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Abstract 
Background: Self organizing maps (SOM) enable the straightforward portraying of high-dimensional 
data of large sample collections in terms of sample-specific images. The analysis of their texture 
provides so-called spot-clusters of co-expressed genes which require subsequent significance filtering 
and functional interpretation. We address feature selection in terms of the gene ranking problem and 
the interpretation of the obtained spot-related lists using concepts of molecular function. 
Results: Different expression scores based either on simple fold change-measures or on regularized 
Students t-statistics are applied to spot-related gene lists and compared with special emphasis on the 
error characteristics of microarray expression data. The spot-clusters are analyzed using different 
methods of gene set enrichment analysis with the focus on overexpression and/or overrepresentation 
of predefined sets of genes. Metagene-related overrepresentation of selected gene sets was mapped 
into the SOM images to assign gene function to different regions. Alternatively we estimated set-
related overexpression profiles over all samples studied using a gene set enrichment score. It was also 
applied to the spot-clusters to generate lists of enriched gene sets. We used the tissue body index data 
set, a collection of expression data of human tissues as an illustrative example. We found that tissue 
related spots typically contain enriched populations of gene sets well corresponding to molecular 
processes in the respective tissues. In addition, we display special sets of housekeeping and of 
consistently weak and high expressed genes using SOM data filtering.  
Conclusions: The presented methods allow the comprehensive downstream analysis of SOM-
transformed expression data in terms of cluster-related gene lists and enriched gene sets for functional 
interpretation. SOM clustering implies the ability to define either new gene sets using selected SOM 
spots or to verify and/or to amend existing ones. 
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1. Introduction 
High-throughput genome-scale sequencing and microarray technologies generate huge amounts of 
data which challenge tasks such as dimension reduction, data compression, visual perception, data 
integration and extraction of biological information. A natural basis for organizing gene expression 
data is to group together genes with similar patterns of expression, e.g. of highly correlated expression 
values. A series of different similarity measures and clustering algorithms have been developed in the 
last decade for this purpose. Another important task in extracting reliable information is to examine 
the extremes, e.g., genes with significant differential expression in two individual samples or in a 
series of measurements and to judge the degree of significance. Finally, gene set enrichment methods 
have been established to link previous biological knowledge about groups of functionally related 
genes with the results of new investigations. 
This study addresses the question how to properly combine self organizing maps (SOM) machine 
learning with differential expression and gene set enrichment analysis. SOMs describe a family of 
nonlinear, topology preserving mapping methods with attributes of clustering and strong visualization. 
They are generally used in many fields like bioinformatics for dimension reduction and the grouping 
of high dimensional data. SOMs are very intuitive and easy to understand and therefore used in 
decision-making. SOMs were devised by Kohonen [1], and first used by Tamayo et al. [2] and 
Törönen et al. [3] to analyze gene expression data. Our approach follows that of Nikkilä et al. [4] and 
of Eichler et al. [5] who configured the SOM method in such a way that it combines sample- and gene-
centered perspectives. Particularly it transforms large and heterogeneous sets of expression data into a 
gallery of sample-specific ‘portraits’ which can be directly compared in terms of similarities and 
dissimilarities of their textures.  
The ‘portraits’ represent mosaic-images where each tile represents a microcluster of single-gene of 
similar expression profiles which is characterized by one metagene reflecting the mean expression 
profile of the associated single genes. Due to the specifics of the machine learning algorithm 
metagenes of similar profiles cluster together into so-called spots in the SOM-images which can be 
easily identified by visual inspection and used as unsupervised gene clusters in downstream analysis. 
This SOM-spot clustering combines the criteria of coexpression (i.e. of similar profiles in the series of 
samples studied) and of over-/underexpression (in a subset of the samples studied). Our previous 
publication addresses methodical aspects of the machine learning step, spot selection and compares the 
transformed metagene-profiles with that of the original single gene profiles [6]. 
SOM machine learning (and these methodical aspects) alone is however insufficient to extract 
important features and biological information from the data. The obtained spot-clusters need further 
filtering and association with previous knowledge for this purpose. Here we address these data mining 
tasks with special emphasis on the structure of SOM-transformed data to enable their downstream 
analysis and biological interpretation.  
The first focus of this publication addresses the gene ranking problem in SOM-transformed data. SOM 
training typically uses a simple fold-change (FC) scale with respect to the mean expression of each 
gene in the pool of all samples to detect genes of interest. The FC-score however does not provide 
explicit information about statistical significance for the observed expression changes and thus it 
might have disadvantages in generating false signals, e.g., if large expression changes are paralleled 
with high uncertainties of the respective signals or, vice versa, if relatively small changes refer to 
accurate signals. SOM mapping must therefore be supplemented with appropriate algorithms to assess 
significance of the features selected. In this publication we apply significance analysis to the spot-
clusters of genes identified by the SOM method using three alternative test statistics based either on 
FC-measures or on regularized Students t-statistics with special emphasis on the error characteristics 
of microarray expression data. Such local, cluster-related lists of genes are expected to improve the 
resolution of the method to identify sample-specific features with a common functional impact. 
The second focus of this publication addresses gene set enrichment analysis under special 
consideration of the spot-clusters generated by SOM machine learning. It is based on the fact that the 
importance of genes in terms of their relation to a particular molecular function is not necessarily 
associated with strongest or most significant changes of expression provided by their rank in the 
obtained lists. Instead, it can also involve weak but consistent alterations of transcript abundance. 
Therefore gene set based methods have been developed to investigate phenotypic changes at the level 
of biological function considering, for example, the involvement of genes into signalling pathways, 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
66

6.
1 

: P
os

te
d 

4 
D

ec
 2

01
1



3 
 

their relation to cellular components or their chromosome location [14-20]. These methods essentially 
assess the enrichment of a set of several genes in the list of differentially expressed genes compared 
with the total reservoir of genes studied. The members of the set are defined a priori by some 
biological commonality for certain phenotypes. The main advantage of such methods over single gene 
based methods is that they directly link the ranked gene list with biological knowledge and therefore 
provide better functional insight into the cause of the phenotypic differences under study. 
Our work thus aims at refining the avenues for feature mapping and data reduction offered by SOM 
machine learning. We use the microarray expression data of a series of 67 different human tissues 
taken from ten tissue categories such as nervous, immune system, epithelial and muscle tissues as an 
illustrative example to demonstrate the strengths of the SOM method in disentangling large 
heterogeneous data sets. The paper is organized as follows: In the Results-section we present and 
discuss our approach of significance and enrichment analysis of SOM-transformed data if applied to 
the tissue body-index data set. In the methodical part we provide details of the applied methods and 
algorithms and of relevant characteristics of microarray data. In the additional material we address 
aspects of SOM data mining which supplement our main results. Finally, we complemented our R-
package ‘oposSOM’ [6] with appropriate add-on functions enabling the differential expression and 
geneset enrichment analysis of SOM-transformed microarray data. 
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2. Results 

