5. The fiber was bent during this test to a bend 
diameter of ~50 cm. 

As can be seen from the measurement, the output beam profile is single mode like and 
close to a Gaussian beam profile. The beam profiles are identical for straight and bent fiber 
configurations. From this measurement a 1/e2 mode field diameter of 78 µm can be calculated 
which is 83% of the core diameter and demonstrates good confinement in the hollow core. 
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Fig. 5. Fiber output beam profile for a bent NCF measured by moving a HC- PCF transversally 
relative to the NCF. The NCF was bent with a diameter of ~50 cm over a length of 80 cm. 

The M2 of the fiber-delivered beam was measured (according to ISO Standard 11146 [12]) 
as 1.4 which is in line with the Gaussian like output beam profile shown in Fig. 5. 

Modeling was done to estimate the overlap between the laser and the fiber mode in order 
to indicate the maximum coupling efficiency achievable. This was done by a calculation of 
the overlap integral, I, of the amplitudes of the laser mode, φlaser, and the fiber mode, φfiber, 
where 
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as described in [28]. As only a 1D spatial prolife of the fiber output was measured for this 
calculation the fiber mode profile at input was assumed to be a Gaussian beam profile with the 
same 1/e2 beam diameter as the fiber (78 µm). The overlap of this assumed fiber mode and the 
laser beam mode as calculated from Eq. (1) is 55.8%. As can be seen from the measurement, 
the output beam profile is single mode like and close to a Gaussian beam profile. Based on the 
profile in Fig. 5 the fiber output has a 98.7% overlap with a perfect Gaussian of the same 1/e2 
beam width. 

3.3. Beam propagation 

It is envisaged that the fiber could be used in contact mode or with a standoff from the tissue 
in practical medical procedures. Consequently an investigation of the far field propagation 
was carried out to assess the spatial beam profile at certain distances from the fiber end facet. 
To assess the spatial beam profile the beam was incident on a ceramic surface and an image 
was captured with a mid-infrared camera (Electrophysics PV320 L2E). The fiber used for 
these images had a length of 6.48 m and was curled up in a loop with a diameter of 50 cm 
over a length of 5.5 m. The distances between the fiber end and the reflective surface were 10, 
20, 50 and 100 mm, respectively to replicate what could be conceived as practical working 
distances for surgery. The false color images are shown in Fig. 6. No significant change in the 
general beam profile can be detected other than the expected increase in beam diameter for 
distances from 10 mm to 100 mm. 
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Fig. 6. Far field beam profile at different distances (a) 10, (b) 20, (c) 50, and (d) 100 mm) from 
the fiber end. The fiber length is 6.48 m. 

3.4. High energy microsecond pulse delivery 

The maximum output energy delivered through the NCF was achieved when the full power 
output of the laser was incident at the input of the fiber, resulting in an energy at the output of 
the fiber of 195 ± 1 mJ for a 33 cm length of fiber and 54 ± 4 mJ for a 9.88 m length. In both 
cases the fiber was bent to a diameter of 50 cm over a length of 80 cm. These pulse energies 
translate to energy densities of 2300 J/cm2 for the short length and 764 J/cm2 for the long 
length immediately at the end of the fiber, respectively. As shown in Table 1, human dental 
enamel has the highest ablation threshold of 35 J/cm2, and it is clear that even for the longer 
10 m fiber the delivered energy density exceeds it by a factor of >21. It should also be noted 
that the stated values for the power delivery capability of the fiber do not represent the limits 
of the power handling capability of the fiber as the experiment was limited by the available 
power from the laser source. Both the input and output facets of the fiber were undamaged 
during the transmission experiments. It is likely that given a laser with higher output energy 
and/or better beam quality, significantly higher pulse energies could be delivered. 

To test the practicality of the fiber it was used free handed to ablate material. During these 
tests the fiber was bent down to a diameter of <10 cm. No damage to the fiber could be 
detected although the power output dropped as expected due to increased bend loss, however 
it was still sufficient enough to ablate the material (porcine bone). 

4. Encapsulation of the fiber with an endtip 

One practical issue in using hollow-core fibers for medical applications is the possibility of 
contaminating the core with debris and liquids (e.g., blood or tissue fragments) particularly if 
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the fiber is used in an endoscopic procedure. Therefore an encapsulation of at least one fiber 
end is necessary. Our approach is the sapphire endtip and a schematic is shown in Fig. 7. As a 
demonstrator this endtip was mounted onto the fiber using a heat shrinking tube (Fig. 8). 

 
Fig. 7. schematic and dimensions of the sapphire endtip. 

 

Fig. 8. Endtip mounted onto the fiber using a heat shrinking tube. 

The distance between the fiber end facet and the outer surface of the sapphire window in 
the endtip (the contact point of laser irradiation and tissue) is 0.5 mm. In order to avoid 
damage to the sapphire window of the endtip the energy was restricted for these tests as it still 
provided sufficient energy for tissue ablation. The maximum output energy measured at this 
point using a 2 m long fiber piece was 30 mJ. Using this value and the divergence half angle 
of 36 mrad gives an energy density of >500 J/cm2 at the contact point. Again this energy 
density far exceeds the ablation thresholds necessary for biological tissue yet is well within 
the operating capability of the device. 

