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Abstract

Western medicine’s paradigmatic search for ‘magic bullet’
interventions is facing increasing difficulty: Between 1950
and 2010 the inflation-adjusted research cost per USFDA-
approved drug has increased exponentially in time, an dra-
conian inverse of the famous Moore’s Law of computing. A
sequence of empirically-oriented statistical models suggests
that carefully designed synergistic multifactorial and multi-
scale strategies might evade this relationship.
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1 Introduction

Western medicine’s relentless culturally-determined hunt for
simple magic bullets against complex multifactorial chronic
and infectious disease is coming to an end as biologically sim-
ple low-hanging fruit is picked off and as pathogens evolve
out from under existing antibiotics. Figure 1, adapted from
Bernstein, (2010), shows the number of small molecule and bi-
ologic USFDA approvals per inflation-adjusted billion dollars
in research investment between 1950 and 2010. The cost per
intervention has increased from about $ 200 million to over
$ 1.2 billion, and many pharmaceutical firms have markedly
cut their research efforts.

Paul et al. (2010) summarize the crisis as follows:

[W]ithout a dramatic increase in [Research and
Development] productivity, today’s pharmaceutical
industry cannot sustain sufficient innovation to re-
place the loss of revenues due to patent expira-
tions for successful products... [However].. a more
complete understanding of human (disease) biology
will... be required before many true breakthrough
medicines emerge.

Here we will outline a kind of statistical theory of biological
interaction that might significantly improve our understand-
ing of human disease biology and contribute to altering the
form of figure 1, a depressing inverse medical parallel to the
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Figure 1: Adapted from Bernstein, 2010. The inverse Moore’s
Law for pharmaceuticals. The number of small molecule and
biologic USFDA approvals per inflation-adjusted $ billion in
research investment, 1950-2010. The apparent log-linear ‘de-
cline in research productivity’ represents the failure of com-
plex physiological processes to respond to simple interven-
tions. Western medicine, as defined in the latter half of the
20th Century, has hit a brick wall, a catastrophic regime of
exponential cost increase.

famous Moore’s Law that has characterized the doubling of
on-chip computing power every two years since 1971.

We begin with a review of a canonical formal approach to
complicated biological and other dynamics.

2 Symbolic dynamics of complex
physiological development

Symbolic dynamics is a ‘coarse-grained’ perspective on com-
plicated systems that discretizes their time trajectories in
terms of dynamically accessible regions so that it is possible
to do statistical mechanics on symbol sequences (e.g., Mc-
Cauley, 1993, Ch. 8) that can be said to constitute an ‘alpha-
bet’. Within that ‘alphabet’, certain ‘statements’ are highly
probable, and others far less so.

The simple (ideal) oscillating population process described
by the equations dX/dt = ωY, dY/dt = −ωX has the solution
X(t) = sin(ωt), Y (t) = cos(ωt) so that X(t)2+Y (t)2 ≡ 1, and
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the system traces out a circular trajectory in time. Divide
the X − Y plane into two components, the simplest possible
coarse graining, calling the halfplane to the left of the vertical
Y axis A and that to the right B. This system, over units of
the period 1/(2πω), traces out a stream of A’s and B’s having
a very precise grammar and syntax: ABABABAB...

Many other such statements might be conceivable, e.g.,
AAAAAA..., BBBBB..., AAABAAAB...,

ABAABAAAB...,
and so on, but, of the infinite number of possibilities, only

one is actually observed, is ‘grammatical’.
More complex dynamical models, incorporating diffusional

drift around deterministic solutions, or elaborate structures
of complicated stochastic differential equations having various
domains of attraction – different sets of ‘grammars’ – can be
described by analogous means (e.g., Beck and Schlogl, 1995,
Ch. 3).

Rather than taking symbolic dynamics as a simplification
of more exact analytic or stochastic approaches, it is possible
to comprehensively generalize the technique itself. Compli-
cated cellular or other physiological processes may not have
identifiable sets of stochastic differential equations like noisy,
nonlinear mechanical clocks, but, under appropriate coarse-
graining, they may still have recognizable grammar and syn-
tax over the long-term. Proper coarse-graining may, however,
often be the hard scientific kernel of the problem.