2.1. SOM-portraits and rank maps 
Genome-wide gene expression data of 67 selected tissues taken from 10 tissue categories were pre-
processed and subsequently used to train a SOM as described previously [6]. Figure 1 shows the 
obtained SOM-portraits of selected tissues using a 60x60 mosaic grid. The method identifies coherent 
tissue-specific texture patterns of gene expression readily discernable in the obtained gallery of SOM 
images. Particularly, our SOM machine learning method partitions the more than twenty thousand 
‘single’ genes probed by each microarray into 3600 miniclusters arranged in a two-dimensional 
mosaic map which visualizes the specific expression pattern of each sample in terms of a color-coded 
texture indicating regions of over- and underexpression by red and blue spots, respectively. Most of 
the spots are tissue specific features which are found only in one or a very few tissue categories such 
as nervous, immune system or muscle tissues. 
Each tile of the SOM mosaics thus refers to one metagene which, in turn, is associated with a 
microcluster of single genes the number of which varies from tile to tile. The expression profiles of 
each metagene serves as representative (or prototype) of the respective cluster of co-regulated single 
genes. The color gradient of the map was chosen to visualize over- and underexpression of the 
metagenes compared with the mean expression level in the pool of all tissues studied.  
 

 
 
Figure 1: Gallery of SOM portraits of 42 selected tissues of different tissue categories (see ref. [6] for details). 
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Figure 2: Expression image of nucleus accumbens (‘standard’ SOM profile, panel a) and the average-rank maps 
for FC, WAD and shrinkage t-score statistic (b-d). The numberings of the tiles k=1…60 are given at the vertical 
and horizontal borders of the SOM. White areas indicate empty metagenes. 
 
Figure 2 shows the SOM expression image of one particular tissue example, nucleus accumbens, taken 
from the category of nervous tissues in log FC units (panel a) together with the respective average-
rank maps for the three different scores used (panels b-d), namely the FC-, weighted average 
difference (WAD)- and shrinkage t-score, respectively (see (Eqs. (1) and (2) in the methodical part). 
The rankings of genes refer to total gene lists which contain all genes studied. These maps color-code 
the mean rank of each metagene which was calculated as the arithmetic average over the individual 
rankings of the associated single genes in the total list. In general, genes on top of the list accumulate 
in the red overexpression spot of the standard SOM-profile however with a few exceptions, e.g. in the 
range of the green spot below the red one. The three alternative scores provide very similar pattern, 
however with subtle differences: The contrast, i.e. the gradient between areas of under- and 
overexpression is largest for the WAD-ranking and smallest for FC-ranking with t-shrinkage in-
between. Similar trends are observed for the SOM expression profiles which are color-coded 
according to the FC- and WAD-scores of their metagenes [6]. Note also that the rank maps reveal 
subtle details within the SOM-spots such as the chain-like cluster of metagenes of small rank within 
the overexpression spot (compare panel a with b-d in Figure 2). The analysis of such fine-structures 
might help to refine the subsequent selection of relevant genes within the spots. 
The examples shown in Figure 3 further support this result: The t-shrinkage rank-map of small 
intestine, T-cells and lymph node show a partly better resolved fine structure of highly ranked genes in 
different regions of the map than the standard SOM mosaics which use the log FC expression scale. 
On the other hand, the rank map of colon is dominated by blue areas which reveal an average level of 
relatively low rankings. This effect presumably reflects the relatively small expression level of the 
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genes in the overexpression spot in the top right corner of the map which give rise to relatively large 
rank numbers. The whole atlas of the rank maps of all tissues studied is shown in Additional file 1. 
 

 
 
Figure 3: Comparison of standard SOM in log FC-scale with rank maps based on global gene lists according to 
the t-shrinkage statistics. Metagenes of high overexpression and of small average rank of the associated single 
genes are coded in red. Both options show essentially similar textures. The rank maps partly reveal more detailed 
spot pattern or a low overall rank level (blue, e.g. colon). The atlas of rank maps of all tissues studied is shown in 
Additional file 1. 
 

2.2. Total gene lists 
The alternative scores generate ordered total lists of genes for each tissue with characteristic 
differences between the methods as illustrated in the rank-map shown in Figure 2. The WAD-score, 
for example, strongly weights highly expressed genes which concentrate in a few metagene-tiles in the 
top left corner of the map. As a consequence, these metagenes occupy smaller ranks in the WAD-list 
than in the respective FC- or shrinkage-t lists with consequences for the textures of the respective rank 
maps. The present study does not aim at comparing the performance of different expression scores in 
absolute units, an objective which is problematic in the absence of a suited gold standard. Previous 
work makes use either of synthetic simulation data, of correlation measures in real-world chip 
applications or of special calibration data sets to judge the quality of different expression scores [24-
29]. It turned out that t-shrinkage and different FC-based scores such as the WAD-score are generally 
suited measures to generate lists of regulated genes. Here we apply the three scores as three 
complementary alternatives with a specific focus on different expression properties: Particularly, 
WAD-lists heavily weight strongly expressed genes. In consequence, subtle expression changes of 
weakly expressed genes potentially get lost in WAD-lists. FC-lists directly rank the genes according to 
their differential expression and thus represent a simple and intuitive measure related to the change of 
mRNA abundance. FC-lists are however prone to generate false positives because the FC-score 
equally weights strongly and weakly expressed genes with usually smaller and larger noise levels, 
respectively. The t-shrinkage score explicitly considers the noise level of the genes which however 
might raise problems due to the uncertainty of the error estimates as discussed in the methodical 
section. Because of their specific advantages and disadvantages we consider the different scores rather 
as complementary measures than as competitive ones providing information which mutually 
supplement each other.  
Figure 4a shows the p-value distribution of differential expression of nucleus accumbens based on the 
t-shrinkage score (the atlas of the p-value distributions of all tissues studied is given in Additional file 
2). It well separates into a constant noise floor and the left-skewed subpopulation of differentially 
expressed genes constituting a percentage of about 66% of all genes available. We compare the global 
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lists ranked with increasing t-shrinkage, FC- and WAD-scores using four plots, namely (i) the rank 
comparison (RC), (ii) the correspondence at the top (CAT)- ,(iii) the p-CAT and (iv) the ∆p-CAT plots 
(Figure 4b, see Methods section for description). The RC-plot compares the individual positions on 
top of the lists by appropriate color-coding. It reveals moderate disordering between the three lists 
where most ranks agree within ±20 positions up to rank r=50 (see green symbols). The CAT-plot 
presents the cumulative fraction of common genes on top of the list for positions below a running 
threshold. In our example it shows that best agreement is achieved in FC/WAD-comparisons for ranks 
r ~ 10…100. However, also the other combinations provide acceptable agreement between the lists 
with CAT(r)≥ 0.5 for positions r<100, meaning that at minimum 50% of the same genes are included 
in pairs of lists up to rank one hundred.  
The p-CAT plot estimates the agreement between the lists in units of the cumulative log p-value of the 
t-shrinkage statistics. It enables to differentiate whether a given CAT-value refers to more similar or 
very different p-values and thus it estimates the importance of rank differences. The respective ∆p-
CAT plot shows the difference between the p-CAT value of the FC- or WAD-score and that of the t-
shrinkage statistics which provides the lower margin per definition. The ∆p-CAT values of the global 
lists of the FC- and WAD-scores initially increase for ranks below 5-20 indicating that the different 
rankings are associated with clearly different p-values. For positions r> 20 the ∆p-CAT values remain 
virtually constant indicating that the alternative lists provide consistent results where rank differences 
reflect rather the noise inherent in the data than systematic biases between the scores used. 
 

