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Abstract

While evolution has inspired algorithmic methods of heuristic optimisation,
little has been done in the way of using concepts of computation to advance our
understanding of salient aspects of biological evolution. We argue that under
reasonable assumptions, interesting conclusions can be drawn that are of relevance
to behavioural evolution. We will focus on two important features of life—robustness
and fitness optimisation–which, we will argue, are related to algorithmic probability
and to the thermodynamics of computation, subjects that may be capable of
explaining and modelling key features of living organisms, and which can be used in
understanding and formulating algorithms of evolutionary computation.

Keywords: evolutionary computation, information theory, thermodynam-
ics of computation, biological robustness, algorithmic probability, fitness.

1 Introduction

It is raining DNA outside. On the bank of the Oxford canal at the bottom
of my garden is a large willow tree, and it is pumping downy seeds into
the air... It is raining instructions out there; it’s raining programs; it’s
raining tree-growing, fluff-spreading, algorithms. That is not a metaphor,
it is the plain truth. It couldn’t be any plainer if it were raining floppy
disks.

Richard Dawkins, 1986
The Blind Watchmaker

Longman Pub

With the work of Darwin it became clear that there were natural processes that could
in fact shape features of biological organisms. Evolutionary computation was inspired by
this idea, prompting us to posit a correspondence between algorithms and biology. What
evolutionary computation does is to take natural selection as an algorithmic mechanism
as an iterative procedure for optimisation in problem solving.

Insofar as evolutionary computation models important aspects of evolution, it does so
because evolution itself behaves very much like a computational process. In evolutionary
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2 ALGORITHMIC PROBABILITY AND BIOLOGICAL ROBUSTNESS

computation, biological evolution is matched with algorithms, and if biological evolution
is in turn taken to be computational in nature, we can expect it to be driven by the same
forces and to be constrained by the same laws as govern computation and information.

In her contribution to the Ubiquity symposium on the question “What is computation?”
Melanie Mitchell pondered the possibility that biological computation was a process that
occurred in nature, and that computing would eventually prove as fundamental for biology
as physics had been for chemistry. Wolfram [36] has advocated a paradigm shift in propos-
ing that when modelling nature, traditional mathematics be replaced with computational
models based on systems such as cellular automata. Biologists have also drawn formal
parallels between evolution by natural selection and optimisation [13, 14, 24].

Gregory Chaitin, one of the founders of algorithmic information theory [8] (together
with R. Solomonoff [31], A. Kolmogorov [19] and L. Levin [22]), has strongly suggested
that key features of evolution could be fully captured by mathematics, and approached
using algorithmic information-theoretic models. Chaitin points out [9, 10]:

DNA is essentially a programming language that computes the organism and
its functioning; hence the relevance of the theory of computation for biology.

A central element in living systems turns out to be digital: DNA sequences refined by
evolution encode the components and the processes that guide the development of living
organisms. It is therefore natural to turn to computer science, where the concepts of pro-
gramming languages, data structures, and algorithms are used to organise and characterise
digital information.

We believe that important concepts in the theory of computation (in particular from
algorithmic complexity and computational thermodynamics) can explain aspects of be-
haviour and evolution. We will focus on two pivotal features of life–robustness and fitness–
which, we will argue, can be related to properties of computational systems.

2 Algorithmic Probability and Biological Robustness

Computer simulations performed as part of research into artificial life reproduced various
known features of biological evolution [12, 20, 36], all of which turned out to be profoundly
connected to the concept of (Turing) universal computation. Evolution seems to manifest
some fundamental properties of computation, and not only does it seem to resemble an
algorithmic process, it often seems to produce the kind of output distribution a compu-
tation could be expected to produce [25], as witness, for instance, the form in which the
most important instructions for life are stored–in digital form (the DNA), even if in a
convoluted fashion, and, despite all its intricate paths and complicated connections, in
identifiable units of information (genes).

Among several key properties of living organisms is their robustness in the face of
genetic change, yet organisms are highly evolvable [33]. We propose that the tools of
algorithmic probability may be fruitfully applied to the task of framing a computational
perspective on life and evolution. The algorithmic probability [31, 22] of a string s can be
defined as

Pr(s) = Σp:M(p)=s2
−|p| (1)
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2 ALGORITHMIC PROBABILITY AND BIOLOGICAL ROBUSTNESS

Where Pr(s) is the sum over all the programs for which M with p outputs the string s
and halts. As p is itself a binary string, Pr(s) is the probability that the output of M is s
when provided with a sequence of random (uniformly-distributed) bits as input taken as
a program p running on a universal (prefix-free1) Turing machine.