The fundamental assumption for complicated biological de-
velopmental phenomena like the onset of infection or the fail-
ure of essential regulatory processes is that developmental
trajectories can be classified into two groups, a very large
set that has essentially zero probability, and a much smaller
‘grammatical’ set. For the grammatical/syntactical set, the
underlying argument is that, given a set of developmental tra-
jectories of length n, the number of grammatical ones, N(n),
follows a limit law of the form

H = lim
n→∞

log[N(n)]

n

(1)

such that H both exists and is independent of path. If con-
vergence occurs for some finite nH , then the process is said to
be of order nH . This is a critical foundation of, and limita-
tion on, the modeling strategy adopted here, and constrains
its possible realm of applicability. It is, however, fairly gen-
eral in that it is independent of the serial correlations along
reaction pathways.
H is seen to represent the Shannon uncertainty of a classic

information source (e.g., Ash, 1990; Cover and Thomas, 2006;
Khinchin, 1957).

The basic argument is shown in figure 2, where an initial
developmental configuration, S0, can either converge on a nor-
mal state Snorm via the set of high probability reaction paths

Figure 2: An initial physiological configuration S0 can either
develop to a normal final configuration Snorm via the set of
high probability reaction paths to the left of the filled trian-
gle, or it can converge to a thermodynamically competitive
pathological state Spath to the right.

to the left of the filled triangle, or it can converge to a ther-
modynamically competitive pathological state Spath to the
right.

We are, through coarse-graining and symbolic dynamics,
assigning classic information sources to the two sets of ther-
modynamically competitive ‘grammatical’ pathways. The es-
sential question is how, in general terms, an embedding phys-
iological regulatory structure can act in such a circumstance
to change the probabilities of convergence on Snorm or Spath.

The mechanism implied by figure 2 has, in fact, been ob-
served across much of molecular biology and been a subject
of study for decades: Molecular systems may equilibrate be-
tween thermodynamically equivalent conformations until one
is ‘chosen’, in a sense, by some external signal. Many exam-
ples can be found over the last 70 years, as described in the
comprehensive review by James and Tawfik (2003).

More explicitly, Wallace (2011) has applied an ‘information
catalysis’ model to biological logic gates whose activation or
inhibition is triggered by selective binding by an intrinsically
disordered protein, and this will serve as the basis for the
approach taken here.

3 The dual information source of a
cognitive regulatory process

The first step in answering the question of how pathways in
figure 2 are ‘chosen’ lies in describing the activity of a large
class of regulatory activity in terms of another information
source. Atlan and Cohen (1998), in the context of a study of
the immune system, argue that the essence of cognition is the
comparison of a perceived signal with an internal, learned pic-
ture of the world, and then choice of a single response from a
large repertoire of possible responses. Such choice inherently
involves information and information transmission since it al-
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ways generates a reduction in uncertainty. Structures that
process information are constrained by the asymptotic limit
theorems of information theory, in the same sense that sums of
stochastic variables are constrained by the Central Limit The-
orem, allowing the construction of powerful statistical tools
useful for data analysis.

More formally, a pattern of incoming input Si describing
the status of the physiological system of interest – start-
ing with the initial state S0 – is mixed in a systematic al-
gorithmic manner with a pattern of otherwise unspecified
‘ongoing activity’, including cellular, epigenetic and environ-
mental signals, Wi, to create a path of combined signals
x = (a0, a1, ..., an, ...). Each ak thus represents some func-
tional composition of internal and external factors, and is ex-
pressed in terms of the intermediate states as

Si+1 = f([Si,Wi]) = f(ai)

(2)

for some unspecified function f . The ai are seen to be
very complicated composite objects, in this treatment, that
we may choose to coarse-grain so as to obtain an appropriate
‘alphabet’.

In a simple spinglass-like model, S would be a vector, W a
matrix, and f would be a function of their product at ‘time’
i.

The path x is fed into a highly nonlinear decision oscillator,
h, a ‘sudden threshold machine’ pattern recognition structure,
in a sense, that generates an output h(x) that is an element
of one of two disjoint sets B0 and B1 of possible system re-
sponses. Let us define the sets Bk as

B0 = {b0, ..., bk},

B1 = {bk+1, ..., bm}.

It is possible to assume an elaborate graded response, in
precisely the sense studied by Pufall et al. (2005), supposing
that if h(x) ∈ B0, the pattern is not recognized, and if h(x) ∈
B1, the pattern has been recognized, and some action bj , k +
1 ≤ j ≤ m takes place. Typically, for the example of figure
2, the set B1 would represent the final state of the developing
system.

