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Genotypic causes of a phenotypic trait are typically determined via randomized controlled 
intervention experiments. Such experiments are often prohibitive with respect to durations 
and costs. We therefore consider inferring stable rankings of genes, according to their 
causal effects on a phenotype, from observational data only. Our method allows for 
efficient design and prioritization of future experiments, and due to its generality it is 
useable for a broad spectrum of applications. 

The growing interest in causal inference1 has increased not only the need for methods 
able to handle this task but also for designed experimental validation. It is of general 
interest to infer the genotypic causes of a complex phenotypic trait2. The classical 
approach relies on randomized controlled intervention experiments, e.g., knocking out a 
gene and observing the effect on the phenotype relative to the wild-type organism. 
However, such intervention experiments are time consuming and expensive. We 
therefore consider the problem of inferring causal effects from data obtained by 
observing a system without subjecting it to targeted interventions (observational data). 
This problem is generally ill-posed, but the recently proposed IDA method3,4 provides 
estimated lower bounds of causal effects from observational data under some 
assumptions. However, these bounds come without a measure of uncertainty. We address 
this issue by introducing a new method combining IDA and a version of stability 
selection5, which we call Causal Stability Ranking (CStaR; Supplementary Section 1 
and Figure 1). The addition of stability selection to IDA provides two advantages. First, 
CStaR leads to a stable ranking of biomarkers (e.g. genes) according to the size of their 
causal effects, irrespective of the choice of the tuning parameter in stability selection. 
Second, under some additional assumptions, CStaR allows controlling an error rate of 
false positive findings, namely the expected number of false positives and hence also the 
per-comparison error rate (PCER). 
We validated CStaR in two situations. First, we trained CStaR on a publicly available 
compendium of Arabidopsis thaliana gene expression data and performed new biological 
validation experiments. The compendium contains 47 expression profiles of natural 
accessions from diverse geographic origins6 (Supplementary Sections 2.1 and 2.2). The 
phenotypic trait of interest is time to flowering, which is robustly measured by the 
number of days to bolting or the number of rosette leaves formed before bolting7. Timing 
of flowering according to local climatic conditions is a major determinant of plants' 
reproductive success and an important agronomical trait that greatly affects yield. 
Therefore, an improved knowledge about genes controlling flowering time is of great 
economic value8. 
CStaR scores five known regulators of flowering time (DWF4, FLC, FRI, RPA2B and 
SOC1)7,9,10 in its top 25 (Table 1). In particular, SOC1, FRI and FLC are curated 
flowering time genes in Arabidopsis Reactome11 (http://www.arabidopsisreactome.org). 
This is a highly significant enrichment of known curated regulators when compared to 
random guessing (p<10–5). Interestingly, FLC and FRI are not only major regulators of 
flowering time in the model species A. thaliana but also in the oil-seed rape crop. 
Among the other genes in the top 25, which were not already known to play a role in 
flowering time, there were 13 genes for which mutant seeds were readily available 
(Supplementary Table 1). These mutants were used for intervention experiments 
(Supplementary Section 2.3) in order to further validate CStaR and to discover new 
influential genes for flowering time in A. thaliana. 
The experiments were performed under two photoperiod conditions, short-day (SD) and 
long-day (LD) with 8h and 16h of light respectively. As phenotypic responses, the 
number of days to bolting (DTB, for both SD and LD) as well as the rosette leave number 
(RLN, only for LD) were recorded. Seed viability varied between different genotypes 
(Supplementary Tables 2, 3 and 4) reducing the number of testable mutants to nine 
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(Supplementary Table 1). Differences between the knock-out and control group were 
tested using a two-sided Welch's t-test. Four new genes were found to have a significant 
causal effect on the phenotypic responses at level α=0.05 in at least one of the three 
settings (Table 2, Supplementary Section 2.4). Among the significant genes is OTLD1, 
a gene involved in chromatin modifications, which may potentially regulate FLC 
expression. Another significant gene is PDH-E1, which is involved in carbohydrate 
metabolism, a known regulation point of flowering time.  Future studies of the identified 
novel genes may increase the biological understanding of flowering time control and 
provide potential targets for breeding strategies in crops. The entire approach from 
modeling to biological experiments and findings is schematically described in Figure 1. 
As a second validation of the CStaR method, we compared it with the plain IDA method, 
Lasso12, elastic net13 and marginal correlation ranking on a publicly available data set of 
gene expression profiles in Saccharomyces cerevisiae14 (Supplementary Section 3). 
This data set includes both observational and interventional data obtained under similar 
conditions. Hence, it forms an excellent basis to assess the performance of methods 
aimed at estimating causal effects from observational data, as the effects estimated from 
the observational data can be compared to the effects inferred from the interventional 
data. These data were used to validate IDA4, and we followed the same approach to 
validate CStaR.  In particular, we used the interventional data to infer the causal effects of 
the knock-out genes on the remaining genes and defined the top 5% of the effects that 
were largest in absolute value as the target set. We then trained all methods on the 
observational data, and compared their receiver operating characteristic (ROC) curves on 
absolute scale (Figure 2) showing a clear improvement of CStaR over plain IDA. 
Moreover, CStaR and IDA are clearly superior to high-dimensional regression methods 
and marginal correlation screening, which is in line with the earlier validation of IDA4. 
We propose CStaR as a general method to obtain a stable ranking of genes in terms of the 
strengths of their causal effects on a phenotype of interest. An added value of our method 
is that, under some assumptions, this ranking comes with an error measure controlling 
false positive selections. We showed that CStaR exhibits a large increase in sensitivity 
when compared to plain IDA and other methods in S. cerevisiae (Figure 2). Moreover, 
we demonstrated the success of CStaR for the biologically much more complex 
multicellular organism A. thaliana. This makes it plausible that CStaR is relevant for 
commercial crops, by providing better target genes for marker-assisted breeding and 
transgenic approaches.  In fact, since CStaR is mathematically justified under clearly 
stated assumptions3,5, it has the potential to generalize to many other settings in biology, 
agriculture and other fields where efficient design and prioritization of new intervention 
experiments is a core aim. 

