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Abstract

Changes in the molecular topology of glycan/lectin interac-
tion may explain observed reaction punctuation driven by
experimental gradients in reactant concentration. Adoption
of a ‘biological renormalization’ perspective from statisti-
cal physics for the analysis of such phase transitions sug-
gests, in marked contrast to conventional physical systems,
a broad spectrum of possible universality class behaviors.
This spectrum may, in typical perverse biological manner,
be of central scientific interest. Generalization, via formal-
ism abducted from coevolutionary theory, suggests that gly-
can/lectin molecular switches instantiate logic gates that may
be as sophisticated as those characterizing basic neural pro-
cess, if on a different scale.

Keywords: free energy, information theory, renormaliza-
tion, symmetry breaking

1 Introduction

Figure 1, from Gupta et al. (2010), illustrates the exponential
increase in the amount of potential information content from
the genome through the proteome up to the glycome. The
12 basic mammalian monosaccharides form branches with
sidechains that may represent 7 to 10 thousand possible ‘gly-
come determinants’ (Cummings, 2009; Wallace, 2012c), form-
ing larger structures that interact with lectin proteins to ac-
tually transmit biological information.

In vitro, punctuated transitions in glycan/lectin interaction
topology cause large-scale phase change in reactions driven by
experimental gradients in reactant concentration (Dam and
Brewer, 2010). Although a comprehensive theory probably
requires a treatment of reaction funnel dynamics analogous
to recent studies of protein folding (e.g., Wallace, 2011), it is
possible to adapt a phenomenological ‘renormalization’ strat-
egy from statistical physics to such phase transitions. The
essence of the argument is that information is a form of free
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Figure 1: From Gupta et al. (2010). There is an exponen-
tial increase in potential information content from the genome
through the proteome up to the glycome. Since information
is a form of free energy, it is possible to adapt the usual renor-
malization treatment of phase changes, taking an analog to
Wilson’s (1971) approach.

energy, so that something resembling Wilson’s (1971) renor-
malization methods can be abducted to complicated biological
phase changes associated with biological information trans-
mission.

The transmission of information, however, inevitably in-
volves a source that actually generates that information,
something that ‘speaks’ a ‘language’, and such processes are
constrained by the necessary conditions of the asymptotic
limit theorems of information theory: the Shannon Coding
Theorem, the Shannon-McMillan Source Coding Theorem,
and the Rate Distortion Theorem, and variants like the in-
formation theory chain rule (Ash 1990; Cover and Thomas
2006; Khinchin 1957).

2 The critical exponent

For this work, the essential matter is the homology between
information source uncertainty – the richness of the language
being spoken – and the free energy density of a physical sys-
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tem. This allows adaptation of Wilson’s (1971) renormaliza-
tion symmetry methods for phase transitions.

Given an information source that produces as sequence of
signals having structure – loosely, grammar and syntax – the
Shannon-McMillan Theorem says that such utterances can be
broken into two disjoint pieces, a very large set of gibberish
that has vanishingly low probability, and a very small set in
accordance with the rules of grammar and syntax character-
izing the information source for which the following condition
holds:

Let N(n) be the number of grammatical and syntactical
statements of length n produced by an information source X.
Then the limit

H[X] = lim
n→∞

log[N(n)]

n

(1)

exists and is independent of the statement itself. That is, H
is a universal constant for the information source. If the limit
converges for some finite n0, than that number is called the
order of the information source.

A second limiting relation is that the statements produced
by any information source must be transmitted along a chan-
nel having a channel capacity C ≥ 0 such that

H[X] ≤ C.

(2)

Details can be found in any number of texts (Ash, 1990;
Cover and Thomas, 2006; Khinchin, 1957).

The free energy density of a physical system having volume
V and partition function Z(β, V ) derived from the system’s
Hamiltonian – the energy function – at temperature β is (e.g.,
Landau and Lifshitz 2007)

F [β] = lim
V→∞

−β log[Z(β, V )]

V
≡

lim
V→∞

log[Ẑ(β, V )]

V
,

(3)

with Ẑ = Z−β . The latter expression is formally similar to
equation (1), a circumstance having deep implications: Feyn-
man (2000) describes in great detail how information and free
energy have an inherent duality. Feynman, in fact, defines in-
formation precisely as the free energy needed to erase a mes-
sage. The argument is surprisingly direct, and, for very simple
systems, it is easy to design a small (idealized) machine that
turns the information within a message directly into usable
work – free energy. Information is a form of free energy and
the construction and transmission of information within liv-
ing things consumes metabolic free energy, with inevitable –
and massive – losses via the second law of thermodynamics.