 
 
Figure 4: Global significance analysis of accumbens sample: p-value distribution and fdr- and FDR-curves of the 
t-shrinkage statistics (panel a) and comparison of gene rankings for FC-, WAD and t-shrinkage scores using the 
RC-, CAT-, p- and ∆p-CAT plots (panel b). 
 

2.3. Local, spot-related gene lists 
The spot-texture of the SOM portraits of individual tissues implies to generate spot-related gene lists 
by taking into account only the single genes which are associated with the metagenes forming a 
particular spot. Recall that a spot clusters genes of similar and thus co-variant expression profiles in 
the series of samples studied. Our spot-based significance analysis therefore shares similarity with 
methods which exploit the correlation between genes in significance testing of differential expression 
[30], [31] because it selectively applies to sub-ensembles of genes of highly correlated expression 
profiles. 
In the next step we therefore analyzed the p-value distribution and the mutual list characteristics for 
three selected spots referring to over- (spot I), under- (spot II) and virtually mean (spot III) expression 
(see Figure 5) which contain different numbers of single genes (I: 980, II: 745, III: 1,947). Spots of 
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regulated metagenes are detected for each tissue using the 98% / 2% quantile criterion for over- / 
underexpressed metagenes, respectively. The fraction of differentially expressed genes in the spots 
either markedly exceeds (I,II: %DE=0.95) or falls below (III, %DE=0.53) the global value 
(%DE=0.66). The ranking characteristics of the overexpression spot I closely resembles that of the 
global lists indicating that this spot contains most of the ‘leading’ genes of the global list (compare 
Figure 5 and Figure 4). Note that the overexpression spot selects strongly differentially expressed 
genes. Therefore the level of agreement between the alternative lists is slightly better especially for 
FC/WAD-comparison (CAT(r<100) ~ 0.6) compared with the respective comparisons between the 
global lists. Note that the spot-filtering effectively combines the scoring of differential expression with 
the selection of co-expressed and correlated genes. It has been previously shown that ‘correlation-
sharing’ for the detection of differentially expressed genes improves the performance of the analysis in 
terms of the false discovery rate [30]. For spot I we indeed obtain a much smaller total cumulative 
FDR value of Fdr(p=1)≈0.05 (Figure 4a) compared with the total list (Fdr(p=1)≈0.35; Figure 5). 
Contrarily, the alternative gene lists taken from the underexpression spot II largely diverge revealing 
the lack of agreement among the top 10 – 50 features. The CAT-plot shows best agreement for 
FC/WAD-comparisons with CAT(r≈100)< 0.6 and worst for FC/t-shrinkage (CAT(r≈100)<0.2). These 
rank comparisons are paralleled by relatively large differences of the p-CAT and ∆p-CAT 
characteristics revealing systematic and significant rank differences due to the specific biases of the 
used scores. Particularly, FC/t-shrinkage comparisons shows largest dissimilarity in the CAT- and p-
CAT-plots for r<50 followed by WAD/t-shrinkage comparisons. These discrepancies can be 
rationalized by the large uncertainty of low expression genes which accumulate in the underexpression 
spot. Note that the different rank-maps clearly express the discrepancy between the rankings in the 
regions of underexpression which largely lose their structured texture especially in the t-shrinkage 
rank-map. 
Interestingly, also spot III contains a large fraction of differentially expressed genes (%DE=0.53) 
despite the fact that the metagene expression is virtually on the moderate level. The comparisons 
between the alternative lists provide less agreement when compared with spot I but almost similar 
trends. The spot of ‘mean expression’ obviously still contains residual amounts of significantly 
differently expressed genes which appear as green and grey tiles in the region of spot III in the rank-
map (Figure 2). 
To generalize these results we calculated mean global and local CAT(r) and ∆p-CAT(r) values for lists 
of length r=10 and 100 of all tissue samples studied considering either all genes or the genes of the 
strongest overexpression spot, respectively (see Additional file 3 for details). The results of these 
global and local rank comparisons confirm the trends discussed above: global FC- and WAD-lists of 
length r=10 – 100 agree to about 70% on the average whereas global FC/t-shrinkage and WAD/t-
shrinkage lists are identical to about 50%. Local lists are slightly more similar by a few percent than 
global ones due to the pre-filtering of the genes in the SOM-spots. The respective ∆p-CAT values 
reveal that the significance level of the alternative scores is virtually identical for all considered lists.  
In summary, the different scoring methods typically provide similar and virtually equivalent gene lists 
for overexpression spots but diverging lists for underexpression spots. The rank-map of the respective 
methods clearly express this difference: Whereas the regions of overexpression are essentially similar 
in the different rank-maps (see red areas in Figure 2) the regions of underexpression appear either as 
relatively localized spots in the FC-rank and, to a less degree, in the WAD-rank maps or they ‘smear’ 
over larger regions in the shrinkage-t rank map due to the large uncertainty of low expression values. 
In conclusion, overexpression rankings provide robust lists of differentially expressed genes which are 
relatively independent of the scoring method used thus allowing the quantitative analysis in terms of 
the obtained rank and expression level. In contrast, underexpression lists are highly uncertain 
providing essentially qualitative information, namely that the respective genes are weakly expressed. 
Discrimination analysis between the different samples and especially GO-enrichment analysis to 
identify overrepresented gene sets should therefore focus on overexpression spots. The t-shrinkage 
score will be applied as the default criterion for gene ranking problem in the remainder of this study.  
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Figure 5: Local significance analysis of selected spots of the accumbens sample (see part above): p-value 
distribution and fdr- and FDR-curves of the t-shrinkage statistics (left part) and comparison of gene rankings for 
FC-, WAD and t-shrinkage scores using the RC-, CAT-, p- and ∆p-CAT plots (right part). 
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2.4. Global overrepresentation analysis 
The correlation and coexpression of the gene profiles in each spot can be utilized as a simple heuristic 
with implications for tentative gene function because biological processes are governed by coordinated 
modules of interacting molecules [21]. Application of gene set enrichment analysis to the series of 
about one dozen stable over- and underexpression spots detected in the SOM of human tissues will 
make explicitly use of this ‘guilt-by-association’ principle which assumes that co-expressed genes are 
likely to be functionally associated [22][23]. Enrichment analysis is expected to assign putative gene 
function(s) to the selected spots. Below we compare several options of enrichment analysis estimating 
either ‘overrepresentation’ of the members of a priori functional gene sets in the spot list, their 
‘overexpression’ in terms of differences of the average expression levels in the set and the list and the 
combination of both options. 

