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GWI – Gulf War Illness  
GWV – Gulf War Veterans  
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NO/NOS – Nitric Oxide / Nitric Oxide Synthase 
OS – Oxidative Stress 
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OSMD – Oxidative Stress and Mitochondrial 
Dysfunction  
Q10 – Coenzyme Q10 

RNS – Reactive Nitrogen Species 
ROS – Reactive Oxygen Species 
SBP – Systolic Blood Pressure
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Abstract 

Background: Overlapping chronic multisymptom illnesses (CMI) include Chronic Fatigue 

Syndrome (CFS), fibromyalgia, irritable bowel syndrome, multiple chemical sensitivity, and 

Gulf War illness (GWI), and subsets of autism spectrum disorder (ASD). GWI entails a more 

circumscribed set of experiences that may provide insights of relevance to overlapping 

conditions. 

Objectives: To consolidate evidence regarding a role for oxidative stress and mitochondrial 

dysfunction (OSMD), as primary mediators in CMI, using GWI as a departure point. 

Methods: Exposure relations, character, timecourse and multiplicity of symptoms, and objective 

correlates of GWI are compared to expectation for OSMD. Objective correlates of OSMD in 

GWI and overlapping conditions are examined.  

Discussion: OSMD is an expected consequence of known GWI exposures; is compatible with 

symptom characteristics observed; and accords with objective markers and health conditions 

linked to GWI, extending to autoimmune disease and infection. Emergent triangulating evidence 

directly supports OSMD in multisymptom “overlap” CMI conditions, with similarities to, and 

diagnosed at elevated rates in, GWI, suggesting a common role in each.  

Conclusions: GWI is compatible with a paradigm by which uncompensated exposure to 

oxidative/nitrative stressors accompanies and triggers mitochondrial dysfunction, cell energy 

compromise, and multiple downstream effects such as vulnerability to autoantibodies. This 

promotes a profile of protean symptoms with variable latency emphasizing but not confined to 

energy-demanding post-mitotic tissues, according with (and accounting for) known properties of 

multisystem overlap conditions. This advances understanding of GWI; health conditions 

attending GWI at elevated rates; and overlap conditions like CFS and ASD, providing prospects 
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for vulnerability assessment, mitigation of progression, treatment, and future prevention – with 

implications germane to additive and excessive environmental oxidative stressor exposures in the 

civilian setting. 
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Introduction 

Chronic multisymptom illnesses (CMI), including chronic fatigue syndrome, 

fibromyalgia, irritable bowel syndrome, multiple chemical sensitivity and Gulf War illness 

(GWI), show strong overlap1-4. Autism spectrum disorder (ASD), despite little cooccurrence 

with GWI (due to military self-selection and selection), encompasses multisymptom subsets 

bearing muscle, gastrointestinal, sleep and other symptoms germane to CMI. These are 

suggested to reflect a condition arising from similar mechanisms in a different developmental 

milieu. GWI entails a circumscribed set of experiences that may provide insights of relevance to 

these overlapping conditions. 

One fourth to 1/3 of US and UK personnel deployed to the Persian Gulf in the 1990-1 

conflict exhibit GWI, established by excluding the fraction of nondeployed controls meeting the 

symptom portion of eligibility5-9.  The foundation for GWI has been felt to elude physiological 

explanation10, 11. GWI differs in exposure relations and symptom profiles from other post-war 

syndromes (e.g. post-traumatic stress disorder). This conflict had many exposures that were new 

(anthrax vaccine, depleted uranium, permethrin impregnated uniforms), unique or comparatively 

unique (pyridostigmine bromide nerve agent pretreatment pills, oil fires, flea collar use by some, 

botulinum toxoid vaccine, nerve agent exposure resulting from munitions depot demolitions), 

and excessive (organophosphate and carbamate pesticide use).  

Oxidative stress (OS) and mitochondrial dysfunction (MD) (together OSMD) are closely 

intertwined, and each promotes the other. We evaluate characteristics of OSMD and GWI, to 

show that OSMD may underlie some, much, or most the excess of multi-symptom illness (and 

neurodegenerative disease) reported in Gulf War veterans (GWV)12, 13 – and civilians with CMI.  
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Method 

 Exposure relations, symptom characteristics, objective marker correlates, and medical 

conditions in GWI are examined in relation to OSMD. Evidence from OSMD in overlap 

conditions are brought to bear in understanding GWI, and vice versa. 

 

Results/Review 

Gulf War Illness 

26-32% of GWV demonstrate chronic multi-symptom health problems and thus have 

GWI apparently associated with participation5, 7. (That is the fraction bearing such problems, 

after subtracting what was “expected” based on nondeployed controls.) The excess burden lies 

not in more persons with single or dual symptoms, or multiple mild symptoms; but in the added 

fraction bearing 3 or more symptoms of moderate or greater severity5. The 1990-1 ground war 

lasted but four days; relatively few of the ~700,000 deployed US veterans experienced combat or 

direct combat stressors. Though some affected veterans have psychological symptoms, most do 

not meet criteria for psychiatric illness, and stress-related exposures lose significance in 

multivariable models that adjust for chemical/environmental exposures (but not the converse)8, 9.  