Here we will use Wilson’s renormalization strategy to char-
acterize the behavior of channel capacity C near critical values
of driving parameters. The basic argument is well known, and
the Wikipedia entry on critical exponents is as good a source
as any:

Above and below the critical value of some driving param-
eter, say Tc, the system of interest has two distinct phases,
characterized by an order parameter that vanishes above Tc.
Here we will take an empirical index of channel capacity as
the order parameter. Let

τ ≡ T − Tc
Tc

.

We are interested in the first term of a series expansion of C
in tau,

C(τ) = Aτα(1 + bτα1 ...),

so that, in first order,

C(τ) ∝ τα.

A simple calculation gives

α = lim
τ→0

log |C(τ)|
log |τ |

.

(4)

The hard trick is to calculate α from first principles. For
(relatively) simple physical phenomena such exponents are
universal across many systems, a function of simple underly-
ing renormalization symmetry relations (Wilson, 1971; Bin-
ney et al., 1992). A detailed calculation in the Supplemental
Material, however, shows that for biological structures, a vast
array of ‘biological’ renormalizations are possible, and univer-
sality classes – collections of phenomena having the same α –
may be limited to sets of very similar reacting species.
H and C, as free energy measures, can also be viewed as

Morse Functions, in the sense of Pettini (2007), and thus
subject to the topological hypothesis: Singularities in these
measures – critical points – are to be associated with a fun-
damental change in underlying topology of the manifold on
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Figure 2: From Dam et al. (2007). (A) At first, lectin diffuses
along (and off) the glycan kelp frond, until, (B), a sufficient
number of sites are occupied. Then (C), the lectin-coated gly-
can fronds begin to cross bind and the reaction is saturated.
(D) shows an end-on view of the complex in (C).

which these measures are defined. This is a generalization of
Landau’s observation (Landau and Lifshitz, 2007) that sec-
ond order phase transitions in simple physical systems, those
without latent energy, are usually characterized by changes
in underlying symmetry, with the higher energy states being
more symmetric. We now impose this perspective, albeit, as
will become evident, in an inverse manner.

3 Two examples

3.1 Area concentration

The carbohydrate α-GalNAc interacts with the lectin biotiny-
lated soybean agglutinin (SBA) in solution to form a se-
quence of increasingly complicated interlinked conformations
at appropriate concentrations of reacting species. Dam et
al. (2007) describe this ‘bind-and-slide’ process in terms of a
change in topology, according to figure 2.

Initially, the lectin diffuses along (and off) the glycan kelp
frond, until a number of sites are occupied. Then the lectin-
coated glycan fronds begin to cross bind, until the reaction
saturates. Figure 2D shows an end-on view of the complex
shown longitudinally in 2C.

Dam and Brewer (2008) generalize this as follows:

The bind and slide model for lectins binding to
multivalent glycosides, globular, and linear glyco-

proteins is distinct from the classical ‘lock and key’
model for ligand-receptor interactions. The bind and
slide (internal diffusion) model allows a small frac-
tion of bound lectin molecules to dynamically move
from carbohydrate to carbohydrate epitope in glob-
ular and linear glycoproteins. This, in turn, can fa-
cilitate lectin-mediated cross-linking of such glyco-
proteins on the surface of cells... Such cross-linked
receptors, in turn, trigger signal transduction mech-
anisms... Indeed, a large number of transmembrane
receptors are found clustered... Thus the affinity and
hence specificity of ligand-receptor interactions may
be regulated by epitope and receptor clustering in
many biological systems.

Under typical physiological circumstances, glycans form a
literal kelp bed bound to cellular surfaces, and the essential
parameter becomes area density of the fronds. The excellent
review article of Dam and Brewer (2010) describes the work
of Oyelaran et al. (2009), who conducted a series of heroic
density-dependent fluorescence experiments, and it becomes
possible to take the observed intensity of that fluorescence as
an index of channel capacity, since no information transmis-
sion → no reaction → no fluorescence.