 
 

Figure 6: The over- and underexpression summary spot maps show nine spots each which are strongly over-
/underexpressed in different tissues (part a and b, respectively). Overrepresentation of a collection of 1454 gene 
sets is estimated for each spot using the hypergeometrical distribution. The right legend assigns the two most 
significantly overrepresented gene sets to the respective spots. 
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Essentially nine overexpression spots are identified in the SOM-images of all tissues studied using the 
98-percentile criterion of maximum expression. These spots are collected into one, so-called 
overexpression summary map as described in [6]. Subsequently GO-gene set overrepresentation 
analysis using the hypergeometrical (HG-) test is applied to the lists of genes contained in each of the 
overexpression spots (see the Methods section below). Particularly, the genes associated with each 
spot are analyzed for overrepresentation of genes taken from the collection of 1454 gene sets 
downloaded from the GSEA-homepage according to the GO-categories molecular function, biological 
process and cellular component. The HG-test then provides an ordered list of gene sets ranked with 
decreasing significance of overrepresentation with respect to the random appearance of genes from the 
set in each of the spots.  
Figure 6a shows the overexpression summary map with the nine spots of strongly overexpressed 
metagenes. The legend assigns the two leading overrepresented gene sets in the list of each of the 
spots to get a first idea about the possible biological context of the genes in the spots. For example, 
spot A in the top left corner of the SOM is clearly related to molecular processes in nervous cells 
according to the two leading gene sets. The more detailed inspection of the lists reveals that ten out of 
the top-twenty gene sets of spot A are related to nervous system (see Additional file 3). Also other 
tissue-specific spots can be associated with distinct molecular functions such as immune system 
processes (immune systems samples, spot F), sexual reproduction (testis, spot E) or muscle contraction 
(muscle tissues, spot B). Hence, the functional context of the different spots according to previous 
knowledge is clearly related to the tissues showing the respective overexpression spot. 
The analogous overrepresentation analysis was performed for the underexpression spots related to 
local minima of the metagene expression profiles (Figure 6b). The functional context of these spots 
thus refers to genes which are strongly underexpressed in the tissues showing this spot (see also the 
respective spot expression heatmap shown in Additional file 3). For example, spot b, c and g related to 
processes in the nucleus, RNA processing and the extracellular region, respectively, are 
underexpressed in most nervous tissues. Spot g and also spot f (related to neurogenesis) are 
underexpressed in immune system tissues. The latter spot, in turn, shows clear overexpression in 
nervous tissues, which is however not detected in the overexpression map selecting only the regions of 
strongest overexpression. Thus, overrepresentation analysis of both, over- and underexpression spots 
provide complementary information: On one hand, they allow to assign antagonistic gene activities in 
the same tissue and in different tissues. On the other hand, parts of the underexpression spots occupy 
different regions of the map than the overexpression spots. In consequence, combination of both maps 
extends the range of relevant gene sets and thus also the functional context studied. For example, spots 
a and d related to biopolymer metabolism and microtubules, respectively, are not detected in the 
overexpression map. Spots e and f are both overexpressed in nervous tissues. They occupy regions 
near the spot A also overexpressed in nervous tissues. The respective functional context of all three 
different spots allows to disentangle subtle details of gene activity in nervous tissues. A similar 
relation exists for overexpression spot F and underexpression spot b, where the former one 
overrepresents gene sets related to cell cycle and the latter one gene sets related to nucleus activity. 
 

2.5. Alternative spots selections 
In the previous subsection we have shown that over- and underexpression spots partly occupy different 
regions of the map with complementary information about their functional context. One can apply also 
alternative methods of spot selection using hierarchical clustering of the metagenes based on the 
Euclidian distance between them or determining correlation cluster based on Pearson correlation 
coefficients between the metagenes [6]. The former method provides an area-filling fragmentation of 
the map into different spots which typically occupy larger areas than the spots from the over-
/underexpression summary maps. In the Additional file 3 we demonstrate that the cluster-spots detect, 
for example, different groups of genes related to the functioning of nervous tissues. 
The correlation clusters provide almost similar results however also with subtle specifics of their 
functional context (Additional file 3). This method preferentially selects areas of highly variable 
metagenes along the border of the map with subtle differences between the functional context of 
adjacent clusters. In summary, different spot selection algorithms and criteria fragment the expression 
landscape of the map in partly different ways with complementary information about the functional 
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context of the associated genes. The suitability of the different methods depends on the particular aims 
of the issues studied and is not in the focus of this methodical publication. In the remainder of the 
paper we will use the overexpression spots to extract further functional information from the maps. 
Note however that over- and underexpression spot selection can be applied to the individual portraits 
of each sample and thus they provide specific enrichment characteristics as described below. In 
contrast, the k-means and the correlation clusters are based on the similarities between the metagene 
profiles and thus they refer to all samples in terms of the global overrepresentation of the associated 
genes. Application of the GSZ-score allows however to study also sample-specific enrichment of the 
respective genes (see below). 
 

2.6. HG-enrichment analysis 
Gene set overrepresentation analysis as described in the previous subsection applies to global spots of 
adjacent metagenes taken from the overexpression summary map. The real genes associated with each 
spot are the same in all tissues studied because the overexpression spot map summarizes the maximum 
size of each spot sizes observed in any of the tissues and thus it neglects sample-specific alteration of 
the spot size. This global approach applies to the whole series of tissue samples. It consequently lacks 
sample-specificity. Thus, overrepresentation of a selected gene set is independent of the individual 
expression level of the genes in the different samples. In the following we present and discuss two 
approaches to take into account sample-specific gene expression. We will use the term gene set 
overexpression analysis if the mean expression of the set-members is compared with the mean 
expression of all genes in the list without considering the number of set members in the list in contrast 
to gene set overrepresentation analysis which is based solely on the latter criterion. The term 
enrichment analysis will be used if both criteria, overrepresentation and overexpression, are combined 
which enables the refinement of gene set analysis in terms of sample-specificity. 
 

 
 
Figure 7: Local spot characteristics of the ‘nervous’ spot A in different tissues. Panel a shows the original 
expression profile of selected tissues and panel b the selected overexpression spot(s) by applying the 98% 
quantile criterion to the metagenes (red color). Note that the spot size (# of metagenes) and consequently also the 
number of associated genes with spot A (red circle) changes from tissue to tissue affecting the results of 
enrichment analysis using either the HG- or the GSZ-scores: The top three gene sets are given for each of the 
examples.  
 