A cross section through the spatial beam profile directly at the end of the tip is shown in 
Fig. 9. Although there is some change in the beam profile compared to the previous image 
(Fig. 5) it is not significantly different and the beam is still single-mode-like. 
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This figure represents the beam profile incident on the tissue if the fiber is used in contact 
mode, where the endtip would be in direct contact with the tissue. The far field output beam 
profile at distances of 10, 20, 50 and 100 mm are also shown, again to demonstrate conditions 
expected for practical surgical applications, Figs. 10(b) and 10(c). Compared to the beam 
profile without an endtip (Fig. 6) some artifacts around the central peak position are visible  
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Fig. 9. Beam profile at the endtip’s outer surface. 

 
Fig. 10. Far-field profile of the fiber with endtip. Distance from the endtip to the reflective 
surface: (a) 10, (b) 20, (c) 50, and (d) 100 mm. 
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and the beam has more structure to it. These are most likely due the inside surface of the 
sapphire window not having an optical polish and the possibility of some contamination 
during construction of the endtip. 

5. Tissue ablation 

In order to demonstrate that the delivered power is sufficient to ablate hard and soft biological 
tissue, a sample of porcine tissue (bone and muscle) was used. The fiber length used for the 
ablation experiment was 2 m and the output end was sealed by the endtip shown in Fig. 8. The 
output power was 30 mJ which produced a fluence of >500 J/cm2 at the output surface of the 
endtip. This energy density was sufficient to ablate the porcine muscle and bone as can be 
seen in Fig. 11. At these fluencies the ablation depth for a single shot on bone was 
approximately 200 µm and the heat-affected zone (HAZ) was about 70 µm (see Fig. 11(b). By 
adapting the laser parameter, the HAZ can be minimized, however the investigation of these 
parameters was not the scope of these experiments. In these trials the fiber was hand held, as 
opposed to being fixed, to simulate how it may be used in practice. A side effect of this is that 
the pulses are not delivered perfectly normal to the tissue. The fiber was used in contact mode 
and at different distances and also ablation was carried out in aqueous conditions with the 
fiber and tissue completely immersed in water (Fig. 12). These results clearly show that the 
fiber is capable of delivering pulses of the necessary energy for tissue ablation and shows that 
the fiber and endtip configuration is robust and can be handled in a practical manner. 

Autoclaving was performed on the fiber. The fiber was sealed on both ends using an arc-
fusion splicer to fuse the ends by localized melting. The conditions in the autoclave were 
121°C at 15 psi for 15 min. No degradation of the fiber could be determined after repeating  

 

Fig. 11. Tissue ablation results: (a) porcine bone; (b) cross-section through hole in porcine bone 
showing ablation depth with single shot, ablation depth is 265 µm; (c) porcine muscle; (d) 
tissue ablation of porcine muscle with a number of shots being distributed over the surface. 
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Fig. 12. Endtip immersed in water. 

this procedure 3 times. At these temperatures a softening of the acrylic fiber jacket can be 
expected which could lead to localized weakening points. However for a medical device a 
polyimide jacket can be used, which withstands much higher temperatures. The endtip was 
not tested in the autoclave, however previous tests [15] have shown that the bond between the 
sapphire tube and sapphire rod is hermetically sealed and stable to temperatures over 1000°C. 

To demonstrate the capabilities of the system of fiber and endtip the ablation of ovine 
bone is presented in Fig. 13(a) (Media 1). The width of the cut is around 300 µm with a depth 
of 220 µm. The square is 2x2 mm in size and the distance between tissue and endtip is around 
5 mm. Additionally the ablation under water is shown in Fig. 13(b) (Media 2). As can be seen 
the tip is fully submerged into the water. Parameters in both experiments were kept the same. 

 
Fig. 13. Screenshots from Media 1 and Media 2. (a) Ablation of ovine bone in air. Square 
dimensions are 2x2 mm (Media 1) (b) Ablation of ovine bone under water (Media 2). 

6. Conclusion 

A novel delivery system for Er:YAG laser radiation is presented which has the potential to 
enable new minimally invasive surgical procedures. The flexible fiber is fabricated from silica 
and guides the light inside a hollow core by the ARROW principle which increases the 
damage threshold significantly, compared to a solid core fiber, and allows the effect of the 
high absorption of silica at this wavelength to be negated. The output beam profile is single-
mode-like, leading to a significant advantage, in terms of controllability and stability for the 
delivered energy, compared to other large core fibers. The performance in terms of delivered 
fluence (up to 2300 J/cm2) far exceeds the thresholds needed for biological tissue. This has 
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been practically demonstrated by showing that hard and soft tissue could be ablated. A 
practical approach for encapsulation of the fiber has been proposed which demonstrates that a 
practical surgical device could be developed. This system shows a promising alternative to the 
existing delivery systems already used in medicine and other high power applications at 2.94 
µm and paves the way for novel minimally invasive surgical procedures. 
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