 

Dominant Symptoms; Symptom Multiplicity and Heterogeneity 

GWI prominently features fatigue, muscle pain and weakness, and central nervous 

system symptoms (cognition, mood and personality). The CDC case definition requires chronic 

symptoms in two of three domains of fatigue, cognitive-mood, and musculoskeletal7. Kansas 

criteria require symptoms in three of six domains – fatigue/sleep, pain (muscle-joint), and 

cognitive-mood-neurological, gastrointestinal, respiratory and skin5; these also must be multiple 
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within the category and/or at least moderately severe, with onset since 19905. Kansas criteria are 

more specific (fewer non-GWV meet symptom criteria). 

Archetypal clinical symptoms in MD also comprise fatigue, muscle and brain symptoms 

“Encephalomyopathy”14-20 is the classic manifestation of mitochondrial respiratory chain 

dysfunction. Over 100 distinct mtDNA mutations have been linked to brain and muscle 

symptoms21. Brain and muscle are postmitotic, with high energy demands, providing particular 

vulnerability21-24 70.   

Symptom multiplicity and heterogeneity further typify GWI. Many additional symptoms, 

though less frequent, also occur at markedly elevated rates5, 10, 25, 26. Other CMI also commonly 

bear multiple symptoms, with high overlap2, 4. 

Such symptom multiplicity21, 27 and heterogeneity28-37 38 also characterize MD, so much 

that “A mitochondrial disease should be considered in the event of dysfunction of more than 2 

organ systems or processes with high energy requirements”27. The remaining Kansas GWI 

criteria -- gastrointestinal dysfunction16, 36, 37, pain29, 31, 39, skin40, 41, sleep42-45, and breathing 

symptoms are common in MD43, 46, with many further symptoms elevated in both settings.  

Symptom heterogeity in MD rests on a) random somatic segregation of mitochondrial (mt) DNA 

mutations47, 48 and mitochondrial heteroplasmy49-51: different organs bear different prior mtDNA 

mutation loads leading to different vulnerability; b) variable progression of mitochondrial 

defects: different mutations may arise in different tissues, with some more severe and/or 

conducive to OS that fosters more mtDNA mutations19, 52; and c) clinical threshold effects21, 53: 

symptoms arise when mtDNA mutations or resulting cell death surpass a threshold. The fraction 

of mutated mtDNA in an organ, the mutation severity, the energetic demands of the organ and 

the cell loss determine clinical consequences21, 54. Symptom variability is an inherent feature of 
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MD (Even persons with familial MD may vary vastly in which symptoms are expressed - and in 

their timecourse of expression55).– and an empiric feature of GWI and other CMI10. (See Table 

1a&b, Supplement Table 2.)  

 

Symptom latency 

It is often presumed that symptoms, to relate to an exposure, must arise during an 

exposure, and that the exposure must show acute toxicity. (Cancer and neurodegenerative 

disease, familiar disease conditions rather than symptoms, represent recognized exceptions.)  

GWI does not behave in this fashion. 

GWI is characterized by variable latency to symptoms following Gulf exposures – with 

many new symptoms arising well after participation, and 40% of new symptoms reportedly 

arising more than a year after Gulf service11. Symptoms in MD are also characterized by variable 

latency to onset. MD produces (commonly) OS. OS trigger further mtDNA mutations and more 

MD. The severity of new mutations, and degree of heteroplasmy, determine the severity of OS 

production – and speed of progression. As mtDNA mutations and OS accrue, cells lose function 

or die, from energy depletion or OS-precipitated necrosis or apoptosis56 – achieving phenotypic 

thresholds21, 53. (See below for autoimmune predisposition.) Even in a kindred with heritable 

mtDNA defects that involved neurological problems, “the age of onset of major neurological 

disturbance varied from 3-70 years”55. The principles are similar whether initial mtDNA damage 

is heritable or acquired; however acquired mtDNA mutations may be typified by multiple 

different mutations each in a low fraction19, 49, which may particularly dispose to classical or 

“nonspecific” symptoms of MD, compatible with CMI. OS may predispose to autoantibodies and 

vulnerability to infection (below). Delayed symptoms may further arise from OS-promoted 
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autoantibodies and colonization/infection with pathogens (below); and as new OS exposures 

appear, to which existing OSMD provide heightened vulnerability (due to adverse 

OS:antioxidant defense balance). OS may promote impaired gene expression related to 

detoxification, in part via alterations in DNA methylation.Add excitotoxicity? 

 

Exposure Associations 

A range of “unrelated” exposures are linked to GWI. Acetylcholinesterase inhibitor 

(AChEi) exposures (organophosphates, as nerve agents and pesticides; and carbamates, as 

pesticides and pyridostigmine bromide nerve agent pretreatment pills) show especially strong 

and consistent links to health problems in GWV57. Moreover, AChEis show a dose-response 

relationship to GWI (number of pyridostigmine bromide pills57); and proximity to the 

Khamisiyah munitions depot demolition (sarin nerve agent plume) is linked to extent of brain 

atrophy and neuropsychological dysfunction in GWV58, 59. Additional findings, extending to 

genetic evidence (such as paraoxonase variants60. These support a causal association of AChEi to 

GWI57, so mechanisms of toxicity by AChEis are of special interest. (GWV/GWI is also linked 

to reduced paraoxonase activity levels60, 61; however low activity may be effect and/or cause, as 

paraoxonase is HDL-associated, and OS promotes reductions in HDL.) CMI including chronic 

fatiguing illness and autism have also been linked to organophosphates62-64, gene variants in 

paraoxonase62, 65; and other elements of organophosphate detoxification66, as well as low 

paraoxonase activity67. 

