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(Hidden) Costs of Computing

o

rototyping/Development Time is typically reduced for scripting
languages such as R or Python.
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languages such as R or Python.

Run Time on single threads C/C++ (or Fortran) have better
performance characteristics. But for specialized tasks
other languages, e.g. Haskell, can show good
characteristics.

Energy Requirements Every Watt we use for computing we also have
to extract with air conditioning.
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(Hidden) Costs of Computing

o

rototyping/Development Time is typically reduced for scripting
languages such as R or Python.

Run Time on single threads C/C++ (or Fortran) have better
performance characteristics. But for specialized tasks
other languages, e.g. Haskell, can show good
characteristics.

Energy Requirements Every Watt we use for computing we also have
to extract with air conditioning.

The role of GPUs

e GPUs can be accessed from many different programming
languages (e.g. PyCUDA).

e GPUs have a comparatively small footprint and relatively modest
energy requirements compared to clusters of CPUs.

e GPUs were designed for consumer electronics: computer gamers
have different needs from the HPC community.
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Evolving Networks
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3 Evolving Networks
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Model-Based Evolutionary Analysis

For sequence data we use models of nucleotide substitution in
order to infer phylogenies in a likelihood or Bayesian framework.

None of these models — even the general time-reversible model
— are particularly realistic; but by allowing for complicating factors
e.g. rate variation we capture much of the variability observed
across a phylogenetic panel.

Modes of network evolution will be even more complicated and
exhibit high levels of contingency; moreover the structure and
function of different parts of the network will be intricately linked.

Nevertheless we believe that modelling the processes underlying
the evolution of networks can provide useful insights; in particular
we can study how functionality is distributed across groups of
genes.
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Network Evolution Models
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(a) Duplication attachment (b) Duplication attachment
with complimentarity
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(c) Linear preferential (d) General scale-free
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ABC on Networks

ted 9 Feb

@mmarizing Networks
¢, Data are noisy and incomplete.

EWe can simulate models of network
© egvolution, but this does not allow us to
(qV] . 0

= calculate likelihoods for all but very
gtrivial models.

é—There is also no sufficient statistic that
§ would allow us to summarize networks,
Sso ABC approaches require some

S thought.

2 Many possible summary statistics of

» networks are expensive to calculate.

Full likelihood:  Wiuf et al., PNAS (2006).
ABC: Ratman et al., PLoS Comp.Biol. (2008).
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Graph Spectrum
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Graph Spectra

Given a graph G comprised of a set of nodes N and edges (i, j) € E
W|th i,j € N, the adjacency matrix, A, of the graph is defined by

1 if (i,f) € E,

0 otherwise.

S The eigenvalues, A, of this matrix provide one way of defining the
8 graph spectrum.

ajj =
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3 Spectral Distances

(o)}
3 A simple distance measure between graphs having adjacency

@ matrices A and B, known as the edit distance, is to count the number
2 of edges that are not shared by both graphs,

D(A B) =) (ai;— b))
i.j
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3 Spectral Distances

(o)}
3 A simple distance measure between graphs having adjacency

@ matrices A and B, known as the edit distance, is to count the number
2 of edges that are not shared by both graphs,

D(A B) =) (ai;— b))
i.j

However for unlabelled graphs we require some mapping h from
i € Nato i’ € Ng that minimizes the distance

D(A, B) > Dj(A B) = Z(ai,j — bagiyn())?
i
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3 Spectral Distances

(o)}
3 A simple distance measure between graphs having adjacency

@ matrices A and B, known as the edit distance, is to count the number
2 of edges that are not shared by both graphs,

D(A B) =) (ai;— b))
i.j

However for unlabelled graphs we require some mapping h from
i € Nato i’ € Ng that minimizes the distance

D(A, B) > Dj(A B) = Z(ai,j — bagiyn())?
i
Given a spectrum (which is relatively cheap to compute) we have

/
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ABC using Graph Spectra

distance between the spectra

D'N.Se) =Y (AI(N] _7\1(8))2’
/

g in our ABC SMC procedure. Note that this distance is a close lower
% bound on the distance between the raw data; we therefore do not

S have to bother with summary statistics.