Using microarray methods, Oyelaran et al. embedded α-
GalNAc onto bovine serum albumin (BSA), with different
numbers of carbohydrate molecules (CM) per BSA site, typ-
ically ranging from 4 to 40. At density of 4, the CM were
separated by about 85 Angstroms, and at 20, by about 40
Angstroms.

Typically, fluorescence intensity, K, under such conditions,
follows a relation

K =
Km

Kd/L+ 1

(5)

where Km the maximum intensity, Kd the apparent dissocia-
tion constant for interaction between protein and immobilized
glycoconjugate, and L the concentration of lectin. See figure
3.

The essential matter is the way in which Kd varies with
glycan area density. For α-GalNAc embedded on BSA, again
reacting with biotinylated soybean agglutinin, SBA, Kd fol-
lowed the relation of figure 4.

Kd in equation (5) almost disappears with increasing num-
ber of glycan molecules per BSA site: The value falls from
near 4200 at n=4 to 194 at n=9, so that Kd is, from a
physics perspective, an (inverse) ‘order parameter’ that un-
dergoes a change representing a topological transformation,
here a cross-linking phase transition.
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Figure 3: Fluorescence intensity vs. lectin concentration for
different values of Kd. Large Kd implies little fluorescence,
and hence, by our arguments, small channel capacity, C.

Figure 4: Kd vs. no. glycan molecules per BSA site. The
value drops precipitously from about 4200 at n=4 to 194 at
n=9, so that Kd is an (inverse) order parameter that un-
dergoes a change representing a topological transformation,
here a cross-linking phase transition. A finer grain analysis
would permit estimation of α in the relation ‘Order Parame-
ter’ ∝ [(ρ−ρC)/ρC ]α near the critical density ρC . Calculating
an α from first principles would be a considerable scientific
achievement.

Figure 5: From Orr et al. (1979). Critical concentration effect
in aggregation of lecithin liposomes by fixed concentration of
ConA. S, the inverse pseudo rate constant, is the (inverse)
order parameter that disappears at higher concentrations of
lectin.

3.2 Volume concentration

As described by by Dam and Brewer (2010), classic work
by Orr et al. (1979) examined aggregation of lecithin lipo-
somes having a synthetic mannose glycolipid by concanavalin
A (ConA) at 100gm/ml. The mol concentration of the gly-
colipid in the liposomes ranged from 5 to 14 percent, while
the characteristic reaction duration – again, a kind of inverse
order parameter – varied from 0.2 to 20.0 sec., as in figure 5.

Orr et al. (1979) state

It is interesting to note that the lectin-induced
aggregation exhibits a threshold or critical concen-
tration effect. At incorporation levels of 5 mol %
and less, the rate of the absorbance increase is slow,
whereas at 7.5 mol % a dramatic increase in the rate
is observed.

In both experiments, finer grain observations would al-
low determination of α in the relation ‘Order Parameter’
∝ [(ρ− ρC)/ρC ]α near the critical area or volume density ρC .
Calculating an α from first principles for different reacting
chemical species would be a scientific tour de force.

4 Information catalysis

Information per se does not carry very much free energy, but
the mechanisms that instantiate signals do, and this fact, in
concert with the asymptotic limit theorems of information
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theory, seems to permit an important evolutionary exaptation
of entropic loss. Here, the essential parameter of interest may
be density measures, but the argument seems more general.

Suppose there are two interacting information sourcesX,Y ,
emitting sequences of signals x = [x1, x2, ...] and y =
[y1, y2, ...] at times i = 1, 2, .... A joint sequence of signals
xy ≡[(x1, y1), (x2, y2), ...] can then be defined, and, where the
individual sequences x and y are correlated, it is possible to
define a joint source information source uncertainty HX,Y for
which a version of the information theory chain rule applies
(Cover and Thomas, 2006):

HX,Y < HX +HY .

(6)

Typically, one might expect the average production of in-
formation, Ĥ, from a process having an available metabolic
free energy rate M , to follow a relation of the form

Ĥ =

∫
H exp[−H/κM ]dH∫
exp[−H/κM ]dH

≈ κM,

(7)

where κ is quite small, so the integral converges.

Then, from the chain rule,

ĤX,Y < ĤX + ĤY ,

MX,Y < MX +MY .