Note: Supplementary information is available on the Nature Biotechnology website. 

Availability 

The CStaR method is implemented in the statistical software R. An example script and 
the full ranking from Table 1 can be found at http://stat.ethz.ch/~hoven/cstar/. 
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Figure 1  Schematic overview of the methodological framework used in CStaR. After pre-processing the data (Step 1), lower 
bounds for the causal effects are estimated 100 times using stability selection5 according to the following procedure: a 

subsample of size 
2
n 
  

is drawn from the total of n pre-processed data points (Step 2). For reasons of comparability, the 

pre-selected gene expression data are standardized to have gene-wise mean zero and standard deviation one. On this 
subsample lower bounds for the causal effects are then estimated using IDA4 and used to rank the genes in each stability 
run (Step 3, Supplementary Section 1.1). Next, for a range of different q-values, we record the relative frequencies over the 
100 stability runs that each gene appeared in the top q ranks (Supplementary Section 1.2). The median rank over these 
different q's is used to generate the final ranking of the genes (Step 4). Furthermore, under additional assumptions, an 
upper bound for the per-comparison error rate (PCER) is estimated for each q-value and its corresponding relative 
frequency (Supplementary Section 1.3).  Finally, the gene ranking allows for design of experiment. Thus, a biological 
validation using intervention experiments can be performed.  We tested CStaR in two situations. First, on a publicly 
available compendium of 31 natural A. thaliana accessions consisting of n=47 gene expression measurements, each with 
21,326 genes and corresponding flowering time data6 (Supplementary Section 2.1). We performed biological intervention 
experiments according to the causal gene ranking (Table 1) by focusing on candidates that were not already known to 
control flowering time and for which mutant seeds were readily available (Supplementary Section 2.3). The biological 
experiments were analyzed using a two-sample Welch's t-test (Supplementary Section 2.4).  The second validation was 
performed on a publicly available data set in S. cerevisiae containing n=63 observational and 234 interventional full-genome 
expression profiles, with p=5,361 genes14 (Supplementary Section 3). Since this data set includes both observational and 
interventional data, the validation was analyzed by comparing estimated causal effect on the observational data with 
inferred effects from the interventional data (Figure 2). 
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Figure 2  True positive selections (y-axis) versus false positive selections (x-axis) for CStaR (solid) versus plain IDA4 (long 
dashed), Lasso12 (short dashed), elastic net13 (dash dotted) and marginal correlation ranking (dotted) in the S. cerevisiae 
validation (Supplementary Section 3). Random guessing is indicated by the grey line. All methods were trained on the 
observational data. True positives were defined as the largest 5% of the effects (in absolute value) inferred from the 
interventional data. 
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 gene 
summary 