While AChEi show especially strong and consistent associations to GWI (and are also 

linked to other CMI), anthrax vaccine6, 68-70, multiple vaccinations6, 68, 71-73, and adverse reactions 

to vaccinations6, 68, 69 show generally consistent significant associations to GWI. Vaccinations are 
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also linked to other CMI64, 74, 75. Among Gulf-era (Aug 1990-Jul 1991) non-Gulf deployed 

personnel, rates of “GWI” for those receiving military vaccines in that period OR 3.8 (95%CI 

1.5-9.5) were intermediate between rates in non-deployed non-vaccinated (OR 1.0, the standard), 

and Gulf deployed (OR 10.6, 95% CI 4.9-23.1)76 suggesting that vaccines bore a relation to 

illness irrespective of the Gulf setting. Depleted uranium (bearing potential heavy metal and 

radioactive toxicity), paints, solvents, and fumes have also shown connections to illness in some 

epidemiological studies5, 6, 26, 69, 71. Additionally, pesticide exposures of non-AChEi classes also 

occurred.  

The exposures linked to GWI appear “unrelated” in chemical structure and classical 

mechanism of action. However they share in common induction of toxicity via OSMD. Thus, 

AChEi toxicity and lethality are normally viewed in cholinergic terms. However in fact they are 

mediated by OSMD (contributing to apoptosis)77, 78: the salience of OSMD in their toxicity is 

underscored by the relation of their lethality to impaired glutathione mechanisms; and protection 

from OP lethality via preexposure or immediate postexposure to relevant antioxidants in 

experimental animal studies79-81. Vaccines, in contrast, are not known to inhibit AChE. However 

these, and other exposures linked to GWI, each exerts toxicity via OSMD (Table 1a). Further, 

the number of such exposures (crossing different classes) also predicted GWI11 – and predicts 

greater OSMD82-85. These considerations begin to provide a framework, coupled with individual 

variabilities, for genesis of some cases of CMI outside the Gulf War setting. 

 

Proposed Mechanism 

OS via reactive oxygen species (ROS) and also reactive nitrogen species, (RNS), (for 

simplicity of exposition we designate the joint processes as “OS”) damage proteins, lipids, RNA 
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and DNA – particularly in mitochondria86, 87, impairing mitochondrial energy production. 

Mitochondria are a leading target of ROS88, 89 due to proximity to ROS production (much of 

which occurs in mitochondria88, 90, 91), such that mtDNA mutate at 10-1000x the rate of nuclear 

DNA92, 93. Since all mtDNA genes are germane to oxidative phosphorylation94-96, mtDNA 

damage commonly hampers mitochondrial respiratory chain function, which in turn further 

impairs cell energy production and often further increases ROS release86, 87. Reduced energy and 

increased ROS each cause cell (and subcellular) dysfunction and each can induce cell death, by 

necrosis or apoptosis56, 97-100. Additionally, the further increase in ROS that is a consequence of 

mtDNA damage can induce further mtDNA injury – advancing a cycle of OSMD, cell energy 

depletion, cell dysfunction, and potentially cell loss86, 87, 101. (OS also promotes MD by inhibiting 

mitochondrial import of essential precursor proteins102.) OS, adversely affecting the balance of 

OS to antioxidant defense, can increase vulnerability to, and clinical consequences of, new 

oxidative exposures. When enough mitochondria are dysfunctional, or enough cells 

dysfunctional or dead, symptoms or organ dysfunction emerge – mitochondrial “threshold 

effects”. (OS may have further implications via effects on DNA methylation103 and 

excitotoxicity104, 105, which may be magnified in settings of low mt EN production106, 107.) It is 

reiterated that major Gulf exposures are known to produce toxicity via OSMD producing 

expectation of cell dysfunction and cell death. (Note that organophosphates further produce 

mitochondrial and energetic compromise through toxicity to microtubules108, interfering with 

mitochondrial biogenesis109 and transport110. Mitochondria are dynamic rather than static 

organelles111, 112.) 

 

Downstream Effects - OS-induced Mechanisms 
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OS also depress vitamin D (vitD), vitD receptor expression and mitochondrial vitD 

hydroxylase activities113, 114. Low vitD and altered receptor function are linked to risk of 

autoimmune disease115-119. Autoimmune markers are elevated in GWI120, 121, as well as in other 

CMI74, 75, 122). Vaccines have been linked to illness in GWV6, 68-71 and in some cases chronic 

fatigue. (They are also a politically and scientifically contentious proposed contributor to ASD.) 

Reactogenic vaccines are a source of OS82♦

Excitotoxicity is another potential downstream mechanism. Oxidative stress enhances 

excitotoxin effects, such as DCD (delayed calcium deregulation) which “precedes and predicts” 

cell death144. So, too, does mitochondrial calcium accumulation144. Moreover, excitotoxins in 

. Additionally, vaccine adjuvants (based on aluminum 

– which is an oxidative stressor, as are components of vaccine preservatives and adjuvants) are 

expressly incorporated for the purpose of enhancing immune/antibody reactions – in principle to 

the intended administered antigen, but they may also adjuvant native protein and nonprotein 

substances. Adjuvants associated with vaccines remain resident in the body and may continue to 

exert adjuvant effects, promoting “autoimmune syndromes induced by adjuvants” (“ASIA”)122, 

125-128. Low vitamin D activity (see above) is also linked to increased infection vulnerability129-