The first option of HG-enrichment analysis simply substitutes the global spots by tissue specific ones. 
These local spots are determined individually for each tissue-specific SOM by applying the 98-
percentile threshold. The size of one particular spot usually varies from tissue to tissue and it can even 
disappear if the expression values of the respective metagenes do not meet the threshold criterion as 
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illustrated in Figure 7 for the ‘nervous tissue’-spot A (see also [6] for the full set of SOM images). In 
consequence, the spot-related lists of single genes and the derived list of overrepresented gene sets 
vary between the different samples. Subsequent application of overrepresentation analysis based on 
the HG-distribution (Eq. (8)) to these local spots provides tissue-specific p-values and thus one list of 
overrepresented gene sets for each of the spots in each of the samples.  
We selected the top-three gene sets per spot in each tissue and merged them into one global list of 
most enriched gene sets in all spots. Finally, this global list was converted into the HG-enrichment 
heatmap shown in Figure 8a. We applied hierarchical clustering to group similarly expressed gene sets 
in vertical direction. It reveals five to six gene sets associated with the ‘nervous tissue’-spot A in a 
tissue-specific fashion. Other groups of enriched gene sets can be associated with immune systems 
tissues (F), muscle tissues (B), epithelial (D) and homeostasis tissues (C1). The selected gene sets are 
listed in Table 1. Please note that we chose the same capital letters as labels as for the spot 
assignments discussed above for sake of comparison (see Figure 6a). 
 

2.7. GSZ-enrichment analysis 
HG-enrichment analysis applies a binary ‘included-or-not included’ criterion to assess the positive 
membership of the genes from a gene set in a selected spot-cluster. The gene set Z (GSZ)-score (Eq. 
(10), see the Methods section below) provides an alternative, second option for enrichment analysis 
which explicitly considers the individual expression values of the genes included in the list. The 
algorithm of GSZ-enrichment analysis is largely identical with that of HG-enrichment analysis; 
namely it starts with the tissue-specific identification of overexpression spots in the respective SOM-
images followed by the identification of spot- and tissue-specific lists of gene sets and their 
aggregation into one global lists using the top-three gene sets from each individual list. The only 
difference refers to the expression-dependent GSZ-score (Eq. (10)) which is used instead of the 
expression-independent HG-score (Eq. (8)). 
Figure 8b shows the GSZ-enrichment heatmap obtained from the aggregated list of all relevant spots. 
The obtained number of 64 gene sets exceeds the 48 gene sets in the HG-enrichment map in Figure 8a 
indicating the increased diversity of the GSZ approach. It can be adjusted by using stricter or more lax 
thresholds in the GSZ- and/or HG-mappings for the number of selected top-gene sets per spot, 
respectively. Both heatmaps reveal clusters of molecular characteristics which can be clearly assigned 
to selected tissue types, e.g. nervous processes to nervous tissues (cluster A in Figure 8) and muscle-
related function to muscle tissues (cluster B). Table 1 lists the HG- and GSZ-enriched gene sets 
associated with the main spots.  
In Additional file 3 we further disentangle the obtained GSZ-lists for the three spots selected in the bar 
plots in Figure 6b to illustrate the specifics of GSZ-enrichment analysis. Our standard algorithm 
applies the ‘top-three’ criterion, i.e. it selects the three top gene sets of each local spot list and merges 
them into the global list of gene sets which is further used to characterize the functional context of 
gene expression in the different tissues. This approach equally weights each spot in terms of the 
number of selected gene sets and thus it ensures that each spot-feature is equally represented in the 
resulting global list. Alternatively one can generate a global list of gene sets ranked according to their 
significance of enrichment in each of the tissues and cut this list using appropriate criteria. Results of 
this approach are presented in Additional file 3. The enrichment lists are very similar compared with 
those obtained from the ‘top-three’ selection criterion. 
In summary, HG- and GSZ-enrichment maps based on the ‘top-three’ selection criterion provide a 
suited overview of the gene sets most important in the experimental series studied. For the more 
detailed analysis we recommend using full lists of gene sets for each spot which are provided as 
additional material in the spot-reports as described below. 
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Figure 8: One-way hierarchical clustering heatmap of significantly enriched gene sets (rows) versus tissues 
(columns) using the HG- (a) and the GSZ- (b) statistics. The three-top gen sets per overexpression spot are 
selected in each of the maps. The heatmap color-codes the p-values of the respective score in log-scale (see the 
legends in the figure). The tissue categories are color-coded in the bar above the heatmap according to the 
assignments given in [6]. The gene sets are clustered in vertical direction. The capital letters approximately 
assign clusters of enriched gene sets in correspondence with the spots selected in Figure 6a and Table 1. The 
GSZ-score provides a larger number of gene sets (factor 1.8) and thus a more diverse pattern. 
 
Table 1: Molecular characteristics of selected overexpression spots as obtained by HG- and GSZ-enrichment 
analysis a  
 
spot GSZ HG 
A Synaptic Transmission 

Transmission of Nerve Impulse 
Central Nervous System Development 
Nervous System Development 
Regulation of Action Potential 

Cell-Cell Signaling 
Neurological System Process 
Synaptic Transmission 
Transmission of Nerve Impulse 
Nervous System Development 

B Muscle Development 
Myoblast Differentiation  
Regulation of Muscle Contraction 
Regulation of Heart Contraction 
Striated Muscle Contraction 

Striated Muscle Contraction 
System Process 

C1 Carboxylic Acid Metabolic Process 
Organic Acid Metabolic Process 
Excretion 

Calcium Independent Cell-Cell Adhesion 
Excretion 
Response to Steroid Hormone Stimulus 

D Epidermis Development 
Ectodermis Development 
Keratinocyte Differentiation  
Epithelial Cell Differentiation 
Morphogenesis of an Epithelium  

Tissue Development  
Epidermis Development 
Ectodermis Development 
 

F Regulation of Apoptosis 
T-Cell Activation 
Humoral Immune Resonse 
Immune System Process 
Immune Response 
Defense Response 

Cellular Defense Response 
Defense Response  
Immune System Process 
Immune Response 

 
a Gene sets enriched in both approaches are printed in bold letters. 
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2.8. Overexpression maps and profiles of selected gene sets 
In the previous subsections we applied ‘spot-centered’ gene set enrichment analysis to extract the most 
relevant functional gene sets in each tissue sample. One can also pursue a ‘gene set-centered’ approach 
and map the overrepresentation of one selected gene set in each tissue-specific mosaic image. 
Particularly, we estimate the degree of overrepresentation of this gene set in each metagene 
minicluster using the hypergeometrical (HG-) distribution. It provides an overrepresentation p-value 
for each metagene and each gene set considered. Then the distribution of p-values is visualized in the 
same two-dimensional mosaic which was used for the original expression images. Figure 9 shows 
overrepresentation maps of gene sets selected from each spot in Table 1. Overrepresentation is 
observed in different regions of the map, for example in the top left and bottom right corner for genes 
related to ‘synaptic transmission’ and to  ‘immune system process’, respectively. The examples also 
show that overrepresentation is either strongly localized in one region of the map (e.g. for ‘striated 
muscle contraction’ or, to a less degree, for ‘synaptic transmission’ and ‘immune system process’) or 
it spreads over wider areas of the SOM (e.g. for ‘transmission of nerve impulse’). Note that this 
overrepresentation map applies to all samples studied owing to the fixed gene composition of the 
metagene clusters. 
One can also apply an orthogonal approach to characterize the ‘enrichment’ profile of a selected gene 
set in all tissues studied. Our approach makes use of the full list of genes and calculates the GSZ-score 
for the gene set of interest in all tissues. In this special case the GSZ-score estimates overexpression in 
terms of the normalized difference between the mean expression averaged either over the gene set of 
interest and over the full list of genes (see Eq. (15)). The bar plots in Figure 10 show overexpression 
profiles of the selected gene sets. The gene sets are strongly and consistently overexpressed in 
different tissue categories. For example, the profiles of ‘synaptic transmission’ and ‘transmission of 
nerve impulse’ are strongly overexpressed in nervous tissues and underexpressed in virtually all non-
nervous tissues. Contrarily, ‘immune system process’-genes show a more heterogeneous expression 
pattern in the non-nervous tissues with ‘local’ over- (especially in immune systems tissues) and 
underexpression characteristics while remaining strongly underexpressed in the nervous tissues. Genes 
related to muscle contraction are naturally overexpressed in muscle tissues but also in tongue which 
also contains muscle tissue. Note also that the gene set ‘epidermis development’ is overexpressed in 
epidermal tissues and in tonsil assigned to tissues of the immune system. 
 

