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Trends in High-Performance Computing

CUDA OpenCL MPI OpenMPI PVM
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(Hidden) Costs of Computing

Prototyping/Development Time is typically reduced for scripting
languages such as R or Python.

Run Time on single threads C/C++ (or Fortran) have better
performance characteristics. But for specialized tasks
other languages, e.g. Haskell, can show good
characteristics.

Energy Requirements Every Watt we use for computing we also have
to extract with air conditioning.

The role of GPUs
• GPUs can be accessed from many different programming

languages (e.g. PyCUDA).
• GPUs have a comparatively small footprint and relatively modest

energy requirements compared to clusters of CPUs.
• GPUs were designed for consumer electronics: computer gamers

have different needs from the HPC community.
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Evolving Networks
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Evolving Networks

Model-Based Evolutionary Analysis
• For sequence data we use models of nucleotide substitution in

order to infer phylogenies in a likelihood or Bayesian framework.
• None of these models — even the general time-reversible model

— are particularly realistic; but by allowing for complicating factors
e.g. rate variation we capture much of the variability observed
across a phylogenetic panel.

• Modes of network evolution will be even more complicated and
exhibit high levels of contingency; moreover the structure and
function of different parts of the network will be intricately linked.

• Nevertheless we believe that modelling the processes underlying
the evolution of networks can provide useful insights; in particular
we can study how functionality is distributed across groups of
genes.
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Network Evolution Models

(a) Duplication attachment (b) Duplication attachment
with complimentarity

(c) Linear preferential
attachment

w
i

w
j

(d) General scale-free
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ABC on Networks

Summarizing Networks
• Data are noisy and incomplete.
• We can simulate models of network

evolution, but this does not allow us to
calculate likelihoods for all but very
trivial models.

• There is also no sufficient statistic that
would allow us to summarize networks,
so ABC approaches require some
thought.

• Many possible summary statistics of
networks are expensive to calculate.

Full likelihood: Wiuf et al., PNAS (2006).

ABC: Ratman et al., PLoS Comp.Biol. (2008).

Stumpf & Wiuf, J. Roy. Soc. Interface (2010).
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Graph Spectrum
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Graph Spectra
Given a graph G comprised of a set of nodes N and edges (i, j) ∈ E
with i, j ∈ N, the adjacency matrix, A, of the graph is defined by

ai,j =

{
1 if (i, j) ∈ E ,

0 otherwise.
The eigenvalues, λ, of this matrix provide one way of defining the
graph spectrum.
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Spectral Distances

A simple distance measure between graphs having adjacency
matrices A and B, known as the edit distance, is to count the number
of edges that are not shared by both graphs,

D(A,B) =
∑

i,j

(ai,j − bi,j)
2.

However for unlabelled graphs we require some mapping h from
i ∈ NA to i ′ ∈ NB that minimizes the distance

D(A,B) > D ′
h(A,B) =

∑
i,j

(ai,j − bh(i),h(j))
2,

Given a spectrum (which is relatively cheap to compute) we have

D ′(A,B) =
∑

l

(
λ
(α)
l − λ

(β)
l

)2
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ABC using Graph Spectra

For an observed network, N, and a simulated network, Sθ, we use the
distance between the spectra

D ′(N, Sθ) =
∑

l

(
λ
(N)
l − λ

(S)
l

)2
,

in our ABC SMC procedure. Note that this distance is a close lower
bound on the distance between the raw data; we therefore do not
have to bother with summary statistics.
Also, calculating graph spectra costs as much as calculating other
O(N3) statistics (such as all shortest paths, the network diameter or
the within-reach distribution).
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Simulated Data
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Protein Interaction Network Data
Species Proteins Interactions Genome size Sampling fraction

S.cerevisiae 5035 22118 6532 0.77

D. melanogaster 7506 22871 14076 0.53

H. pylori 715 1423 1589 0.45

E. coli 1888 7008 5416 0.35

Model

M
od

el
 p

ro
ba

bi
lit

y

0.0

0.1

0.2

0.3

0.4

0.5

DA DAC LPA SF DACL DACR

Organism

S.cerevisae

D.melanogaster

H.pylori

E.coli

Model Selection
• Inference here was based on all

the data, not summary
statistics.

• Duplication models receive the
strongest support from the data.

• Several models receive support
and no model is chosen
unambiguously.
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GPUs in Computational Statistics

Performance
• With highly optimized libraries (e.g. BLAST/ATLAS) we can run

numerically demanding jobs relatively straightforwardly.

• Whenever poor-man’s paralellization is possible, GPUs offer
considerable advantages over multi-core CPU systems (at
comparable cost and energy requirements).

• Performance depends crucially on our ability to map tasks onto the
hardware.

Challenges

• GPU hardware was initially conceived for different purposes —
computer gamers need fewer random numbers than MCMC or
SMC procedures. The address space accessible to
single-precision numbers also suffices to kill zombies etc .