134. These factors, coupled with EN deficits and OS-reduced NK activity120, 135, may account for 

increased autoantibodies, and increased evidence of a range of infectious agents (and antibodies 

to them), in GWI and associated exposures120 136-139 – and other CMI74, 75, 140 including ASD141-

143. These contribute further to symptom heterogeneity and latency. 

                                                 
♦  Squalene has been politically contentious in GWI. One is not impelled to suppose that squalene-adjuvanted 
variants of anthrax vaccine were used, in order for squalene antibodies to arise: squalene occurs naturally in the 
body and may also be present in small amounts in vaccines as a contaminant123. McDonald T. MOD Anthrax 
Vaccine Contains Squalene. "Tonight with Trevor McDonald", March 17, 2003, ITV1, 8PM 2003 Mar 17, 2003, 
124. Rodriguez PM. Squalene presence confirmed by FDA. Insight 
2000;http://www.insightmag.com/news/2000/10/30/TheLastWord/Squalene.Presence.Confirmed.By.Fda-
213345.shtml.. 
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turn cause oxidative stress and mitochondrial impairment, which is a major mediator of 

excitotoxin neurotoxicity145. 

Other sequelae of oxidative stress and mitochondrial dysfunction further contribute to 

cell dysfunction, cell death, and symptoms. 

 

Differential vulnerability 

Differential vulnerability – in which some but not other servicepersons with apparently 

similar exposures have developed GWI (or CMI) – emerges naturally from an OSMD 

conceptualization. Differences in genetic and nongenetic biological detoxification capability60, 66, 

106, 146-150, total OS load and pro-oxidant/antioxidant balance147, prior inherited or acquired 

mitochondrial mutation load or heteroplasmy status47, 49, 54, 95, heritable vulnerability to 

autoimmune disease, and perhaps prior loss of cells in postmitotic organs, provide for individual 

differences in vulnerability to development of symptoms following Gulf- (or civilian-) associated 

OS exposures.  

 

Objective findings 

 Routine laboratory tests are not classically abnormal in GWV (or CMI) or in OSMD. 

Table 1a&b depict those objective findings that have been reproducibly documented in GWV 

(demonstrated in at least two studies). In each case the objective finding has a demonstrated 

relation to OSMD (generally OS, which is more commonly tested). These include depressed 

paraoxonase (PON1)60, 61, 151, increased gamma glutamyl transferase (GGT)152, 153, reduced 

natural killer cell activity120, 154, blunted heart rate variability,155, 156 increased autoantibodies120, 
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121, and increased coagulation activation157, 158. Each has been reported in other CMI. And each is 

a documented consequence of OSMD.   

 

Associated Health Conditions 

In addition to symptoms, several conditions have been found to be elevated in GWV. 

These include hearing loss, hypertension, and amyotrophic lateral sclerosis (Table 1a&b). These 

conditions are also known to bear particularly strong relations to OSMD.  

These findings are compatible with a common mechanism involving OSMD, targeting 

different tissues to varying degrees. Motor neurons are one possible (though relatively rare) 

target tissue, engendering ALS when affected. However other distributions of effect result in 

multisymptom conditions (GWI-CFS-spectrum conditions), metabolic syndrome features159, and 

a range of other conditions, which accompany one another at elevated rates2-4, 160. 

 

Triangulating Evidence from CMI 

Patients with other CMI commonly have multiple “unexplained” symptoms spanning 

many domains. These conditions have substantial overlap with one another --  and with GWI2-4, 6, 

26, 160-164 (see Table 1a&b) consistent with the hypothesis put forth here that common OSMD 

mechanisms target multiple domains, with factors like heteroplasmy (among others) producing 

differential vulnerability of potential target tissues. 

Reported odds ratios for CFS range from ~4 to ~40 in GWV vs nondeployed controls 

(Table 1a&b), suggesting shared mechanisms at least for subsets of CFS. CFS patients show 

elevated OS165, an exaggerated prooxidant response to new  OS166 (which we propose may 

signify a preexisting adverse prooxidant:antioxidant balance), and activation of coagulation 
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pathways157 (the relation to oxidative stress is discussed above). Moreover, OS levels correlate 

with symptoms in CFS167. Evidence also favors a relation of CFS to MD: functional status in 

CFS correlates with carnitine levels168, 169; and a subset of CFS cases show elevated lactate with 

exertion, and delayed ATP recovery after exercise, on magnetic resonance spectroscopy170, with 

OS believed to underlie the energetic effects171. Furthermore, an “ATP profile test” of 

mitochondrial function successfully (and completely) discriminated CFS cases, defined by the 

CDC criteria which require multisymptom illness (most similar to GWI)172. Additionally, CFS 

patients have been reported to differ from controls in genetics related to mitochondrial 

function173, energetics173 and apoptosis174. Fibromyalgia and irritable bowel syndrome26 – which 

are increased (~2-5 fold) in GWV – also bear evidence of a link to OSMD39, 175-177 (Table 

1a&b). So does ASD67, 103, 148, 149, 178-182. MCS has been linked to mutations in genes for 

glutathione-S-transferase (GST), which protects from oxidative stress by conjugating 

glutathione, detoxifying “a large range of compounds generated by reactive oxygen species 

induced damage to intracellular molecules”.147 It might be conjectured that apparent instances of 

exposure-triggered MCS may entail exposure-triggered increased endogenous OS production 

(through mechanisms detailed above); and perhaps also exposure-triggered modifications in gene 

expression of key detoxifying enzymes.  