 
 
Figure 9: Overrepresentation maps of six selected gene sets containing between Nset= 157 and 472 genes. 
Overrepresentation in each tile of the mosaic is calculated in units of log(pHG) using the hypergeometrical 
distribution and color-coded (maroon>red>yellow>green>blue). White areas indicate metagenes not containing 
genes from the respective set). Strongest overrepresentation of the different gene sets is found in different 
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regions of the SOM (see red circles). Overrepresentation can be concentrated within one or a few adjacent 
metagenes (e.g. nervous system, panel b) or spread over different disjunct regions of the map (apoptosis, panel 
d). 
 

 
 
Figure 10: Overexpression profiles of selected gene sets (bar plots, compare with Figure 9). The bars are colored 
in accordance to the color-codes of the tissue categories introduces in ref. [6]. They are scaled in units of the 
GSZ-score (left axis). The horizontal dotted lines mark the fdr=0.2 significance threshold estimated from the p-
value distribution of the GSZ-score. The inserted curves show the logged FC-expression profiles of the top-three 
metagenes of strongest enrichment of the respective gene set. 
 
The curve plots inserted in all panels of Figure 10 show the expression profiles of the topmost three 
enriched metagenes containing the respective gene set. Most of these metagene expression profiles are 
very similar compared with the respective GSZ-overexpression profiles. Hence, representative profiles 
of the selected metagene miniclusters of co-regulated real genes well agree with the expression 
profiles of functionally related sets of genes which have been collected independently. This result 
supports the ‘guilt-by-association’ principle which states that coexpressed genes are likely to be 
functionally associated because biological processes are governed by coordinated modules of 
interacting molecules [21].  
The ‘guilt-by-association’ principle, in turn, implies the ability to define either new gene sets using 
selected metagene-miniclusters or to verify and/or to amend existing ones. Such verification can 
address the distribution of the single genes of a selected gene set over different regions of the SOM 
(see, e.g. Figure 9) to prove their set membership by independent methods. On the other hand, spot-
members not assigned to any gene set constitute potential new candidates for those gene sets which are 
highly enriched in the respective spot. For example, the tissue specific spots A (nervous system 
tissues), B (muscle tissues) and F (immune system tissues) contain about 30% - 40% genes which are 
not assigned to any of the gene sets tested and about 50% genes which are members of gene sets not 
listed at the top of the list (Table 2). These genes constitute potential candidates for further verification 
of their functional context.  
Based on our spot analysis we define tissue-specific gene sets. Spots are selected which can be clearly 
assigned to selected tissue categories. The single genes of each spot are filtered using a correlation 
threshold for mutual correlations between the single gene and metagene profiles: Only genes are 
considered with Pearson correlation coefficient larger than 0.8. The defined gene sets are available in 
Additional file 4. 
 
Table 2: Assignment of genes in selected spots to functional gene sets 
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Spot a Total b 
# of genes 

Primary gene sets b 
% in enriched sets 

Other gene sets b 
% in other sets 

Not in gene sets b 
% not assigned 

A  
nervous system 

445 22% 40% 38% 

B 
muscle 

229 22% 49% 29% 

F 
immune system 

1558 13% 52% 35%. 

 
a Spots are assigned in correspondence with Figure 6a. 
b total number of genes in the respective spots which decompose into genes with membership in the top-

three HG-enriched gene sets (see also Figure 6a), genes with membership in at least one of the 
remaining gene sets tested and genes without membership in any of the gene sets 

 

2.9. Zoom-in analysis 
We applied so-called ‚zoom-in‘ SOM analysis to study the expression profiles of subgroups of 
samples such as nervous and immune system tissues with enlarged resolution as described previously 
[6]. The zoom-in maps were trained using reduced sets of tissue samples but the same number of tiles 
of the SOM-mosaic. They show ‘new’ textures of characteristic over- and underexpression spots 
which reflect the expression profiles of the tissues of interest more in detail than the original SOM. In 
the supplementary material (Additional file 3) we present the results of global overrepresentation and 
of local GSZ-enrichment analysis applied to the respective subgroups of tissues. The zoom-in analysis 
of nervous tissues, for example, provides clusters of genes related to signal transduction and 
replication which are not clearly detected in the original maps. Both approaches, global 
overrepresentation and local GSZ-enrichment analysis, provide consistent results. In the addional 
material we provide also overrepresentation maps and overexpression profiles of the same gene sets 
shown in Figure 9 and Figure 10, respectively, to illustrate re-distribution of gene sets after zoom-in. 
 

2.10. SOM-mapping of strongly expressed, absent and housekeeping genes 
The gene sets studied in the previous subsections are chosen from GO-categories. They are 
subsequently processed to estimate their enrichment in overexpressed spot-clusters of co-regulated 
genes taken from the SOM mosaics. Gene sets can also be collected by applying alternative criteria 
such as the consistent high or weak expression of the selected genes in all samples. The population 
mapping of these sets into the SOM mosaic then specifies the activity of the respective genes in 
different areas of the map. Gene function of these sets can be specified using GO-overrepresentation 
analysis as described above. However, such global expression criteria itself lend to define groups of 
genes related to specific functions such as housekeeping gene activity. Housekeeping genes are 
thought to be by nature significantly expressed in all somatic cells under all circumstances because 
their gene products are required for the maintenance of basal cellular function (see, e.g., [32], [33] and 
references cited therein). In addition to housekeepers we select special sets of highly expressed (using 
differential expression and ranking criteria) and of absent (i.e. consistently not or weakly expressed 
genes) to obtain information about additional aspects of genomewide transcriptional activity which 
complements the functional analysis of tissue-specific overexpressed and co-regulated gene sets 
discussed above (see Table 3 for an overview; the genes of these sets are given in Additional file 5). 
We analyze the SOM population patterns, the tissue-wide overexpression profiles and also GO-set 
overrepresentation of these special gene sets. Figure 11 and Figure 12 show the population maps of 
these gene sets and their GSZ-overexpression profiles, respectively. Highly expressed genes were 
selected by taking the top-10% genes either from the global overexpression list (panel a) or from the 
global rank product list (b, see Additional file 3 for details and also [34]). These criteria select genes 
either from a larger number of overexpression spots (e.g. spots A, C, D, H; compare Figure 11a and b 
and Figure 6) or from only a few ones (Figure 11b). Note that only about one fourth of the genes in 
each of the sets are commonly found in both sets due to the different criteria which select either 
maximum expressed genes or consistently top ranked genes. The overexpression profiles in Figure 12 
(panel a and b) reveal that the rank criterion (b) more strongly weights highly expressed genes from 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
66

