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Introductory paragraph 

Increasing evidence suggests imprinted genes influence mouse and human behaviors and 

cognitive functions. Unlike autosomal imprinted genes, X-linked imprinted genes are expressed in a 

sex-dependent manner because of male hemizygosity. Therefore, these genes could directly affect 

sex-specific brain functions and sex-biased vulnerability to psychiatric disorders such as autism1. 

Comparing lymphoblastoid cell lines (LCL) and peripheral blood mononuclear cells (PBMC) from 

healthy adult male and females, we identified MAP7 domain containing 2 (MAP7D2) as the first 

human X-linked imprinted gene. Both in LCL and PBMC, MAP7D2 expression was significantly 

suppressed in males by maternal imprinting. In each female LCL clone, MAP7D2 was expressed 

higher in paternally derived allele and was affected by X-chromosome inactivation. In female 

PBMC, however, reactivation of maternal MAP7D2 alleles was observed. MAP7D2 was expressed 

specifically in the brain among human tissues with unique isoforms. These results predict a crucial 

role of MAP7D2 for human sex-dependent neurobiological traits. 
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TEXT 

Whilst early work with imprinted genes focused on their roles in feto-placental 

development and growth, recent studies indicate that many imprinted genes are highly expressed in 

the brain and affect brain functions2. Disorders caused by imprinted genes, i.e. Prader-Willi 

syndrome and Angelman syndrome,3,4 manifest with behavioral and psychiatric abnormalities5,6. 

Also, duplications of the maternally inherited 15q11-q13 region, including the 

Prader-Willi/Angelman syndrome imprinted gene locus, are the most common cytogenetic 

abnormality observed in autism7.  

Although the allelic expression of autosomal imprinted genes is dependent on the sex of 

the transmitting parent, expression of these genes does not differ between males and females, and 

this class of genes cannot directly influence sexually dimorphic phenotypes. However, males inherit 

a single X chromosome invariably from their mother, and paternally expressed (maternally 

imprinted) X-linked genes can only be expressed in females and influence sex-specific phenotypes8. 

Supporting this idea, David Skuse and colleagues studied the parent-of-origin effect of the X 

chromosome on girls with Turner syndrome9. They revealed that 45,Xm (maternal X chromosome) 

subjects had impaired social cognition relative to their 45,Xp (paternal X chromosome) counterparts. 

In a recent mouse study, the four core genotypes (FCG) model clearly showed a sex difference of 

behaviors (aggression, parenting, habit formation, nociception, social interactions), gene expression 

(septal vasopressin), and susceptibility to disease (neural tube closure and autoimmune disease) that 

were determined by sex chromosome complement and not mediated by fetal gonadal hormone10. 

Several X-linked imprinted genes have been described in mice. In female extraembryonic tissue, the 

paternal allele of Xist is preferentially activated and causes nonrandom Xp inactivation11. Xlr3b, 

Xlr4b and Xlr4c are maternally expressed (paternally imprinted) genes that were identified by 

comparing the neural gene expression of 39,XO mice, in which the parental origin of the single X 

chromosome was different12,13. Rhox514 and Fthl1715 are predominantly expressed from the paternal 

X chromosome in female pre-implantation blastocysts. However, all of these have no human 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
68

4.
1 

: P
os

te
d 

12
 D

ec
 2

01
1



NIIDA et al. 

- 5 - 

homologue or are not imprinted in human tissues1.  

To identify human X-linked imprinted genes, we used human derived samples and chose 

lymphoblastoid cell lines (LCL) established from normal adult males and females. To decrease 

individual variability, we used pooled samples. We established female LCL from five different 

individuals and separated each LCL into Xp active and Xm active clones by serial dilution and 

re-expansion. Because the early stages of established female LCLs are mixtures of Xp or Xm active 

clones but skew to one clone during a long culture, it is difficult to detect an X-linked imprinting 

gene affected by X chromosome inactivation. After determining the X chromosome active state of 

each clone by HUMARA analysis16, the same amounts of these ten LCL clones from five females 

were pooled (Fig. 1 top). In addition, the same amounts of freshly established LCL clones from ten 

males were pooled. RNA was extracted from each pool and compared with X-linked gene 

expression by microarray containing 1833 sequences and 1050 genes of X chromosome (Roche 

diagnostics) (Fig. 1 bottom). From the array data, 121 genes were expressed more than 1.5 fold 

higher in the female LCL pool with statistical significance (p<0.05). Of these 121 genes, 24 were 

eliminated because of pseudo genes or withdrawn entries in the database (NCBI Gene; 

http://www.ncbi.nlm.nih.gov/gene). For the remaining 97 genes, a second screening was performed 

by quantitative reverse transcribed PCR (qRT-PCR). The first screening was performed between 

female and male pooled LCLs (data in triplicate), and eliminated ten genes with no amplification, 

53 genes with average expression were higher in males, and 17 genes were expressed higher in 

females but less than 1.2 fold in males. For the remaining 17 genes, qRT-PCR was performed for 

each male and female LCL clone, and the statistical differences were analyzed between sex groups. 