(8)

If X is the system of interest, then, at the expense of main-
taining the regulatory information source Y , it is possible to
canalize the reaction paths of X: MX,Y becomes a valley in
the larger energy structure created by imposing Y and X to-
gether. Thus high entropic loss – small κ – becomes a tool
for regulating biochemical reactions.

5 A ‘coevolutionary’ model

Assume a larger set of interacting information sources, Hj ,
each associated with a free energy intensity Mj . We first

write each information source Ĥj ∝ Mj as a function of a
vector of ‘density-like’ parameters K = [K1,K2, ...].

For a simple physical system, one would expect a nonequi-
librium thermodynamics driven by gradients in an entropy-
like factor constructed from the Ĥj via analogs to empirical
Onsager relations.

Define a set of ‘information entropies’

Sj ≡ Ĥj −
∑
q

Kq∂Ĥj/∂Kq ∝

Mj −
∑
q

Kq∂Mj/∂Kq.

(9)

The simplest Onsager-like approach imposes dynamics
driven by the gradients of the entropies as

dKi/dt =
∑
j

Li,j∂Sj/∂Kj .

(10)

However, following Champagnat et al. (2006), it is pos-
sible to take quite a different perspective, a ‘coevolutionary’
stochastic generalization in which the ‘parameter vector’ is
the set of ‘information’ variates itself, Q = [Ĥ1, Ĥ2, ...] ∝
[M1,M2, ...] rather than a set of external driving terms. Q
would, in turn, be constrained by a vector of channel capaci-
ties. Then, as in Champagnat et al., the dynamical relations
are given by phenomenological stochastic differential equa-
tions of the form

dQit = Li(t,Q)dt+
∑
j

σi,j(t,Q)dBj ,

(11)

or an analog using channel capacities. L and σ are appropri-
ate functions and the dB represent stochastic ‘noise’ having
characteristic quadratic variation (e.g., Protter, 1990).
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These stochastic differential equations produce a coevolu-
tionary – mutually driving – system so that setting them to
to zero generates a collection of quasi-stable equilibria where
transitions between them will be driven by ‘large deviations’
associated with yet other information sources: larger-scale,
embedding, regulatory systems. The calculation is classic,
and such large deviations can usually be represented by some
entropy-like measure (e.g., Dembo and Zeitouni, 1998) that,
in a biological context, is an embedding information source:

For figures 4 and 5, there are two such quasi-equilibria, de-
scribed by the two phases indexed by collapse of the inverse
order parameters, with experimenter-driven information – the
systematic ‘large deviation’ of experimental changes in den-
sity measures – triggering the transition between them. These
results might be viewed as examples of biological logic gates,
significantly larger, of course, than the more familiar neural
synapse.

6 Discussion and conclusions

For even a ‘simple’ renormalization model of glycan/lectin re-
action phase transitions, the ‘universality’ exponent α, follow-
ing the arguments of the Supplemental Material, is unlikely
to be universal, and indeed should be a precisely distinguish-
ing characteristic of both the reacting species and the modes
of their reactions. Thus the ‘failure’ of universality might
well be a tool that allows insight into the energy landscapes
of MX,Y ,MX and MY , the resulting canalization via infor-
mation catalysis, and its ‘coevolutionary’ correlates. Indeed,
biology is not physics, and, typically, evolution may exapt, in
the sense of Gould (1992), mechanisms that can distinguish
reacting chemical species and/or their modes of reaction.

Underlying the general approach is a biological version of
the spontaneous symmetry change perspective so popular in
current physical theory. The symmetries, however, may not
be as ‘pure’ as those most familiar to physicists and, as
Wallace (2012b) argues, might involve such complexities as
groupoid tilings and their wreath products. Nonetheless, the
line of argument implied by figures 2 and 4 is quite compelling,
and the techniques of the Supplemental Materials may aid in
the calculation of spectra of ‘universality’ constants for such
experiments from first principles.