6.
1 

: P
os

te
d 

4 
D

ec
 2

01
1



18 
 

nervous tissues than the alternative high expression criterion (a). On top of the HG-overrepresentation 
lists one finds gene sets related to homeostasis for high expression (a) and to morphogenesis and cell 
migration for consistently highly ranked genes (b) (see Table 3). 
The expression of ‘absent’ genes per definition falls below the detection threshold for specifically 
hybridized probes in the microarray measurement. One can detect the respective genes using two 
different but closely related criteria (see rows c and d in Table 3). The first one extracts these genes 
directly after single-array intensity calibration using the hook method [35], [36] whereas the second 
one is based on the present-call parameter of each gene which was obtained after applying background 
correction and chip-to-chip normalization to all arrays of the series (see the methods section in [6] for 
details). The latter criterion selects about twice as much genes as the former one with only moderate 
overlap between both groups (Table 3 and Figure 11). Both criteria however provide very similar 
characteristics of absent and weakly expressed genes despite these differences (see panels c and d in 
Figure 11 and Figure 12): the genes selected strongly accumulate within one localized area near the 
centre of the SOM which has been assigned to virtually invariant genes in the respective summary 
map (see also the variance map in [6]). The GSZ-profiles support this result: They show relatively 
constant profiles for these sets which contain enriched populations from GO-sets related to receptor 
activity and signal transduction (Table 3). 
 
Table 3: Special gene sets 
 

 Gene set a Selection criterion # of genes Top three overrepresented GO-sets b 
a Highly 

expressed 
Top ranked expression in the global 
overexpression list 

2,227 (10%) Cation homeostasis, chemical homeostasis, 
multicellular organismal development 

b Highly ranked Top ranked in the global rank 
product list c 

2,227 (10%) Anatomical structure morphogenesis, 
axonogenesis, cell migration 

c Inactive  
(consistently not 
or weakly 
expressed) 

Member of the N-range of the hook 
curve, absent in all tissues 

688 Receptor activity, signal transduction, plasma 
membrane 

d Present call parameter pc=0 in all 
tissues 

1,156 Receptor-protein signaling pathway, 
neurological system process, signal 
transduction 

e Housekeepers  
(consistently 
expressed) 

Not member of the N-range of the 
hook curve, present in all tissues 

3,561 Anti-apoptosis, apoptosis, cell development, 
RNA processing, DNA/RNA binding, DNA 
metabolic process, metabolic process, 
transcription, translation d.... 

f Present call parameter pc=1 in all 
tissues 

3,167 see e 

g Top ranked in mean expression list 
averaged over all tissues 

2,227 (10%) Macromolecular complex assembly, nucleic 
acid metabolic process, regulation of cellular 
metabolic process 

h Taken from ref. [32], criterion 
analogous to d 

852 Cellular macromolecule metabolic process, 
cellular protein metabolic process, protein 
metabolic process 

 
a gene lists are given in Additional file 5 
b HG-enrichment, lists are given in Additional file 5 
c details are given in Additional file 3 
d about 150 gene sets (see Additional file 5 and Table 4) 
 
The criteria e and f (Table 3) essentially invert the previous selection of absent genes. They select 
genes which are significantly expressed in all tissues studied. These genes widely distribute over 
different regions of the SOM mosaics forming several highly populated ‘hot spots’ (see panel e and f 
in Figure 11). Spots of high tissue specificity are virtually not selected by these criteria as expected 
(compare with Figure 6). Interestingly, these consistently present genes are overexpressed in immune 
system tissues and underexpressed in nervous tissues, a pattern which basically inverts the respective 
profiles of the highly expressed genes in these two tissue categories (compare e and f with a and b in 
Figure 12). 
Criteria e and f essentially meet the conditions for housekeeping genes (see above). We applied an 
alternative criterion which chooses 10% of the genes of highest mean expression log-averaged over all 
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tissues. Most of the genes selected are common members also in the sets e and f. These three sets 
consequently possess very similar characteristics (see Figure 11 and Figure 12). For comparison we 
included a list of housekeepers taken from a previous microarray study [32]. The respective selection 
condition essentially agrees with our criterion d. However it was applied to an alternative tissue data 
set which was studied using a previous generation of HGU95a- GeneChip arrays [37], [38]. We 
reanalyzed this data set and found that it contains a much higher fraction of absent genes in most of 
the tissues (data not shown). This difference presumably explains the relatively small number of 
housekeepers detected in this data set. Despite this difference it reveals a similar overexpression 
profile compared with our alternative sets. 
HG-overrepresentation analysis of the housekeepers provides functional gene sets related to basal cell 
activity such as ‘metabolic process’, ‘transcription’, ‘translation’ and ‘RNA processing’. Note that the 
housekeepers distribute over several separated spot-like areas in the SOM mosaic which partly contain 
enriched fractions of the same gene sets such as ‘cytoplasm’ found on top of gene set lists in the spots 
h1-3, 5, 11 (see Table 4). Other gene sets accumulate in single or only a few spots only, for example 
‘nucleus’ in h3, h9 and h10; ‘mitochondrion’ in h4 and ‘lipid binding’ in h5. The SOM approach thus 
enables to further disentangle larger groups of genes such as housekeepers into subgroups of more 
specific function. For example, housekeepers related to nucleic acid processing accumulate in spots 
h7, h9 and h10 whereas genes related to actin functioning in h2. Note also that the spots of 
housekeepers discussed are still located in regions of relatively highly variable and thus specific 
metagene profiles (compare with the variability map given in [6]). 
In conclusion, global expression criteria represent an alternative option for selecting metagenes and 
spots of metagenes with functional impact. These criteria complement the overexpression criteria 
discussed above. Note for completeness that both options can be combined, for example, to mask 
absent genes in the overexpression SOM to exclude noisy and thus presumably irrelevant genes. 
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Figure 11: Population maps of special gene sets: Genes of highest expression (top 10%) preferentially 
accumulate in a few metagenes in spots A – F (spots are assigned in agreement with Figure 9) whereas the 
consistently absent genes (~3-5% of all genes) are found in the area of minimum variability (see variability map 
in [6]). Housekeeping genes selected as consistently present in all tissues (not-absent, ~15% of all genes) and as 
the top 10% most stable expressed genes are compared with the set of housekeeping genes taken from ref. [32]. 
The gene sets enriched in selected highly populated spots (h1 – h11) are given in Table 4. The Venn diagrams 
show the overlap between different gene sets as illustrated. 
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Figure 12: GSZ-overexpression profiles of the special gene sets defined in Table 3. 
 