MCS, “sensitivity” to chemicals – and also medication intolerance183 – are significantly more 

common in GWV5, 6, 25, 26, 160, 184, 185 and in overlap conditions2-4, 186: Both chemical (Table 3) and drug 

adverse effects are commonly mediated through OSMD187-190. (MCS, like GWI and ASD cited elsewhere, 

shows altered genetic profiles of PON60, 191.) OSMD provides an account of why medication and vaccine 

adverse effects at the time of the Gulf were associated with increased risk of developing GWI6, 68, 192, 193: 

These adverse effects signal less favorable OSMD status at the time of exposure and or greater oxidative 
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stressor exposure, promoting OS dominance over antioxidant defences, which may both predict and help 

mediate the development of multisymptom GWI in the setting of new OS exposure. 

Other conditions have been linked to OSMD but have not (yet) been evaluated in GWI. 

An elevation in a number of these conditions in GWI represents a prediction of this theory. Some 

markers and objective conditions have been linked to GWI and OSMD, and at least one CMI; 

but have not been evaluated in other CMI. A prediction of this theory is that many, when 

examined in studies with sufficient power, will be seen in other CMI.  

 

Discussion 

An explanation focused on OSMD accounts for GWI, and other CMI. Put forth is a 

proposition by which exposures to oxidative stressors, in part via cumulative MD, in part via 

autoimmune effects in vulnerable individuals, in part via apoptosis/cell loss leading to 

coagulation activation, may increase risk of a range of chronic health problems in GWV – 

including the multisymptom spectrum termed GWI – and other CMI. Such an account accords 

with known exposure relations of otherwise unlike character; explains symptoms with otherwise 

unexplained organ tropism, with otherwise unexplained protean character and with otherwise 

unexplained variable timecourse to onset. It fits with the otherwise unexplained range of 

objective markers linked to these conditions that cross classical boundaries. It explains observed 

associations to other health conditions of varying character; and accounts for increases in 

multisymptom “overlap” conditions (and for overlap of these syndromes with one another). A 

role for OSMD might be predicted on “first principles” (known pathophysiological effects of 

Gulf Exposures; and known clinical sequelae of these effects)13. However there is now direct 

evidence of a relation of OS and MD to each of the conditions to which GWI relates, providing 

further triangulating support for a role for OS and MD extending to GWI.  
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CMI has not traditionally been thought to include autism spectrum disorder (ASD); but 

multisymptom cases of ASD may reflect manifestations of similar processes operating at a 

different developmental timepoint. ASD not uncommonly comprises multiple symptoms across a 

similar spectrum,181, 194-197 with purported links to similar exposures, and observed relations to 

OSMD106, 149, 180, 182, 198-207. (All ASD need not cohere with these principles.)  

 

Accrued evidence now more vigorously supports a paradigm by which OS and MD 

conduce to one another, disposing to GWI or other CMI. These mechanisms may operate in 

some, many or possibly most CMI. The Gulf War setting has its distinctive constellation of OS 

exposures. However the pathophysiological principles articulated, beyond their potential 

relevance to GWI, yield a new lens with which to review a range of important, interrelated health 

conditions – including but not confined to “overlap” CMI conditions often considered to be 

unexplained – and to understand their relationship to one another – in the military setting, and 

outside of it.
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Table 1. Overview 

 GWI OSMD CMI 

Dominant Symptoms Symptoms protean but 

focus on fatigue, 

cognitive-mood, 

musculoskeletal, also 

gastrointestinal, sleep, 

neurological 

Symptoms protean but 

focus for MD on fatigue, 

cognitive-mood, 

musculoskeletal, also 

gastrointestinal, sleep, 

neurological 

Symptoms protean with 

emphasis defined by 

the condition (fatigue 

for CFS; muscle for 

FM; GI for IBS; 

CNS/”cognitive” for 

ASD; chemical 

sensitivity for MCS) 

but very high overlap 

Symptom multiplicity/ 

heterogeneity 

Symptoms multiplicity 

with high heterogeneity 

Symptoms multiplicity 

with high heterogeneity 

High heterogeneity of 

symptoms 

Symptom Latency Variable Latency to 

Symptom Onset 

Variable Latency to 

Symptom Onset 

Variable Latency to 

Symptom Onset 

Exposure Associations Include OPs/ 

acetylcholinesterase 

inhibitors, paraoxonase 

gene variants, vaccines  

Causes include 

OPs/acetylcholinesterase 

inhibitors, paraoxonase 

gene variants, vaccines 

Include OPs/ 

acetylcholinesterase 

inhibitors, paraoxonase 

gene variants, vaccines 

Objective Findings Include autonomic 

dysfunction, reduced 

natural killer cell 

activity, coagulation 

Include autonomic 

dysfunction, reduced 

natural killer cell 

activity, coagulation 

Include autonomic 

dysfunction, reduced 

natural killer cell 

activity208, 209, 
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Golomb 2012 – Gulf War Mitochondria 
activation, elevated 

autoimmune markers, 

elevated GGT, low 

paraoxonase activity 

activation, elevated 

autoimmune markers, 

elevated GGT, low 

paraoxonase activity 

coagulation 

activation210, elevated 

autoimmune markers74, 

75, 122, elevated GGT211,  

low paraoxonase 

activity67 

Related conditions Include CMI (except 

ASD). Also include 

hypertension, hearing 

loss, ALS 

Include CMI (extending 

to ASD). Also include 

hypertension, hearing 

loss, ALS 

Include hearing loss.  
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Golomb 2012 – Gulf War Mitochondria 
Table 1a. Gulf War Associations 