What becomes obvious, almost in passing, is the utterly
central point that the in vitro glycan/lectin phase transitions
characterized by figures 4 and 5 imply the operation of com-
plicated biological logic gates in vivo that must be nearly as
sophisticated as the more familiar neural synaptic switches, if
on different scales. Cascades of even ‘simple’ logic gates can
carry out very complex computational processes, and these
arguments add weight to an emerging perspective that sees
the living state as characterized by cognitive phenomena at
virtually every scale and level of organization.
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9 Supplemental material – ‘biologi-
cal’ renormalization

Following the classic phase transition arguments of Wilson
(1971), the quantity of interest, F , and the correlation length
– the degree of coherence along the embedding structure of
interest – scale under renormalization clustering in chunks
of size R, here taken as an appropriate topological distance
measure, as

F [QR, JR]/f(R) = F [J,Q]

χ[QR, JR]R = χ(Q, J),

(12)

with f(1) = 1, Q1 = Q, J1 = J . Q is to be seen as an in-
verse temperature analog, and in the limit, again following
the patterning of Wilson (1971), we will allow the ‘external
field’ J → 0. Other approaches are possible.

Differentiating these two equations with respect to R, so
that the right hand sides are zero, and solving for dQR/dR
and dJR/dR gives, after some consolidation, expressions of
the form

dQR/dR = u1d log(f)/dR+ u2/R

dJR/dR = v1JRd log(f)/dR+
v2
R
JR.

(13)

The ui, vi, i = 1, 2 are functions of QR, JR, but not explic-
itly of R itself.

We expand these equations about the critical value QR =
QC and about JR = 0, obtaining

dQR/dR = (QR −QC)yd log(f)/dR+ (QR −QC)z/R

dJR/dR = wJRd log(f)/dR+ xJR/R.

(14)

The terms y = du1/dQR|QR=QC
, z =

du2/dQR|QR=QC
, w = v1(QC , 0), x = v2(QC , 0) are con-

stants.
Solving the first of these equations gives

QR = QC + (Q−QC)Rzf(R)y,

(15)

again remembering that Q1 = Q, J1 = J, f(1) = 1.
Wilson’s essential trick is to iterate on this relation, which

is supposed to converge rapidly near the critical point (Binney
et al., 1992), assuming that for QR near QC , we have

QC/2 ≈ QC + (Q−QC)Rzf(R)y.

(16)

We iterate in two steps, first solving this for f(R) in terms
of known values, and then solving for R, finding a value RC
that we then substitute into the first of equations (12) to
obtain an expression for H[Q, 0] in terms of known functions
and parameter values.

The first step gives the general result

f(RC) ≈ [QC/(QC −Q)]1/y

21/yR
z/y
C

.

(17)

Solving this forRC and substituting into the first expression
of equation (12) gives, as a first iteration of a far more general
procedure (Shirkov and Kovalev, 2001), the result
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F [Q, 0] ≈ F [QC/2, 0]

f(RC)
=

F0

f(RC)

χ(Q, 0) ≈ χ(QC/2, 0)RC = χ0RC ,

(18)

which are the essential relationships.
Note that a power law of the form f(R) = Rm,m = 3,

which is the direct physical analog, may not be biologically
reasonable, since it says that F can grow very rapidly as a
function of increased substrait size. Such rapid growth is not
necessarily observed.

Taking the biologically realistic example of non-integral
‘fractal’ exponential growth,

f(R) = Rδ,

(19)

where δ > 0 is a real number which may be quite small,
equation (17) can be solved for RC , obtaining

RC =
[QC/(QC −Q)][1/(δy+z)]

21/(δy+z)

(20)

for Q near QC . Note that, for a given value of y, one might
characterize the relation α ≡ δy + z = constant as a ‘tunable
universality class relation’ in the sense of Albert and Barabasi
(2002).

Substituting this value for RC back into equation (17) gives
a complex expression for F , having three parameters: δ, y, z.

A more biologically interesting choice for f(R) is a loga-
rithmic curve that ‘tops out’, for example

f(R) = m log(R) + 1.

(21)

Again f(1) = 1.

Using Mathematica 4.2 or above to solve equation (17) for
RC gives

RC = [
S

LambertW [S exp(z/my)]
]y/z,

(22)

where

S ≡ (z/my)2−1/y[QC/(QC −Q)]1/y.

The transcendental function LambertW(x) is defined by the
relation

LambertW (x) exp(LambertW (x)) = x.

It arises in the theory of random networks and in renormal-
ization strategies for quantum field theories.