The principal objects of formal interest are paths x trig-
gering pattern recognition-and-response. That is, given a
fixed initial state a0 = [S0,W0], examine all possible sub-
sequent paths x beginning with a0 and leading to the event
h(x) ∈ B1. Thus h(a0, ..., aj) ∈ B0 for all 0 < j < m, but
h(a0, ..., am) ∈ B1. B1 is thus the set of final possible states,
{Snorm}∪{Spath} from figure 2 that includes both the normal
and pathological conditions.

Again, for each positive integer n, let N(n) be the num-
ber of high probability grammatical and syntactical paths of

length n which begin with some particular a0 and lead to the
condition h(x) ∈ B1. Call such paths ‘meaningful’, assuming,
not unreasonably, that N(n) will be considerably less than
the number of all possible paths of length n leading from a0
to the condition h(x) ∈ B1.

While the combining algorithm, the form of the nonlin-
ear oscillator, and the details of grammar and syntax, can
all be unspecified in this model, the critical assumption that
permits inference of the necessary conditions constrained by
the asymptotic limit theorems of information theory is that,
again, the finite limit

H = lim
n→∞

log[N(n)]

n

both exists and is independent of the path x.

Call such a pattern recognition-and-response cognitive pro-
cess ergodic. Not all cognitive processes are likely to be er-
godic in this sense, implying that H, if it indeed exists at
all, is path dependent, although extension to nearly ergodic
processes seems possible (e.g., Wallace and Fullilove, 2008).

Invoking the spirit of the Shannon-McMillan Theorem, as
choice involves an inherent reduction in uncertainty, it is
then possible to define an adiabatically, piecewise station-
ary, ergodic (APSE) information source X associated with
stochastic variates Xj having joint and conditional probabili-
ties P (a0, ..., an) and P (an|a0, ..., an−1) such that appropriate
conditional and joint Shannon uncertainties satisfy the classic
information theory relations (Cover and Thomas, 2006)

H = lim
n→∞

log[N(n)]

n
= lim
n→∞

H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, ..., Xn)

n+ 1

(3)

This information source is defined as dual to the underlying
ergodic cognitive process.

Adiabatic means that the information source has been pa-
rameterized according to some scheme, and that, over a
certain range, along a particular piece of parameter trajec-
tory, the source remains as close to stationary and ergodic
as needed for information theory’s central theorems to ap-
ply. Stationary means that the system’s probabilities do not
change in time, and ergodic, roughly, that the cross sectional
means approximate long-time averages. Between pieces it
is necessary to invoke various kinds of phase transition for-
malisms, as described more fully in e.g., Wallace (2005).
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4 Information catalysis

In the limit of large n, H = limn→∞ log[N(n)]/n becomes ho-
mologous to the free energy density of a physical system at the
thermodynamic limit of infinite volume. More explicitly, the
free energy density of a physical system having volume V and
partition function Z(β) derived from the system’s Hamilto-
nian – the energy function – at inverse temperature β is (e.g.,
Landau and Lifshitz 2007)

F [K] = lim
V→∞

− 1

β

log[Z(β, V )]

V
≡

lim
V→∞

log[Ẑ(β, V )]

V
,

(4)

with Ẑ = Z−1/β . The latter expression is formally similar
to the first part of equation (3), a circumstance having deep
implications: Feynman (2000) describes in great detail how
information and free energy have an inherent duality. Feyn-
man, in fact, defines information precisely as the free energy
needed to erase a message. The argument is surprisingly di-
rect (e.g., Bennett, 1988), and for very simple systems it is
easy to design a small (idealized) machine that turns the in-
formation within a message directly into usable work – free
energy. Information is a form of free energy and the con-
struction and transmission of information within living things
consumes metabolic free energy, with inevitable losses via the
second law of thermodynamics.

Information catalysis, in the circumstance of figure 2, arises
most simply via the ‘information theory chain rule’ (Cover
and Thomas, 2006). Given X as the information source rep-
resenting the reaction paths of figure 2, and Y , an informa-
tion source dual to the sophisticated biochemical cognition
of the regulating system, one can define jointly typical paths
zi = (xi, yi) having the joint information source uncertainty
H(X,Y ) satisfying

H(X,Y ) = H(X) +H(Y |X) ≤ H(X) +H(Y ).

(5)

Of necessity, then,

H(X,Y ) < H(X) +H(Y )

(6)

if H(Y |X) < H(Y ).
These relations imply that, by means of the identification of

information as a form of free energy, at the expense of adding
the considerable energy burden of the regulatory apparatus,
represented by its dual information source Y , it becomes pos-
sible to canalize the reaction paths of figure 2, so as to make
one set of pathways beginning with S0 far more probable than
another.