Throughout these screenings, we found five preferentially female expression genes, MAP7D2, 

MSL3, HSD17B10, RPS4X and KDM5C (Table 1, screening data of other genes are listed in 

Supplementary Table). Of these, HSD17B10, RPS4X, KDM5C are previously known to escape X 

chromosome inactivation17-19 and were expressed in females at twice the levels of males. MSL3 is 

also suggested to escape X chromosome inactivation in LCL. In contrast, the female to male 
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MAP7D2 expression ratio was obviously high (7.90±2.99) (Fig. 2a), and in all five female LCL 

clone pairs, MAP7D2 was expressed higher in Xp active clones than Xm active clones, according to 

the Xm imprinting rule (Fig. 2b). 

Expression array also indicated 99 genes that were expressed more than 1.5 fold higher in 

males with statistical significance (p<0.05). We also performed the same screening steps for these 

genes. However no gene fulfilled all criteria. 

In the next step, to eliminate Epstein-Barr virus transformation and culture effects of LCL, 

we tested non-cultured peripheral blood mononuclear cells (PBMC) from normal volunteers to 

confirm the expression difference of these five genes between sexes. RPS4X and KDM5C showed 

statistically significant female dominant expression. MAP7D2 is expressed markedly in female 

PBMC, 18.38±1.69 folds greater than in males (Fig. 2a), and this female dominancy was observed 

independent of age without gonadal hormone effect (Fig. 2c). 

We used a MAP7D2 SNP (c.662A>G, p.N182S) to examine allelic expression status. 

Screening five female LCLs and the blood DNA of 22 female volunteers, one LCL (LCL-F3) and a 

volunteer were confirmed to have this SNP. RT-PCR and direct sequencing were performed to both 

clones of LCL F3 and PBMCs from the SNP positive family. Only one allele is expressed in each 

LCL clone due to X chromosome inactivation (Fig. 3a). However, female PBMCs showed bi-allelic 

expression of MAP7D2, and reactivation (loss of imprinting) of MAP7D2 on the Xm allele was 

demonstrated (Fig. 3b). Similarly, mouse X-linked imprinting genes, Xlr3b, Xlr4b, Xlr4c and 

Rhox5, are expressed biallelically in females at various stages and in various tissues1. 

To determine the expression profile of MAP7D2, we performed qRT-PCR on a human 

tissue RNA panel (FirstChoice® Human Total RNA Survey Panel, Ambion) (Fig. 4 top). MAP7D2 

showed a keen tissue specific expression pattern, with the most expression in the brain, followed by 

placenta, testes, kidney, thymus and female PBMC. The relative brain expression ratio was 38.9 

fold to female PBMC. MAP7D2 has several mRNA variants depending on the inclusion of exons 6 

and 7 and different frames of exon 8. We determined the expression of mRNA variants in each 
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tissue by RT-PCR spanning exon 5 to 8 (Fig. 4 bottom). Interestingly, MAP7D2 expressed two 

brain specific mRNA variants using new exons between exons 5 and 6. (Supplementary Data) 

Frequently, imprinted genes make a cluster, so we examined sex specific gene expression 

for MAP7D2 regional genes located around 1Mb on both sides, including PDHA1, MAP3K15, 

SH3KBP1, CXorf23, LOC729609, EIF1AX, SCARNA9L, RPS6KA3 and CNKSR2. Also we checked 

another MAP7 domain containing MAP7D3 located at Xq16.3. qRT-PCR results showed none of 

these genes showed significantly different expression between sexes both in LCL and PBMC. We 

also determined the imprinting state of mouse homologue Mtap7d2 using 16wk Balb/c male (n=3) 

and female (n=3) tissues, and no difference of expression between sexes was observed in any 

tissues, including brain, muscle, intestine, lung, liver, spleen, kidney and heart (data not shown). 

Microtubules consist of polymers of α, β-tubulin heterodimers whose assembly plays an 

essential role in adaptation and maintenance of the cytoskeleton. In nervous tissue, microtubules act 

in the formation and maturation of axons and dendrites, and microtubule-associated protein (MAP), 

MAP1A, MAP1B, MAP2 and MAPT control microtubule dynamics in vivo20. MAP7 was cloned by 

screening a HeLa cell expression library with antisera against crude microtubule-binding proteins. 