• Combining several GPUs requires additional work, using e.g. MPI.
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Alternatives to GPUs: FPGAs

Field Programmable Gate Arrays are configurable electronic circuits
that are partly (re)configurable. Here the hardware is adapted to the
problem at hand and encapsulates the programme in its
programmable logic arrays.

312 D.B. Thomas, W. Luk, and M. Stumpf
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Fig. 10. Practical performance when labelling random graphs for a Virtex-4 xc4vlx60
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lost due to loading the graph and extracting the label, and is also bandwidth limited to
133MBytes/s to simulate a connection over a PCI bus. For all graphs of size less than
12 the FPGA is bandwidth limited (except in the Brute Force case), and for wv = 2
and wv = 3 the computational load stays so low relative to IO, due to the small number
of swaps per graph, that the FPGA is bandwidth limited for all graph sizes.

The hardware costs also include the time taken to load input graphs and read
back labels between labelling operations. The hardware is also assumed to be
connected to a PC via a 133MByte/sec PCI bus, so hardware performance is
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Alternatives to GPUs: CPUs (and MPI. . . )

CPUs with multiple cores
are flexible, have large
address spaces and a
wealth of flexible numerical
routines. This makes
implementation of
numerically demanding
tasks relatively
straightforward. In
particular there is less of an
incentive to consider how a
problem is best
implemented in software
that takes advantage of
hardware features.
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(Pseudo) Random Numbers

The Mersenne-Twister is one of the standard random number
generators for simulation. MT19937 has a period of
219937 − 1 ≈ 4× 106001.

But MT does not have cryptographic strength (once 624 iterates have
been observed, all future states are predictable), unlike
Blum-Blum-Shub,

xn+1 = xnmodM,

where M = pq with p, q large prime numbers. But it is too slow for
simulations.

Parallel Random Number Generation
• Running RNGs in parallel does not produce reliable sets of random

numbers.
• We need algorithms produce large numbers of parallel streams of

“good” random numbers.
• We also need better algorithms for weighted sampling.
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What GPUs are Good At

• GPUs are good for linear threads involving mathematical functions.
• We should avoid loops and branches in the code.
• In an optimal world we should aim for all threads to finish at the

same time.

Execution cycle
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Generating RNGs in Parallel

We assume that we have a function xn+1 = f (xn) which generates a
stream of (pseudo) random numbers

x0, x1, x2, . . . , xr , . . . , xs, . . . , xt , . . . , xz

Parallel Streams

Sub-Streams

x0, x1, . . .

x ′
0, x ′

1, . . .

x ′′
0 , x ′′

1 , . . .

x0, . . . , xr−1

xr , . . . , xs−1

xs, . . . , xt−1
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Counter-Based RNGs

We can represent RNGs as state-space processes,

yn+1 = f (yn) with f :Y −→ Y

xn+1 = gk ,nmodJ(ybn+1/Jc) with g :Y ×K×ZJ −→ X ,

where x are essentially behaving as x ∼ U[0,1]; here K is the key
space, J the number of random numbers generated from the internal
state of the RNG.

Salmon et al.(SC11) propose to use a simple form for f (·) and

gk ,j = hk ◦ bk

For a sufficiently complex bijection bk we can use simple updates
and leave the randomization to bk . Here cryptographic routines come
in useful.
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RNG Performance on CPUs and GPUs
Method Max. Min. Output Intel CPU Nvidia GPU AMD GPU

input state size cpB GB/s cpB GB/s cpB GB/s

Counter-based, Cryptographic
AES(sw) (1+0)×16 11×16 1×16 31.2 0.4 – – – –
AES(hw) (1+0)×16 11×16 1×16 1.7 7.2 – – – –

Threefish (Threefry-4×64-72) (4+4)×8 0 4×8 7.3 1.7 51.8 15.3 302.8 4.5

Counter-based, Crush-resistant
ARS-5(hw) (1+1)×16 0 1×16 0.7 17.8 – – – –
ARS-7(hw) (1+1)×16 0 1×16 1.1 11.1 – – – –

Threefry-2×64-13 (2+2)×8 0 2×8 2.0 6.3 13.6 58.1 25.6 52.5
Threefry-2×64-20 (2+2)×8 0 2×8 2.4 5.1 15.3 51.7 30.4 44.5
Threefry-4×64-12 (4+4)×8 0 4×8 1.1 11.2 9.4 84.1 15.2 90.0
Threefry-4×64-20 (4+4)×8 0 4×8 1.9 6.4 15.0 52.8 29.2 46.4
Threefry-4×32-12 (4+4)×4 0 4×4 2.2 5.6 9.5 83.0 12.8 106.2
Threefry-4×32-20 (4+4)×4 0 4×4 3.9 3.1 15.7 50.4 25.2 53.8

Philox2×64-6 (2+1)×8 0 2×8 2.1 5.9 8.8 90.0 37.2 36.4
Philox2×64-10 (2+1)×8 0 2×8 4.3 2.8 14.7 53.7 62.8 21.6
Philox4×64-7 (4+2)×8 0 4×8 2.0 6.0 8.6 92.4 36.4 37.2