S Also, calculating graph spectra costs as much as calculating other
‘5 O(N®) statistics (such as all shortest paths, the network diameter or
-~ the within-reach distribution).

npre.2012.6874.1 : Posted 9 Feb
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Simulated Data
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Protein Interaction Network Data

Species Proteins | Interactions | Genome size | Sampling fraction
S.cerevisiae 5035 22118 6532 0.77
D. melanogaster 7506 22871 14076 0.53
H. pylori 715 1423 1589 0.45
E. coli 1888 7008 5416 0.35
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Protein Interaction Network Data
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DA

Species Proteins | Interactions | Genome size | Sampling fraction
S.cerevisiae 5035 22118 6532 0.77
D. melanogaster 7506 22871 14076 0.53
H. pylori 715 1423 1589 0.45
E. coli 1888 7008 5416 0.35

Model Selection

¢ Inference here was based on all

the data, not summary
[ P statistics.

)

DAC

Network Analysis on GPUs

LPA SF
Model

D.melanogaster
H.pylori
E.col

e Duplication models receive the
strongest support from the data.

e Several models receive support

and no model is chosen
unambiguously.
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o) . .
o Protein Interaction Network Data
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8 GPUs in Computational Statistics
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e With highly optimized libraries (e.g. BLAST/ATLAS) we can run
numerically demanding jobs relatively straightforwardly.

recedings : doi:10.1038/npre.2012.6874.1 : Posted 9

ﬂ'ﬁi’rﬁh"ege Network Analysis on GPUs ~ Thomas Thorne & Michael P.H. Stumpf 12 of 22



8 GPUs in Computational Statistics

Performance

e With highly optimized libraries (e.g. BLAST/ATLAS) we can run
numerically demanding jobs relatively straightforwardly.

e Whenever poor-man’s paralellization is possible, GPUs offer
considerable advantages over multi-core CPU systems (at
comparable cost and energy requirements).
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e With highly optimized libraries (e.g. BLAST/ATLAS) we can run
numerically demanding jobs relatively straightforwardly.

e Whenever poor-man’s paralellization is possible, GPUs offer
considerable advantages over multi-core CPU systems (at
comparable cost and energy requirements).

e Performance depends crucially on our ability to map tasks onto the
hardware.

v
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8 GPUs in Computational Statistics
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Performance

e With highly optimized libraries (e.g. BLAST/ATLAS) we can run
numerically demanding jobs relatively straightforwardly.

e Whenever poor-man’s paralellization is possible, GPUs offer
considerable advantages over multi-core CPU systems (at
comparable cost and energy requirements).

e Performance depends crucially on our ability to map tasks onto the

hardware.

Challenges

e GPU hardware was initially conceived for different purposes —
computer gamers need fewer random numbers than MCMC or
SMC procedures. The address space accessible to
single-precision numbers also suffices to kill zombies etc .
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EGPUS in Computational Statistics
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Performance

e With highly optimized libraries (e.g. BLAST/ATLAS) we can run
numerically demanding jobs relatively straightforwardly.

e Whenever poor-man’s paralellization is possible, GPUs offer
considerable advantages over multi-core CPU systems (at
comparable cost and energy requirements).

e Performance depends crucially on our ability to map tasks onto the

hardware.

Challenges

e GPU hardware was initially conceived for different purposes —
computer gamers need fewer random numbers than MCMC or
SMC procedures. The address space accessible to
single-precision numbers also suffices to kill zombies etc .

e Combining several GPUs requires additional work, using e.g. MPI.
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3 Alternatives to GPUs: FPGAs

(o)}
S Field Programmable Gate Arrays are configurable electronic circuits

§ that are partly (re)configurable. Here the hardware is adapted to the
2 problem at hand and encapsulates the programme in its
:r! programmable logic arrays.