MAP7 is predominantly expressed in epithelial cells and may play an important role in 

reorganization of microtubules during polarization and differentiation21. MAP7 expression 

correlates to prognosis of colon cancer22, spermatogenesis23, and schizophrenia24. We checked 

MAP7 and other MAP gene expression by qRT-PCR with a human tissue RNA panel, and MAP4, 

MAP7, MAP7D1 and MAP7D3 were expressed in a relatively ubiquitous fashion in contrast to 

MAP1A, MAP1B, MAP2, MAPT and MAP7D2, which showed brain specific expression 

(Supplementary Fig.). These data suggest that MAP7D2 is brain expressing MAP and its function 

in the brain is much more significant than MAP7. Furthermore, sex-dependent MAP7D2 expression 

could be regulated specifically within the brain and during the developmental stage, possibly due to 

differences of the neural architecture of the brain between males and females. Also, PBMC data 

showed that maternally imprinted MAP7D2 can be reactive. MAP7D2 imprinting is not fixed, and 
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the epigenetic modifier could account for its expression level, as MAP7 expression is affected by 

retinoic acid23. Imprinting genes affect brain phenotype including some neuro-developmental 

disease. For example, despite intensive studies, DNA sequence variations including single gene 

mutation and copy number variants are not envisioned to be a major cause of autism spectrum 

disorders (ASD)25, although imbalanced genomic imprinting in brain development may be an 

etiology26. 

In conclusion, we identified the first human X-linked maternal imprinting gene MAP7D2 

and demonstrated its specific brain expression with unique isoforms. MAP7D2 seemed to be a brain 

specific microtubule-associated protein and was implicated in sex-dependent neuro-developmental 

phenotypes including cognitive functions and some psychiatric disorders with sex-biased 

vulnerability. 
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FIGURE LEGENDS 

 

Figure 1 

LCL sample preparation and expression array result. Five LCLs established from different females 

were cloned and separated to paternal X active and maternal X active clone. Each clone was 

confirmed by HUMARA analysis (top), and equal numbers of ten clones were pooled for the female 

LCL sample. Array results (bottom) show good correlation of male and female expression of the 

majority of X chromosome linked genes. M, molecular weight marker; U, undigested by HapII; Xp, 

Paternal X active clone with HapII digestion; Xm, Maternal X active clone with HapII digestion.   

 

Figure 2 

MAP7D2 is a maternally imprinted X chromosomal gene and is expressed higher in females, both in 

LCL and PBMC. (a) q-PCR analysis between male (white bar) and female samples (gray bar).  

Relative gene expression ratios were expressed with male expression average of one. The upper 

panel shows LCL (n = 10 for males and 5 pairs of maternal X active and paternal X active LCL 

clones for females), and the lower panel shows PBMC (n = 22 for both males and females, for 

MAP7D2, whose scatter blot is shown in figure (c)). Data are presented as mean values ± s.e.m. and 

performed #P (Wilcoxon signed-rank test), *P (unpaired-t test), **P (Welch’s t test) with two-tails. 

(b) MAP7D2 relative gene expression ratio of LCLs between male, maternal X (Xm) active and 

paternal X (Xp) active female clones. Each pair of Xm active and Xp active female LCL clones from 

the same individual is lined. $P (Tukey HSD) (c) Scatter plot of MAP7D2 expression in PBMC 

showed higher expression in females (filled circle) than males (open circle) independent of age (n 

=22, male 0-50yr, female 1-48yr). The dashed line showed each average expression ratio based on a 

male average of one.   
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Figure 3 

MAP7D2 is affected by X chromosome inactivation in LCL and reactivation of maternal allele 

expression in PBMC. (a) LCL-F3 has MAP7D2 SNP c.662A>G, p.N182S. Sequence results of this 

SNP site showed each Xm and Xp clone expressed only one allele by the effect of X chromosome 

inactivation. (b) PBMC DNA and mRNA sequence of a family with N182S SNP was evaluated. In 

this family, the daughter inherited the G allele from the father and the A allele from the mother. The 

daughter PBMC expressed both alleles with reactivation of the maternal allele of MAP7D2. The 

mother, A/G heterozygous of N182S SNP, also expressed both alleles in PBMC. 

   

Figure 4 

MAP7D2 is specifically expressed in brain with unique mRNA variant. The upper panel shows 

MAP7D2 relative expression ratio to female PBMC among human tissues by qRT-PCR. The lower 

panel shows the RT-PCR results of MAP7D2 spanning exon 5 and 8 in each tissue. Multiple bands 

of each lane showed mRNA variant and the unique two variants expressed in brain tissue. Samples 

were run on 10% PAGE and developed by silver staining. PBMC-F, Female derived PBMC; 

PBMC-M, Male derived PBMC; M, 100bp ladder molecular weight marker; V1~V4, MAP7D2 

transcript variant 1 to 4; b1, b2, V5, Newly identified MAP7D2 transcript variant brain 1, brain2 

and 5. 
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Table 1 Preferentially female expression genes in LCL 