Associated 
Characteristic 

Seen With 
Gulf War Illness (also other CMI) Oxidative stress  mt Dysfunction 

Exposure Associations 
Acetylcholinesterase 
inhibitors strongly 
associated 

Yes6, 57 Yes77, 78 

Reactogenic vaccines also 
consistently associated 

Anthrax vaccine associated6, 69 
Vaccine adverse effects associated6, 193 
Multiple vaccinations associated6, 68, 71, 72 

Reactogenic vaccines associated with OS82; Anthrax 
vaccine among the most reactogenic of vaccines212 
Aluminum (vaccine adjuvants), mercury (thimerosal 
preservatives) linked OS, impaired antioxidant defense 
against other exposures, and MD213-228 

Multiple other exposures 
are associated 

See Supplement Table 1 1. See Supplement Table 1 

Symptom Characteristics 
Brain and muscle 
dominate 

Yes7 Yes22 

Fatigue and fatigue with 
exertion prominent 

Yes5, 7, 25, 26 Yes46, 172, 229, 230 

Symptoms are protean 
spanning many domains 

Yes5, 25, 26 Yes231 

Symptoms differ from 
person to person 

Yes5, 7, 25, 26 Yes55, 232-234 

Latency to symptom onset 
is variable, often 
prolonged, differs across 
individuals and differs 
across symptoms within an 
individual 

Yes11 Yes55 

Individual Symptoms 
Associated 

See Supplement Table 2 See Supplement Table 2 

Objective Findings 
Routine labs generally 
unremarkable 

Yes Yes 

PON genotype differences 
present 

Yes*** 
Other CMI191 add ASD, CFS 

Yes 

GGT elevated (marker of 
oxidative stress) 

Yes152, 153 (other OS markers not examined) 
Other CMI: 

Yes235, 236 

PON1 activity reduced Yes60, 61, 151 
Other CMI: 

Yes 237, 238 

Natural killer cell activity 
reduced 

Yes120, 154 
Other CMI: 

Yes135, 239-241 

Heart Rate variability 
blunted 

Yes155, 156 Yes242, 243 

Other autonomic 
abnormalities present 

Yes244, 245 
Other CMI: 

Yes31, 246, 247  

Coagulation markers 
elevated 

Yes157, 158 
Other CMI: 

Yes248-251 (OS promotes apoptosis98, 99, 252; which 
activates coagulation pathways253) 

Autoimmune Markers 
Elevated 

Yes120, 121 
Other CMI: 74, 75, 210 autism autoantibodies check 

Yes  ADD CITS254 
(May be partly adaptive255, 256) 

   
Exposures: 
AChEi are particularly potent in inducing OS and MD77 – and particularly strong consistent predictors of GWI. 
AChEi exposures, moreover, were also commonly recurrent when they occurred; and in addition, they cause 
MD by means beyond OS (such as microtubule toxicity257, 258). The central role of OS in mediating AChEi 
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Golomb 2012 – Gulf War Mitochondria 
toxicity is underscored by findings that pretreatment (or immediate posttreatment) with antioxidants protects 
against AChEi-induced lethality (and enhances recovery) in animals79-81. Anthrax vaccinations and multiple 
vaccinations are the next most strongly and consistently linked to GWI, in epidemiologic evidence259. These are 
tied, through aluminum-based adjuvants218, 219, 222-224, 226, 260, 261 and mercury (and other) preservatives225,  to OS 
and MD (Table 1, Supplement Table 1) – as well as to inhibition of glutathione production, reducing 
antioxidant defense against other exposures219, 222, 225. Each additional exposure class presumptively inculpated 
in GWI is known to promote OS82-85 226, 262-264.  
 
Markers: 
GGT is an enzymatic antioxidant265, 266: elevations serve as an early marker of OS267 including AChEi 
exposure265, 268. PON1 is an antioxidant enzyme (also specifically involved in organophosphate 
detoxification269) whose activity is depressed in settings of elevated OS237. PON1 was depressed in GWV 
generally (relative to military controls) – and particularly so in those with GWI or more symptoms60, 61, 151. 
Natural killer activity is reduced with OS and increased with antioxidants135, 239, 240. Blunted heart rate 
variability has been linked to OSMD242, 243. Activation of the coagulation system relates to OS248, 249, 251, 270. 
Both OS98, 99, 252 and MD271, 272 each foster apoptosis; which exposes phosphatidylserine at the cell surface, 
activating coagulation pathways253. Activation of the coagulation system has been repeatedly observed in Gulf 
War veterans.157, 158 OS also depress vitamin D (vitD), vitD receptor expression and mitochondrial vitD 
hydroxylase activities113, 114. Low vitD and altered receptor function are linked to risk of autoimmune disease115-

119. 
 