—o— Multiple instances in xc4vIx60
—a— Single Instance in Virtex-4
—+— Quad Opteron Software

100000

10000 +

1000 -

).
100 7%
A

4 9 14 19 24
Graph Size

recedings : doi:10.1038/npre.2012.687
Performance (MSwap-Compare/s)

fmnﬁf"o@:""ege Network Analysis on GPUs ~ Thomas Thorne & Michael P.H. Stumpf 13 of 22



o]

o Alternatives to GPUs:

CPUs (and MPI. . .)

doF

%PUS with multiple cores
Gre flexible, have large
-address spaces and a
gvealth of flexible numerical
goutines. This makes
gmplementation of
Qumerically demanding
dasks relatively
@traightforward. In
Qarticular there is less of an
dncentive to consider how a
‘Broblem is best
-implemented in software
Zhat takes advantage of
THardware features.
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3 (Pseudo) Random Numbers

9

'S The Mersenne-Twister is one of the standard random number

@ generators for simulation. MT19937 has a period of
f.l. 219937 —1a~4x 106001_
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§ generators for simulation. MT19937 has a period of

O 919937 _ 4 ~ 4 x 108001

:r! But MT does not have cryptographic strength (once 624 iterates have
% been observed, all future states are predictable), unlike

& Blum-Blum-Shub,

§ Xnt1 = XpmodM,
gwhere M = pq with p, g large prime numbers. But it is too slow for
£ simulations
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3 (Pseudo) Random Numbers

9

'S The Mersenne-Twister is one of the standard random number
@ generators for simulation. MT19937 has a period of
o 219937 —1a~4x 106001_
:r! But MT does not have cryptographic strength (once 624 iterates have
% been observed, all future states are predictable), unlike
& Blum-Blum-Shub,
Xp+1 = XpmodM,
> where M = pq with p, g large prime numbers. But it is too slow for
simulations.

Parallel Random Number Generation

¢ Running RNGs in parallel does not produce reliable sets of random
numbers.

e We need algorithms produce large numbers of parallel streams of
“good” random numbers.

recedings : doi:10.1038/npre 2012.

e We also need better algorithms for weighted sampling.
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What GPUs are Good At

e GPUs are good for linear threads involving mathematical functions.

e We should avoid loops and branches in the code.

e In an optimal world we should aim for all threads to finish at the
same time.

Execution cycle
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8 Generating RNGs in Parallel
[0}
'S We assume that we have a function x,;.1 = f(x,) which generates a

§ stream of (pseudo) random numbers

X0, X1, X2, ..., Xry ooy Xgy oo Xty e X2
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8 Generating RNGs in Parallel
[0}
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§ stream of (pseudo) random numbers
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Counter-Based RNGs

We can represent RNGs as state-space processes,

Yn+1 = f(yn) with f:Yy —Y
X1 = Gk,nmod (Y[ n1/9))  With g ¥Y X K x Zy — X,

g where x are essentially behaving as x ~ Ujg 1; here X is the key
S space, J the number of random numbers generated from the internal
S state of the RNG.

2.6874.1 : Posted 9 Feb
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© Salmon et al.(SC11) propose to use a simple form for f(-) and

9k,j = hk o by
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Counter-Based RNGs

We can represent RNGs as state-space processes,

Yni1 = f(yn) with f:Yy —Y
X1 = Gk,nmod (Y[ n1/9))  With g ¥Y X K x Zy — X,

012.6874.1 : Posted 9 Feb

g where x are essentially behaving as x ~ Ujg 1; here K is the key
space J the number of random numbers generated from the internal

E-state of the RNG.

o Salmon et al.(SC11) propose to use a simple form for f(-) and

9k,j = hk o by

’ For a sufficiently complex bijection by we can use simple updates
and leave the randomization to b,. Here cryptographic routines come
in useful.

recedmgs doi:10.1038/
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RNG Performance on CPUs and GPUs

Method Max. Min. Output | Intel CPU | Nvidia GPU | AMD GPU
input state size cpB GB/s | cpB GB/s | cpB GB/s