That is, by raising the entire reaction free energy landscape
corresponding to H(X) by the amount H(Y ) it becomes pos-
sible to deepen the energy channel leading from S0 to the de-
sired outcome, either Snorm or Spath. Complicated internal
reaction mechanisms have been subsumed by the Shannon-
McMillan Theorem, in the same sense that the Central Limit
Theorem subsumes the behavior of long sums of stochastic
variates into the Normal distribution.

Within an organism, however, there will be an ensemble of
possible developmental states and pathways, driven by avail-
able metabolic free energy, so that, taking < .. > as repre-
senting an average,

[< H(X,Y ) >] < [< H(X) > + < H(Y ) >].

(7)

Typically, letting M represent the intensity of available
metabolic free energy, a rate index, one expects

< H >≈
∫
H exp[−H/κM ]dH∫
exp[−H/κM ]dH

≈ κM,

(8)

where κ, an inverse energy rate scaling constant, may be quite
small indeed, a consequence of entropic translation losses be-
tween metabolic free energy and the expression of informa-
tion. Thus equation (8) converges as indicated.

The resulting relation,

MX,Y < MX +MY ,

(9)
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suggests an explicit free energy mechanism for developmen-
tal canalization: at the expense of maintaining the complex
regulatory process Y it becomes possible to canalize the de-
velopmental pathways of the information source X via a kind
of information catalysis.

That is, quite counterintuitively, entropic loss – small κ –
can be a powerful tool for triggering complex biological logic
gates like figure 2, in much the same sense that Tompa and
Csermely (2004) propose that entropy transfer can be used
by generalized chaperones to trigger proper conformation in
pathologically folded protein complexes.

We now build a sequence of statistical models based on
these foundations.

5 Nonequilibrium ‘equilibria’

The tool for this is a version of Onsager’s phenomenolog-
ical nonequilibrium thermodynamics. Redefine, now, the
metabolic free energy intensity measure MX,Y1,...,Ym

as F ,
where X represents the developmental system of interest and
the Yi are regulatory or environmental signals operating at
different scales and levels of organization.

Assuming F is parameterized by some set of appropriate
variates Q = [Q1, ..., Qn], it becomes possible to write an
‘entropy’ in standard form as

S ≡ F −
∑
k

Qk∂F/∂Qk.

(10)

The phenomenological Onsager equation becomes

dQj/dt =
∑
i

Li,j∂S/∂Qi,

(11)

where the Li,j are empirical constants, and the partial deriva-
tives represent ‘thermodynamic forces’ driven by gradients in
the entropy. It is important to note, however, that, for this
system, one cannot have ‘reciprocity relations’ of the form
Li,j = Lj,i since the underlying information sources, of which
M is an environmental index, are not micro-reversible. For
example, in English the short string ‘ eht ’ does not have the
same probability as the equally short string ‘ the ’.

Equation (11) has the standard generalization as a stochas-
tic differential equation

dQjt = Lj(t, Q
1...Qn)dt+

∑
j

σj(t, Q
1, ..., Qn)dBit,

(12)

where the dBit represent different kinds of ‘noise’ whose char-
acteristics are usually expressed in terms of their quadratic
variation. See, e.g., Zhu et al. (2007) for an example, and any
standard work on stochastic differential equations or Brown-
ian motion for a tutorial (e.g., Protter, 1990).

Several points emerge:
1. The different configurations possible to this ‘coevolu-

tionary’ system are found by setting the system of equation
(12) to zero, and solving for stationary points, since the noise
terms preclude unstable equilibria.

2. The system may, however, converge to limit cycle or
pseudorandom ‘strange attractor’ behaviors in which it seems
to chase its tail endlessly within a limited venue – a kind of
‘Red Queen’ pathology.

3. What is converged to, in both cases, is not a simple
state or limit cycle of states, but rather an equivalence class,
or set of them, of highly dynamic information sources cou-
pled by mutual interaction through crosstalk that have sim-
ply been parameterized by the free energy intensity measure
F = MX,Y1,.... ‘Stability’ in this structure represents particu-
lar patterns of ongoing dynamics rather than some identifiable
static configuration.

Most importantly, as Champagnat et al. (2006) note, shifts
between the quasi-equilibria of a coevolutionary system like
this one can be addressed by the large deviations formalism.
They find that the issue of dynamics drifting away from tra-
jectories predicted by the canonical equation can be investi-
gated by considering the asymptotic of the probability of ‘rare
events’ for the sample paths of the diffusion.