OS – oxidative stress; GWV – gulf war veterans; GWI – gulf war illness; MD – mitochondrial dysfunction 
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Table 1b. Associated Conditions are Compatible with OSMD 
Associated Conditions Linked to GWV Linked to OSMD 
Chronic Fatigue syndrome Yes 5, 6, 26, 160, 164, 273 Yes 165-167, 170-172, 274-276 
Fibromyalgia Yes5, 164, 273 Yes39, 175-177, 277, 278 
Irritable Bowel syndrome Yes26 Yes279 
Multiple Chemical Sensitivity Yes5, 6, 25, 26, 160, 184, 185 Yes147 
Autism Spectrum Condition No – different developmental 

timeline 
Yes67, 106, 107, 148, 180-182, 200, 280, 281 

Hypertension Yes6, 26, 153, 282, 283 
 

Yes284-289 

Weight gain Yes7, 26, 153 Yes290-293 
Amyotrophic lateral sclerosis Yes294-296 

 
Yes297-300 

Hearing loss / tinnitus Yes5, 6, 10, 26 Yes28, 234, 301-307 
Fracture risk and reduced bone 
formation 

Yes308, 309 Yes310-313 
 

Significant elevations in self-reported hearing loss after 1990 or 1991 in GWV vs control groups have been 
reported5, 6, 10, 26. (However obviously, even with military controls, there are uncertainties regarding noise 
exposure comparability. Additionally, formal testing has not yet been undertaken.) Hearing loss deemed “age-
related” and “noise-related” is powerfully linked to OSMD303-306. Accelerated hearing loss is common in MD28, 

34, 314-322, cited as among the most common symptoms of mitochondriopathy, together with fatigue and muscle 
symptoms30. And chemical exposures have been linked to both hair cell damage and noise-related hearing 
loss323, 324.•

GWV demonstrate increased incident hypertension in a range of studies (Table 1a&b)6, 26, 153, 282. 
Hypertension, too, is a condition with powerful relationship to OSMD284-287, 325, 326. Indeed an evaluation of 
mitochondrial pedigrees estimated the fraction of patients with hypertension potentially due to mtDNA 
mutation involvement at 55% (95% CI 45-65%)285. Analogous to the Gulf War situation, increased blood 
pressure has been previously associated with environmental OS exposures. For instance, both arsenic and lead 
are reported to mediate their toxicity via OS327-329; and exposure to each arsenic (e.g. in the water supply)330, 

331and lead327, 328 have been linked to increased rates of hypertension.  Hypertension and hearing loss are both 
common “age-related” conditions.  

 

In contrast, amyotrophic lateral sclerosis (ALS) is an uncommon but serious age-related condition. ALS has 
been reported in several studies to have increased incidence in GWV (Table 1a&b). This condition has been 
conceptualized as resulting from “oxidative damage to mitochondrial DNA leading to the accumulation of 
mitochondrial DNA mutations”332 – in this case targeting the spinal cord – compatible with the mechanism I 
propose for GWI more generally – and other GWV associated conditions. Extensive evidence links ALS to 
OSMD297, 299, 300, 333-343. Moreover, low concentrations and mutations of paraoxonase, central to 
organophosphate (AChEi) detoxification, have been linked to ALS344-347 – and to GWI60, 61, 151, 348 (as well as to 
GWI-like multisymptom illness following organophophate exposure outside the Gulf setting62, 349, 350), further 

                                                 
•  (Noise “sensitivity” has been noted as a some-time feature of multiple chemical sensitivity, and is also noted in ASD. Since both 
conditions have been linked to impaired antioxidant defenses147. Schnakenberg E, Fabig KR, Stanulla M, et al. A cross-
sectional study of self-reported chemical-related sensitivity is associated with gene variants of drug-metabolizing enzymes. Environ 
Health 2007;6:6, 180. Geier DA, Kern JK, Garver CR, et al. Biomarkers of environmental toxicity and susceptibility in autism. J 
Neurol Sci 2008, 198. Jill James S, Melnyk S, Jernigan S, Hubanks A, Rose S, Gaylor DW. Abnormal 
Transmethylation/transsulfuration Metabolism and DNA Hypomethylation Among Parents of Children with Autism. J Autism Dev 
Disord 2008, 280. Bradstreet JJ, Smith S, Baral M, Rossignol DA. Biomarker-guided interventions of clinically relevant 
conditions associated with autism spectrum disorders and attention deficit hyperactivity disorder. Altern Med Rev 2010;15:15-32. this 
“sensitivity” to both noise and chemicals could signify actual vulnerability to damage at lower levels than would be harmful in others.) 
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Golomb 2012 – Gulf War Mitochondria 
propelling the case for OSMD in GWI. By the mechanisms elucidated here (and previously elaborated by us in 
a different setting of exposure-induced ALS351), although spinal cord motor neurons are the primary condition-
defining target, mitochondrial dysfunction in sporadic ALS should not be confined to spinal cord motor neurons 
but should (statistically) be evident in other tissues, particularly energetically demanding (and thus 
mitochondrially vulnerable) brain and muscle. Indeed, recent studies show that mitochondrial pathology in ALS 
extends to skeletal muscle352-357 and symptoms extend to cognitive function in about half of cases358, 359. 
Mounting evidence supports a connection of OSMD290-293, 360, 361 to metabolic syndrome (each has been 
conceptualized as a unifying mechanism293, 361), of which hypertension is one component. Consistent with this, 
studies have also reported increased incident weight gain in GWV vs controls7, 26, 153. Assessment for other 
elements of metabolic syndrome in GWV has not yet been undertaken, but increased metabolic syndrome 
represents a prediction of this model.   
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 Table 3. Predictions 