An asymptotic relation for f(R) would be of particular bi-
ological interest, implying that F increases to a limiting value
with population growth. Such a pattern is broadly consistent
with, for example, calculations of the degree of allelic het-
erozygosity as a function of population size under a balance
between genetic drift and neutral mutation (Hartl and Clark,
1997; Ridley, 1996). Taking

f(R) = exp[m(R− 1)/R]

(23)

gives a system which begins at 1 when R = 1, and ap-
proaches the asymptotic limit exp(m) as R → ∞. Mathe-
matica 4.2 finds

RC =
my/z

LambertW [A]
,

(24)

where

A ≡ (my/z) exp(my/z)[21/y[QC/(QC −Q)]−1/y]y/z.

These developments indicate the possibility of taking the
theory significantly beyond arguments by abduction from sim-
ple physical models, although the notorious difficulty of im-
plementing information theory existence arguments will un-
doubtedly persist.
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9.1 Universality class

Physical systems undergoing phase transition usually have rel-
atively pure renormalization properties, with quite different
systems clumped into the same ‘universality class,’ having
fixed exponents at transition (Binney et al., 1986). Biological
phenomena may be far more complicated:

If the system of interest is a mix of subgroups with different
values of some significant renormalization parameter m in the
expression for f(R,m), according to a distribution ρ(m), then,
at least to first order,

F [QR, JR] =< f(R,m) > F [Q, J ]

≡ F [Q, J ]

∫
f(R,m)ρ(m)dm.

(25)

If f(R) = 1 +m log(R) then, given any distribution for m,

< f(R) >= 1+ < m > log(R)

(26)

where < m > is simply the mean of m over that distribu-
tion.

Other forms of f(R) having more complicated dependencies
on the distributed parameter or parameters, like the power
law Rδ, do not produce such a simple result. Taking ρ(δ) as
a normal distribution, for example, gives

< Rδ >= R<δ> exp[(1/2)(log(Rσ))2],

(27)

where σ2 is the distribution variance. The renormalization
properties of this function can be determined from equation
(12), and the calculation is left as an exercise, best done in
Mathematica 4.2 or above.

Thus the phase transition properties of mixed systems will
not in general be simply related to those of a single subcom-
ponent, a matter of possible empirical importance: If sets
of relevant parameters defining renormalization universality
classes are indeed distributed, experiments observing pure
phase changes may be very difficult. Tuning among differ-
ent possible renormalization strategies in response to external

signals would result in even greater ambiguity in recognizing
and classifying biological phase transitions.

Important aspects of mechanism may be reflected in the
combination of renormalization properties and the details of
their distribution across subsystems.

In sum, biological systems are likely to have very rich pat-
terns of phase transition that may not display the simplis-
tic, indeed, literally elemental, purity familiar to physicists.
Overall mechanisms will, however, still remain significantly
constrained by the theory, in the general sense of probability
limit theorems.

The more biologically realistic renormalization strategies
given above produce sets of several parameters defining the
universality class.

Suppose, now, that the renormalization properties of a sys-
tem at some ‘time’ k are characterized by a set of (possibly
coarse-grained) parameters Ak ≡ αk1 , ..., α

k
m. Fixed parame-

ter values define a particular universality class for the renor-
malization. We suppose that, over a sequence of ‘times,’ the
universality class properties can be characterized by a path
xn = A0, A1, ..., An−1 having significant serial correlations
which, in fact, permit definition of an adiabatically piece-
wise stationary ergodic information source associated with the
paths xn. We call that source X.

Suppose also that the set of impinging signals is also highly
structured and forms another information source Y that inter-
acts not only with the system of interest globally, but specifi-
cally with its universality class properties as characterized by
X. Y is necessarily associated with a set of paths yn.

Pair the two sets of paths into a joint path, zn ≡ (xn, yy)
and invoke an inverse coupling parameter, Q, between the
information sources and their paths. This leads, by the ar-
guments above, to phase transition punctuation of I[Q], the
mutual information between X and Y, under either the Joint
Asymptotic Equipartition Theorem or under limitation by a
distortion measure, through the Rate Distortion Theorem.
The essential point is that I[Q] is a splitting criterion under
these theorems, and thus partakes of the homology with free
energy density.

Activation of universality class tuning then becomes itself
a punctuated event in response to increasing linkage between
the biological structure of interest and an external structured
signal or some particular system of internal events.

This iterated argument exactly parallels the extension of
the General Linear Model to the Hierarchical Linear Model
in regression theory (Byrk and Raudenbusch, 2001).
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