By ‘rare events’ they mean diffusion paths drifting far away
from the direct solutions of the canonical equation. The prob-
ability of such rare events is governed by a large deviation
principle: when a critical parameter (designated ε) goes to
zero, the probability that the sample path of the diffusion is
close to a given rare path φ decreases exponentially to 0 with
rate I(φ), where the ‘rate function’ I can be expressed in
terms of the parameters of the diffusion. This result, in their
view, can be used to study long-time behavior of the diffu-
sion process when there are multiple attractive singularities.
Under proper conditions the most likely path followed by the
diffusion when exiting a basin of attraction is the one minimiz-
ing the rate function I over all the appropriate trajectories.
The time needed to exit the basin is of the order exp(V/ε)
where V is a quasi-potential representing the minimum of the
rate function I over all possible trajectories.

An essential fact of large deviations theory is that the rate
function I which Champagnat et al. invoke can be expressed
as a kind of entropy, that is, having the canonical form
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I = −
∑
j

Pj log(Pj)

(13)

for some probability distribution. This result goes under a
number of names; Sanov’s Theorem, Cramer’s Theorem, the
Gartner-Ellis Theorem, the Shannon-McMillan Theorem, and
so forth (Dembo and Zeitouni, 1998).

These considerations lead very much in the direction of
equation (12), but now seen as subject to internally-driven
large deviations that are themselves described as informa-
tion sources, providing Q = f(I)-parameters that can trigger
punctuated shifts between quasi-stable modes. Thus both ex-
ternal signals, characterized by the information source Z, and
internal ‘dynamic ruminations’, characterized by the informa-
tion source I, can provide Q-parameters that serve to drive
the system to different quasi-equilibrium states – pathologi-
cal or benign – in a highly punctuated manner, if they are of
sufficient magnitude.

In particular, I is not likely to represent a simple ‘magic
bullet’ intervention, but rather may involve a complex inter-
vention strategy that must operate across a variety of scales
and levels of organization.

6 Discussion and conclusions

Complex multi-level regulatory behaviors, and their failures
as affected by environmental interactions or internal dynam-
ics, have been modeled in terms of a nested set of information
sources that are constrained by the asymptotic limit theo-
rems of information theory, and this may allow construction
of regression- or Onsager- model-like statistical tools useful
for scientific inference, focusing on the behaviors of the sys-
tem rather than on a detailed description of its mechanical
state under all circumstances and at all times. The analogy
is to characterize the behavior of a computer in terms of its
program, rather than attempting provide a full cross-sectional
statement of the condition of each logic gate at each clock cy-
cle.

The composite regulatory and/or embedding ‘logic gates’
affecting figure 2 are likely to be quite different from ‘simple’
computer models, having extraordinarily subtle properties:
evolution is not restricted to binary mathematics (AND, OR,
XOR, etc.).

These considerations add considerable weight to an emerg-
ing perspective that sees a fundamental defining characteris-
tic of the living state as the operation of chemical or other
cognitive processes at virtually all scales and levels of organi-
zation (e.g., Wallace, 2011; Wallace and Wallace, 2010; Atlan
and Cohen, 1998; Cohen, 2000; Wallace, 2005; Wallace and
Fullilove, 2008).

From that viewpoint, the solution to the conundrum of fig-
ure 1 is to reconfigure interventions so as to encapsulate more

than a single scale or level of organization. That is, it has now
become necessary for the pharmaceutical industry – and its
medical associates – to move beyond small molecule design to
the principled construction of more comprehensive multifac-
torial or multiscale interventions designed to affect the inter-
action of complementary biochemical and information source
networks, driving them from pathological to benign conforma-
tions, using ‘large deviations’ in the sense of equation (13).

At the individual level this would appear to require seeking
synergistic total strategies that act across levels of organiza-
tion, rather than applying a sequence of scale-limited magic
bullets, a difficult tectonic shift in scientific perspective, re-
search, and practice not likely to prove popular with those
embedded in current funding streams.

At the population level, where public policy can be most ef-
fective, the increasing expense of individual level interventions
– even if the rate of decline of figure 1 can be mitigated as we
suggest – would seem to imply the necessity of again recogniz-
ing what has been known for the last two hundred years, that
patterns of health and illness are determined by living and
working conditions and the power relations between groups
(e.g., Kleinman, Das and Lock, 1994; Wallace and Fullilove,
2008; Wallace et al., 2009; Wallace and Wallace, 2010).
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