 Observed with Oxidative Stress/ 
Mitochondrial Dysfunction 

Preliminary Evidence or Comment 

Other markers of oxidative stress and 
mitochondrial dysfunction will be elevated 

Yes54 True for chronic fatigue syndrome167, 171, 172, a 
related condition that is elevated in GWV5, 6, 26 
True for ASD 

Genetic risk markers related to 
mitochondrial function, antioxidant defense, 
energetics, and apoptosis will be identified 

Yes, by definition Gene associations related to mitochondrial 
function, energetics and apoptosis have been 
reported for chronic fatigue syndrome66, 173, 174, 

276 a related condition that is elevated in GWV5, 

6, 26. Deletions in genes for glutathione-S-
transferase enzymes (leading to loss of 
protection against oxidative stress) are strongly 
and significantly linked to multiple chemical 
sensitivity147 
Gene variants in paraoxonase have been 
observed in both GWI and ASD**, and 
glutathione-related variants among others in 
ASD148, 198, 362  

GWV will have increased rates of adverse 
effects with many medications and 
interventions because many adverse effects 
are mediated via oxidative stress and 
mitochondrial problems187-190 
 

See Comment. 
Examples of drugs with adverse effects mediated 
by oxidative stress include acetaminophen, 
aminoglycosides, fluoroquinolones, amiodarone, 
nonsteroidal anti-inflammatory agents, 
chemotherapeutics, 83, 188, 190, 363-378 

Increased drug adverse effects have been 
observed in irritable bowel syndrome379– a 
condition elevated in GWV26 and linked to 
oxidative stress279. 
Regression reported by some parents following 
vaccinations in cases of ASD may be a 
consequence of impaired detoxification. (Such 
vaccination may boost the oxidative burden, 
however, and potentiate the process.)  

New oxidative stressor exposures – beyond 
medications and medical interventions, 
though those merit separate mention - will 
have disproportionate adverse impact in 
exposed and particularly symptomatic GWV 
and CMI 

 Prooxidant-antioxidant balance will be adversely 
affected, disadvantaging ability to defend against 
new oxidative stressors. 

Endothelial dysfunction will arise at 
elevated rates 

Endothelial dysfunction is strongly linked to 
oxidative stress380 

 

Hepatic steatosis will develop at elevated 
rates, as will ectopic fat deposition in other 
locations 

Hepatic steatosis relates strongly to oxidative 
stress381, 382. 

 

Low HDL and high triglycerides will 
emerge 

These conditions (and all elements of metabolic 
syndrome) are linked to oxidative stress290, 383 
and mitochondrial dysfunction292 

 

Free fatty acids will be elevated Elevated free fatty acids are linked to oxidative 
stress384 

 

Metabolic syndrome as a whole will arise at 
elevated rates 

Metabolic syndrome is linked to oxidative 
stress290, 291 and mitochondrial dysfunction292 

As above, weight gain and hypertension are 
already reported at elevated rates. Diabetes 
prevalence shows variable trends likely due to 
selection of diabetics out of deployment to high 
risk areas. 

Rates of diabetes will rise to first match then 
exceed rates in nondeployed (those with 
diabetes were disproportionately 
nondeployed) 

Diabetes, like metabolic syndrome, is strongly 
linked to oxidative stress (as effect but possibly 
also cause)385 and mitochondrial dysfunction287, 

386 

This prediction is made despite mixed direction 
of trends in diabetes rates in published studies5, 

26. It is predicted that a clear increase will 
emerge. 

Rates of cardiovascular disease and 
particularly peripheral arterial disease will 
emerge at an elevated rate as GWV age 

These conditions, and especially peripheral 
arterial disease, are associated with oxidative 
stress387-389 and mitochondrial dysfunction390-392 

 

Parkinson’s disease will emerge at an 
elevated rate as GWV age 

Parkinson’s disease is linked to oxidative stress 
and mitochondrial dysfunction393, 394 

Like ALS (and Gulf War illness), Parkinson’s 
disease bears an association to polymorphisms in 
paraoxonase; and exposure to pesticides395-399  

Elevated “depression” diagnoses will be 
found to disproportionately focus on 
somatic symptoms 

Somatic symptoms in depression have been 
found to serve as markers for mitochondrial 
dysfunction.400.  

“Depression” has been reported to be elevated in 
GWV26. GWV have many somatic symptoms 
that will contribute to elevated scores in 
depression scales. 

“Age-related” hearing loss and tinnitus will 
be demonstrated to occur at elevated rates 

302, 306, 314, 323, 324 GWV report physician-diagnosed tinnitus at 
elevated rates26 

Other diagnoses linked to oxidative stress 
will occur at elevated rates 

 Some reports suggest increased cancer of some 
types282 and cancer death in Gulf War 
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Golomb 2012 – Gulf War Mitochondria 
veterans401, 402 
 

Exposed GWV who do not meet criteria for 
GWI will nonetheless show statistical 
abnormalities in markers of oxidative stress 
– and sequelae of oxidative stress (perhaps 
intermediate between unexposed and those 
with GWI) 

 Asymptomatic persons with mt dysfunction at 
low heteroplasmy rates nonetheless show 
increased oxidative stress, proportional to the 
heteroplasmy level54.  

GWI – gulf war illness; GWV – gulf war veterans; ALS – Amyotrophic lateral sclerosis;    
* Those with GWI have many somatic symptoms that will contribute to elevated scores in depression scales. 
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