Consider a biological version, a container for each of the four nucleotides of DNA: A,
T, C, and G. One connects the containers to a machine, and into the machine comes–as
input–a random program with instructions for putting these nucleotides together to form
a sequence of DNA. The machine binds the genetic material from scratch. This scenario
looks much like what actually happens inside a cell, with ribosomes compiling DNA into
proteins, and is consistent with an information-processing framework, where principles of
computation would apply.

Biological processes may not behave or correspond to the mechanism of a Turing ma-
chine. But having learned directly from James D. Watson (the co-discoverer of the struc-
ture of DNA), Charles Bennett realised [3] that a special-purpose Turing machine existed
in nature: RNA polymerase. An enzyme that crawls along a gene analogous to a machine
“tape” transcribing DNA stepping left and right just as a Turing machine would do (this
is not a minor thing, it is the possibility to access to any part of the machine tape that
provides the machine with its computational power). The logical state of the RNA poly-
merase changes according to the chemical information written in the sequence and Bennett
used this information to calculate the energy required for this biological processes [3].

Trying to feed a machine with random sequences of nucleotides will certainly lead to
a frustrating experience. But for those outcomes with biological meaning, algorithmic
probability will describe their frequency distribution in terms of their complexity. Not all
programs will produce a biological valid output, most will be disappointing, if anything
comes out, just as it would be for Turing machines that may or may not even stop or
stop after only 1 step. If it is true that any valid rule would produce a valid computation,
whether an output is valid from a biological perspective, even in the context of an automa-
ton, is subject to interpretation and does not interfere with the fact that biology would
follow information and algorithmic laws, just as should follow physical and chemical laws.

This is the main property of m(s), that random computer programs produce structure
by filtering out a portion of what one feeds them. Start with a random-looking string
and run a randomly chosen program on it, and there is a good chance the random-looking
string will be turned into a regular, highly structured one. The programs producing these
structured strings may be the kinds of building blocks used in nature [29] thought to
be common to living beings as basic units. For example, in an experiment with digital
organisms designed to show how complex features originate from random mutation and
natural selection it was found that most evolutionary paths build over prior intermediate
states to arrive at the same evolved complex functions [24].

Robustness, in many contexts, means that a system’s behaviour will remain qualita-
tively unchanged even if it is perturbed. In biology this translates into the ability of an
organism to preserve its phenotype in spite of environmental perturbations or mutations.
If many computations produce the same outcome, the outcome becomes less perturbable

1That is, a machine for which a valid program is never the beginning of any other program, a technicality
that allows us to define a probability over strings produced by programs for which the sum is at most 1.
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3 THE COST OF INFORMATION PROCESSING AND FITNESS

and more robust. Levin shows [22] that there is a universal (semi2) measure m that dom-
inates any other probability measure Pr. In a world of computable processes, m(s) (1)
establishes that simple patterns which result from simple processes are likely, while com-
plicated, random-looking patterns produced by complicated processes (long programs) are
relatively unlikely. This means that if one tampers with a non-negligible number of pro-
grams (e.g. disarrangement or random removal) the output of the remaining ones will still
produce the same frequency of patterns as the original. m(s) is in fact also known as the
Universal Distribution because it has the remarkable properties [22, 18].

Rodney Brooks [6] notes that

. . . neither AI [Artificial Intelligence] nor Alife has produced artifacts that could
be confused with a living organism for more than an instant. AI just does not
seem as present or aware as even a simple animal and Alife cannot match the
complexities of the simplest forms of life.

Wolfram has pointed out [36] that it is because we have been shaping nature in such
a way as to produce engineered things that are meant to be understandable and within
our full control, unlike most complex natural systems around us. It is perhaps with the
hope of closing this gap that evolutionary computation has been used as an alternative to
problem solving.

Strengthening the hypothesis that algorithmic probability may model certain biological
phenomena some systems show preference for certain features, such as dihedral over cyclic
symmetry, and phenotypic robustness [16], which seem to agree with the outcome ex-
pected of a bias of the kind produced in computational processes explained by algorithmic
probability.

Robustness can also be observed in artificial self-assembly dynamics [15], suggesting
that it is not exclusively a property of living systems but rather of simple rule systems
which evolve persistent structures of high complexity.

This kind of “algorithmic robustness” may also be consistent with models where ran-
dom point mutation is less important than mutations that occur at the level of the instruc-
tions determining biological functions, and may eventually explain processes of speciation
favouring phenomena such as epistasis and models of punctuated equilibria. In this regard,
we have found that there is also a computational approach for studying possible rates
of change in evolutionary time-scales, such as stasis and rapid phenotypic evolution [5],
investigated in terms of slow-down and speed-up phenomena in small computer programs
competing to compute a function [17].