Counter-based, Cryptographic
AES(sw) (140)x16 11x16 1x16 | 31.2 0.4 = = =

AES(hw) (1+0)x16 11x16 Ix16 | 1.7 7.2 - = -

Threefish (Threefry-4x64-72) (4+4)x8 0 4x8 7.3 1.7 | 51.8 15.3 | 302.8 4.5

Counter-based, Crush-resistant

ARS-5(hw)  (14+1)x16 0 1x16 | 0.7 178

ARS-7(hw) (1+41)x16 0 1x16 | 1.1 11.1
Threefry-2x64-13  (2+2)x8 0 2x8 2.0 6.3 | 13.6 581 | 25.6 52.5
Threefry-2x64-20  (2+2)x8 0 2x8 24 5.1 | 15.3 51.7 | 30.4 44.5
Threefry-4x64-12  (4+4)x8 0 4x8 1.1 11.2 9.4 84.1 | 15.2 90.0
Threefry-4x64-20 (4+4)x8 0 4x8 1.9 6.4 | 150 52.8 29.2 46.4
Threefry-4x32-12 (4+4)x4 0 4x4 2.2 5.6 9.5 83.0 12.8 106.2
Threefry-4x32-20 (4+4)x4 0 4x4 3.9 3.1 | 15.7 50.4 25.2 53.8
Philox2x64-6 (2+1)x8 0 2x8 2.1 5.9 8.8 90.0 37.2 36.4
Philox2x64-10 (2+1)x8 0 2x8 4.3 2.8 | 147 53.7 62.8 21.6
Philox4x64-7  (4+2)x8 0 4x8 2.0 6.0 8.6 92.4 | 364 37.2
Philox4x64-10 (4+2)x8 0 4x8 3.2 3.9 | 129 61.5 54.0 25.1
Philox4x32-7 (4+2)x4 0 4x4 2.4 5.0 3.9 201.6 12.0 113.1
Philox4x32-10 (4+2)x4 0 4x4 3.6 3.4 5.4 145.3 | 17.2 79.1

Conventional, Crush-resistant
MRG32k3a 0 6x4  1000x4 3.8 3.2 = = = =
MRG32k3a 0 6x4 4x4 | 20.3 0.6 = = = =
MRGk5-93 0 5x4 1x4 7.6 1.6 9.2 85.5 - -
Conventional, Crushable

Mersenne Twister 0 312x8 1x8 2.0 6.1 | 43.3 18.3 - -
XORWOW 0 6x4 1x4 1.6 77 5.8 136.7 | 16.8 81.1

Taken from Salmon et al.(see References).
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Computational Challenges of GPUs

e Address spaces are a potential issue: using single precision we
are prone to run out of numbers for challenging MCMC/SMC
applications very quickly.
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e Memory is an issue. In particular, registers/memory close to the
computing cores are precious.
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Computational Challenges of GPUs

e Address spaces are a potential issue: using single precision we
are prone to run out of numbers for challenging MCMC/SMC
applications very quickly.

e Memory is an issue. In particular, registers/memory close to the
computing cores are precious.
e Bandwidth is an issue — coordination between GPU and CPU is

much more challenging in statistical applications than e.g. for
texture mapping of graphics rendering tasks.
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Computational Challenges of GPUs
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Address spaces are a potential issue: using single precision we
are prone to run out of numbers for challenging MCMC/SMC
applications very quickly.

Memory is an issue. In particular, registers/memory close to the
computing cores are precious.

Bandwidth is an issue — coordination between GPU and CPU is
much more challenging in statistical applications than e.g. for
texture mapping of graphics rendering tasks.

Programming has to be much more hardware aware than for CPUs
— more precisely, non-hardware adapted programming will be
more obviously less efficient than for CPUs.
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Address spaces are a potential issue: using single precision we
are prone to run out of numbers for challenging MCMC/SMC
applications very quickly.

Memory is an issue. In particular, registers/memory close to the
computing cores are precious.

Bandwidth is an issue — coordination between GPU and CPU is
much more challenging in statistical applications than e.g. for
texture mapping of graphics rendering tasks.

Programming has to be much more hardware aware than for CPUs
— more precisely, non-hardware adapted programming will be
more obviously less efficient than for CPUs.

There are some differences from conventional ANSI standards for
mathematics (e.g. rounding).
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