Gene 
Symbol 

Gene Name Gene ID 
Gene Locus on 
X Chromosome 

Array Sequence 
ID 

Array 
Call 

Female 
LCL  

Array 
Call 
Male 
LCL  

Fold change 
Female/Male 

p.value  
(unpaired 

-t test) 
Escape XCI 

MAP7D2 MAP7 domain containing 2 256714 Xp22.12 NM_152780 558  241  2.32  0.0002  Not in LCL 

MSL3 
male-specific lethal 3 
homolog (Drosophila) 

10943 Xp22.3 NM_078628 2036  1166  1.75  0.0007  Suspected 

HSD17B10 
hydroxysteroid (17-beta) 

dehydrogenase 10 
3028 Xp11.2 NM_001037811 14010  7495  1.87  0.0002  Known 17 

RPS4X 
ribosomal protein S4, 

X-linked 
6191 Xq13.1 NM_001007 369  125  2.95  0.0014  Known 18 

KDM5C 
lysine (K)-specific 

demethylase 5C 
8242 Xp11.22-p11.21 NM_004187 1865  1206  1.55  0.0003  Known 18,19 
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METHODS 

 

Human cell culture, peripheral blood mononuclear cells isolation and RNA preparation. 

Epstein-Barr virus–transformed lymphoblastoid cell lines (LCLs) were established from normal 

adults, including ten males (18 to 48 years old) and five females (17 to 45 years old), by 

transformed lymphocytes with B95-8 supernatant. LCLs were maintained in culture with 

RPMI1640 medium with 10% FCS. For female LCLs, to separate Xp active and Xm active clones, 

serial dilution and re-expansion was performed. DNA was extracted from each clone and the 

peripheral leukocytes of their parents, and X chromosome activation state was examined by 

HUMARA analysis16. Peripheral blood mononuclear cells (PBMC) were isolated from 

EDTA-anticoagulated blood by Ficoll-Hypaque gradient centrifugation. RNA was isolated by 

Trizol Reagents (invitrogen) according to the manufacturer’s protocol. Written informed consent for 

molecular analysis was obtained from the volunteers after explanation of the study, which was 

approved by the ethics committee of Kanazawa University Graduate School of Medical Science. To 

determine human tissue expression profile of MAP7D2 and other MAP genes, we used 

FirstChoice® Human Total RNA Survey Panel (Ambion).  

 

Gene expression array analysis. Extracted RNA from male and female pooled LCLs were sent to 

the NimbleGen whole genome human gene expression array service (Roche diagnostics), which 

contains 47,633 genome-wide genes per array, eight probes per gene. Each probe is a 60mer. When 

a single gene had several sequences on the array, we chose the most significant data for screening 

purposes. 

 

Quantitative reverse transcribed-PCR (qRT-PCR). Using RNA extracted from each LCL and 

PBMC or manufacturer derived human tissue RNA, single strand cDNA was synthesized by 

standard method with a mixture of oligo-dT primer and random primer (9 mer) (TOYOBO) and 
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RevaTra Ace (reverse transcriptase) (TOYOBO). qRT-PCR was performed with ABI Prism 7700 

sequence-detection system (PE Applied Biosystems), Sequence Detector Software (SDS version 1.6, 

PE Applied Biosystems) and SYBR Premix Ex Taq II Perfect Real Time (TAKARA BIO). Data 

analysis was performed by 2-ΔΔCT methods27. To produce accurate results, the relative dose and 

statistical value of each gene expression between male and female groups was determined by 

multiple inner control method28. Ten inner control genes were examined, and co-efficiency was 

evaluated by the Best keeper program29. Finally, we used a geographic average of GAPDH, ACTB 

and UBC as an inner control for PBMC and human tissue RNA panel and the geographic average of 

HPRT, HMBS and B2M for LCL. 

 

Direct sequencing. Direct sequencing of PCR products was performed by BigDye Terminator v3.1 

Cycle Sequencing Kit (PE Applied Biosystems) and ABI PRISM 3100 Genetic Analyzer (PE 

Applied Biosystems). 

 

Statistical analysis. Gene expression array data were analyzed with NANDEMO Analysis 1.0.2 

software (Roche diagnostics Japan). X-linked genes, which were expressed more than 1.5 fold 

higher in female pooled LCL than males, were selected. The difference of mean log ratios between 

two samples was analyzed by unpaired-t test, and P < 0.05 (double-tailed) was considered 

statistically significant. qRT-PCR data sets of each male and female LCL clone or PBMC were 

evaluated by F-test first, then equal variance data were analyzed by unpaired-t test, and unequal 

variance data were analyzed by Welch’s t test. MAP7D2 expression in female LCLs was not 

normally distributed, hence Wilcoxon signed-rank test was performed. Tukey’s HSD test was 

performed to compare the data set between three groups. 
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