3 The Cost of Information Processing and Fitness

If biological systems can be regarded as computational systems one may inquire into bi-
ological systems as one would into computational systems. If algorithmic concepts can
be successfully adapted to the biological context, key concepts developed in computation
theory may not only be relevant to biology but may also explain fundamental aspects of
biological processes.

2 “semi” because, as an uncomputable function, it is approachable from below.
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3 THE COST OF INFORMATION PROCESSING AND FITNESS

To grasp the role of information in biological systems think of a computer as an idealised
information-processing system. Converting energy into information is today fairly easy to
understand from a practical point of view [21, 3, 11]. Computers may be thought of as
engines transforming energy into information. One need only connect one’s computer to
the electrical grid in order to have it perform a task and produce new information.

It is clear that animals convert information into energy–for example, by using informa-
tion to locate food, to navigate within a habitat, or by learning how to hunt. Similarly,
it is clear that energy can be used to extract even greater quantities of energy from the
environment–through investment in the construction and operation of a brain. From this
it follows that the extent to which an organism is adapted to or able to produce offspring
in a particular environment depends on a positive exchange ratio between information and
energy.

This works in reverse as well, that is the conversion of information into energy, and
has been studied in the thermodynamics of computation. A good way to understand
the process is by using the well-known thought experiment known as Maxwell’s demon
paradox [3, 4]. The basic idea is that one can use the knowledge about the microstate of a
system to make it hotter. Using bits to produce energy is well explained in [11] and [30].
The connections to information theory and algorithmic complexity, however, are less well
understood, but we have good ideas to find how to deeply connect these concepts using
algorithmic information theory.

In exchanging information for energy and energy for information some energy inevitably
escapes to the environment, hence it is also a subject important to ecology and ultimately
to climate changing. Dissipation is a general phenomenon in the real world and it tells
us that something is lost in the exchange process, something which itself interacts with
the environment, affecting other organisms. In accordance with the second law of ther-
modynamics, one can see this as information about the system’s irreversibility. In biology
this kind of exchange happens all the time. Neurons, for example, dissipate about 1011kT
per discharge [3]. Computers (mainly because of their volatile memory devices–the RAM
memory) also dissipate energy by at least 1kT per bit [27, 21, 3] (with k the Boltzmann
constant and T the ambient temperature) which is the reason computers heat and require
an internal fan.

In a recent paper [23] it was shown that, under certain assumptions, information pro-
cessing by individuals could only be a fitness enhancing property. But it follows that any
system with access to a finite amount of resources (e.g. memory) has to incur in a cost,
assuming nothing other than information processing. Hence, if an organism aims to gather
information about the world, updating its previous state by replacing old information with
new (learning), a cost is unavoidable, and takes the form of dissipation. The connection
to fitness is then quite natural. Living systems can be regarded as systems with access
to finite resources and subject to the same costs as any other computational and physical
system.

As pointed out in [32], natural selection can be seen as extracting information from the
environment and coding it into a DNA sequence. But current efforts in the direction of
quantifying information content typically do not venture beyond Shannon’s communication
theory. Nevertheless, as we are suggesting, analogies with computation and algorithmic
complexity may help to understand how selection accumulates and exchanges information
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REFERENCES

and energy from the environment in the replacement of populations, as it has already help
to connect computation and physics before in thermodynamics.

Information as a fitness enhancing property can only be so, however, if energy return is
greater than the cost of processing the information. From the thermodynamics of computa-
tion we know that “forgetting” takes work and learning saves energy. Therefore, organisms
cannot survive in a random world or without information storing resources, because some
predictability is necessary for organisms to survive. The existence of living systems is
therefore a thermodynamical proof that the world is more predictable than random.

4 Concluding Remarks

After the discovery of DNA, it was clear that at least an important part of biological sys-
tems and evolution was digital and computational in nature, involving code and devices for
copying and reusing code, and for mechanically producing new components from specific
instructions. As a complement to evolutionary computation, and indeed in recompense
for what biology has bequeathed to computation in the form of nature-inspired models,
we ought to acknowledge that such an exchange between disciplines (the theory of com-
putation and evolutionary biology) is possible, not only because of the existence of strong
similarities, but also because computation may explain fundamental aspects of life, as in
itself it may explain important aspects of biological processes. We have reason to hope,
therefore, that this approach will prove fruitful for investigating issues in biology using the
theory of computation and algorithmic information theory.

We have yet to see how these key concepts may also shape new evolutionary com-
putation algorithms, refining techniques and perhaps improving their understanding and
application.
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