Philox4×64-10 (4+2)×8 0 4×8 3.2 3.9 12.9 61.5 54.0 25.1
Philox4×32-7 (4+2)×4 0 4×4 2.4 5.0 3.9 201.6 12.0 113.1

Philox4×32-10 (4+2)×4 0 4×4 3.6 3.4 5.4 145.3 17.2 79.1

Conventional, Crush-resistant
MRG32k3a 0 6×4 1000×4 3.8 3.2 – – – –
MRG32k3a 0 6×4 4×4 20.3 0.6 – – – –
MRGk5-93 0 5×4 1×4 7.6 1.6 9.2 85.5 – –

Conventional, Crushable
Mersenne Twister 0 312×8 1×8 2.0 6.1 43.3 18.3 – –

XORWOW 0 6×4 1×4 1.6 7.7 5.8 136.7 16.8 81.1

Table 2: Memory and performance characteristics for a variety of counter-based and conventional PRNGs.
Maximum input is written as (c+k)×w, indicating a counter type of width c×w bytes and a key type of width
k×w bytes. Minimum state and output size are c×w bytes. Counter-based PRNG performance is reported
with the minimal number of rounds for Crush-resistance, and also with extra rounds for “safety margin.”
Performance is shown in bold for recommended PRNGs that have the best platform-specific performance with
significant safety margin. The multiple recursive generator MRG32k3a [21] is from the Intel Math Kernel
Library and MRGk5-93 [23] is adapted from the GNU Scientific Library (GSL). The Mersenne Twister [29]
on CPUs is std::mt19937 64 from the C++0x library. On NVIDIA GPUs, the Mersenne Twister is ported
from the GSL (the 32-bit variant with an output size of 1×4 bytes). XORWOW is adapted from [27] and is
the PRNG in the NVIDIA CURAND library.

a single Xeon core, but it is significantly faster on a GPU.
On an NVIDIA GTX580 GPU, Philox-4×32-7 produces
random numbers at 202 GB per second per chip, the highest
overall single-chip throughput that we are aware of for
any PRNG (conventional or counter-based). On an AMD
HD6970 GPU, it generates random numbers at 113 GB per
second per chip, which is also an impressive single-chip rate.
Even Philox-4×32-10, with three extra rounds of safety
margin, is as fast as the non-Crush-resistant XORWOW[27]
PRNG on GPUs.

We have only tested Philox with periods up to 2256, but
as with Threefish and Threefry, the Philox SP network is
specified for widths up to 16×64 bits, and corresponding
periods up to 21024. There is every reason to expect such
wider forms also to be Crush-resistant.

5. COMPARISON OF PRNGS
When choosing a PRNG, there are several questions that

users and application developers ask: Will the PRNG cause
my simulation to produce incorrect results? Is the PRNG
easy to use? Will it slow down my simulation? Will it spill

registers, dirty my cache, or consume precious memory? In
Table 2, we try to provide quantitative answers to these
questions for counter-based PRNGs, as well as for a few
popular conventional PRNGs.12

All the counter-based PRNGs we consider are Crush-
resistant; there is no evidence whatsoever that they produce
statistically flawed output. All of them conform to an
identical, naturally parallel API, so ease-of-use considera-
tions are moot. All of them can be written and validated
in portable C, but as with many algorithms, performance
can be improved by relying on compiler-specific features or
“intrinsics.” All of them have periods in excess of 2128 and
key spaces in excess of 264—well beyond the practical needs

12Tests were run on a 3.07 GHz quad-core Intel Xeon X5667 (West-
mere) CPU, a 1.54 GHz NVIDIA GeForce GTX580 (512 “CUDA
cores”) and an 880 Mhz AMD Radeon HD6970 (1536 “stream
processors”). The same source code was used for counter-based
PRNGs on all platforms and is available for download. It was
compiled with gcc 4.5.3 for the Intel CPU, the CUDA 4.0.17
toolkit for the NVIDIA GPU and OpenCL 1.1 (AMD-APP-SDK-
v2.4) for the AMD GPU. Software AES used OpenSSL-0.9.8e.
The MRG generators were from version 10.3.2 of the Intel Math
Kernel library and version 1.12 of the GNU Scientific Library.

Taken from Salmon et al.(see References).
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Computational Challenges of GPUs

• Address spaces are a potential issue: using single precision we
are prone to run out of numbers for challenging MCMC/SMC
applications very quickly.

• Memory is an issue. In particular, registers/memory close to the
computing cores are precious.

• Bandwidth is an issue — coordination between GPU and CPU is
much more challenging in statistical applications than e.g. for
texture mapping of graphics rendering tasks.

• Programming has to be much more hardware aware than for CPUs
— more precisely, non-hardware adapted programming will be
more obviously less efficient than for CPUs.

• There are some differences from conventional ANSI standards for
mathematics (e.g. rounding).
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