rank 
median 
effect 

maximum 
expression 

error 
(PCER) name/annotation 

1 AT2G45660 1 0.60 5.07 0.0032 SOC1 
2 AT4G24010 2 0.61 5.69 0.0033 ATCSLG1 
3 AT1G15520 2 0.58 5.42 0.0033 PDR12 
4 AT3G02920 5 0.58 7.44 0.0041 RPA2B 
5 AT5G43610 5 0.41 4.98 0.0069 ATSUC6 
6 AT4G00650 7 0.48 5.56 0.0051 FRI 
7 AT1G24070 8 0.57 6.13 0.0040 ATCSLA10 
8 AT1G19940 9 0.53 5.13 0.0045 ATGH9B5 
9 AT3G61170 9 0.51 5.12 0.0044 PPR  protein 
10 AT1G32375 10 0.54 5.21 0.0045 F-box protein 
11 AT2G15320 10 0.50 5.57 0.0047 LRR protein 
12 AT2G28120 10 0.49 6.45 0.0054 nodulin  protein 
13 AT2G16510 13 0.50 10.7 0.0050 AVAP5 
14 AT3G14630 13 0.48 4.87 0.0056 CYP72A9 
15 AT1G11800 15 0.51 6.97 0.0053 endonuclease 
16 AT5G44800 16 0.32 6.55 0.0079 CHR4 
17 AT3G50660 17 0.40 7.60 0.0078 DWF4 
18 AT5G10140 19 0.30 10.3 0.0085 FLC 
19 AT1G24110 20 0.49 4.66 0.0071 peroxidase 
20 AT2G27350 20 0.48 7.06 0.0067 OTLD1 
21 AT1G27030 20 0.45 10.0 0.0075 unknown  protein 
22 AT2G28680 22 0.46 5.23 0.0072 cupin protein 
23 AT3G16370 23 0.43 12.4 0.0099 lipase/hydrolase 
24 AT5G25640 23 0.33 5.59 0.0091 serine protease 
25 AT1G30120 24 0.46 9.97 0.0077 PDH-E1  BETA 
Table 1  Top 25 findings by CStaR for the A. thaliana data. The genes are ranked by increasing summary rank, where ties are 
sorted according to the estimated median causal effect taken over 100 stability runs (third column). The maximum 
expression is taken over the original log2 data. The error is the median PCER over the range of q values. SOC1, FRI and FLC 
are three of 119 curated flowering time genes in Arabidopsis Reactome11 (http://www.arabidopsisreactome.org). This is a 
highly significant enrichment of known curated regulators when compared to random guessing (p<10–5). Although not 
curated in Arabidopsis Reactome, also RPA2B and DWF4 are known to affect flowering time9,10. Since the ordering of the 
genes is given by their summary rank, the values of median causal effect and per-comparison error rate (PCER) are not 
decreasing monotonously. For instance, ATSUC6 has a smaller median causal effect  and a larger PCER than the 
endonuclease, but since its lower bound for the causal effect is more stable, the former is ranked ten positions higher than 
the latter.  All genes from this list, for which mutant seeds were readily available and which were not already known to 
control flowering time, were used in the subsequent intervention experiments (indicated in bold). In total, intervention 
experiments were performed for 13 of the 25 top genes not implemented in flowering yet (Supplementary Section 2.3). 
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 Welch’s t-test 
gene DTB-SD DTB-LD RLN-LD 

PDH-E1 BETA 0.04 0.04 0.91 
ATGH9B5 0.02 0.15 0.04 

LRR protein (AT2G15320) 0.66 0.03 0.47 
OTLD1 0.43 0.03 0.86 

Table 2  P-values from two-sided Welch's t-tests in the A. thaliana validation, showing only genes significant in at least one 
of the following three settings: days to bolting in short days (DTB-SD), days to bolting in long days (DTB-LD), and rosette 
leave number in long days (RLN-LD). Each mutant was tested versus a control group.  P-values larger than 0.05 are written 
in italics (for complete results see Supplementary Tables 2, 3 and 4). 
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