Table 4: GO-overrepresented gene sets in SOM-spots of highly populated housekeeping metagenes 
 
spota # of 

genes 
Top overrepresented gene sets 

h1 333 Cytoplasm, enzyme regulator activity, vesicle mediated transport, establishment of localization 

h2 74 Cytoplasm, oxidoreductase activity, actin binding, endoplasmic reticulum, cytosol 

h3 418 Cytoplasm, macromolecular complex, nucleus, protein metabolic process, protein complex 

h4 89 Oxidoreductase activity, cytoplasm, mitochondrion, envelope, organelle 

h5 91 Cytoplasm, Golgi apparatus, cofactor catabolic process, lipid binding, microsome 

h6 101 Protein complex, macromolecular complex, cytoplasm, protein catabolic process 

h7 775 Biopolymer metabolic process, biosynthetic process, nucleic acid, RNA processing 

h8 50 Protein metabolic process, endosome, cellular metabolic process, phosphatase activity 

h9 176 Nucleus, biopolymer metabolic process, nucleic acid / RNA metabolic process 

h10 253 Biopolymer metabolic process, mRNA metabolic process, RNA processing, nucleus 

h11 118 Cytoplasm, proteasome complex, cellular protein metabolic process, protein metabolic process 

 
a spots are defined in Figure 11e 
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2.11. Reports 
Our SOM approach enables views from different perspectives on large sets of high dimensional data. 
They include overview characteristics which address similarity relations between different samples 
and the detailed description of the expression pattern in each of the samples studied as well. Moreover, 
differential expression analysis identifies ordered lists of over- and underexpressed genes taken either 
from the full ensemble of all genes available or from subensembles selected from metagene spots of 
co-regulated genes. Information about the functional context is extracted by applying enrichment 
analysis to the different gene lists.  
We presented the basal frame of SOM-based data mining in this and the previous paper [6]. Results 
are discussed with the focus on methodical issues such as different options of data presentation and 
analysis. Selected examples taken from the tissue data set are studied to illustrate the capabilities of 
different aspects of the approach. The methods are implemented in the R-program ‘oposSOM’ 
available as CRAN package via http://cran.r-project.org/. 
We applied these methods to the full set of 67 tissues to obtain the systematic, comprehensive and 
detailed characterization of the transcriptome of human tissues as seen by GeneChip microarrays. Our 
study produced an extensive collection of results such as various SOM expression profiles, global and 
spot-related gene lists, GO-gene set enrichment data and metagene-based cluster plots obtained from 
agglomerative analyses. Only selected results are presented here as illustrative examples to explain 
and to illustrate different aspects of the method. 
We designed a set of standard PDF-reports which allows the systematic browsing in the full set of 
results. The whole report is organized into several main topics each of them contains a series of 
documents for download from our website (http://som.izbi.uni-leipzig.de ): 
 
(i) Maps (experiment atlas) 
These reports show the collection of first level SOM of all tissue samples, supporting maps and the 
second level SOM as described in ref. [6]. First level SOM profiles are shown with different contrast 
(log FC-, WAD- and double log-scale) and also as rank-maps using the different scores as described 
above. 
 
(ii) Metagene and enrichment analysis 
Several agglomerative methods based either on distance or on correlation metrics are applied to the 
samples using filtered subsets of metagenes. The reports show the respective two-way hierarchical 
clustering heatmaps, pairwise correlation maps, minimum spanning trees and the results of 
independent component analysis [6]. In addition, GSZ- and HG-enrichment clustering heatmaps are 
available to associate the most relevant functional gene sets with the different samples. This 
information is supplemented by the respective p-value distributions to assess the quality of the data. 
 
(iii) Spot summaries 
These analyses apply different criteria of spot selection such as overexpression, underexpression, 
maximum and minimum of metagene expression and mutual correlations between the metagenes as 
described in ref. [6]. GO-enrichment analysis provides the three leading genes in the respective HG-
enrichment list of each of the spots considered. Spot-related heatmaps characterize the expression 
profiles of the selected features in the series of samples. Single spot summary sheets provide detailed 
information about each of the spots such as the ranked list of samples which overexpress this feature 
according to the mean t-shrinkage statistics of the spot and the ranked list of the top-twenty HG-
overrepresented gene sets together with the histogram of the respective p-value distribution (Figure 
13a). 
 
(iv) Sample summaries 
For each sample we generated one PDF-report which summarizes the most relevant information using 
the global (i.e. sample-centered) and local (i.e. spot-centered) perspective as well. The global summary 
shows the ranked list of differentially expressed genes together with the associated significance 
characteristics for the whole sample, the ranked list of over- and underexpressed gene sets after GSZ-
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overexpression analysis and the respective p-value distributions (Figure 13b). The local summary 
sheets present the analogous information for each single spot which is selected using the 98%-quantile 
criterion. The two maps in the left part of the sheet show the respective first level SOM and the 
selected spot, respectively. The full global and local lists can be downloaded in excel format for 
detailed inspection and further processing. We also present the locally pooled error (LPE) 
characteristics for each sample to judge its quality. 
 
(v) Cross-tissue enrichment and metagene expression profiles 
Enrichment maps and profiles of individual GO gene sets are shown as bar plots and provided as 
excel-files for download (Additional file 6). These cross-tissue characteristics are supplemented by the 
log FC-expression profiles of the leading metagenes of the respective gene set. 
 
This compendium of gene expression characteristics in human tissues supplements previous data 
collections obtained with alternative arrays, sample sets and methods of analysis [37-39]. 
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Figure 13: Single spot (panel a) and single sample global (panel b) summary report sheets (see also Additional 
file 3 for more details).  
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3. Summary and conclusions 
SOM machine learning transforms large and heterogeneous sets of expression data into mosaic images 
which visualize tissue-specific over- and underexpression in terms of characteristic textures. This view 
is very intuitive to identify modules of correlated and differentially expressed genes in terms of well 
defined colored spots. Thus, SOM analysis basically rearranges and classifies the primary information 
of single gene expression in a series of samples without filtering. It preserves the whole information 
content of the original data set despite the dimension reduction used to visualize the most essential 
expression profiles inherent in the data. 
This primary information together with the respective gene annotations is further processed in 
differential expression analysis using three alternative scores which place emphasis either exclusively 
on the fold change of gene expression or, in addition, on the precision of the measurement. It is taken 
into account either by the simple down-weighting of the impact of low expression values or by 
applying a regularized t-score. It explicitly considers the standard error of the expression values as the 
combination of individual and locally pooled error estimates. The latter error-pooling approach 
confirms the inverse relation between the magnitude of the logged expression and its significance. 
Significance of ranked gene lists is controlled by the local false discovery rate using standard methods.  
SOM analysis provides special advantage to generate local lists of genes taken from selected spots of 
the map. Thus, the impact of differential expression can be studied not only in a sample-specific 
fashion but also for selected subgroups of co-regulated genes. The alternative scores studied provide 
slightly different but at the end consistent rankings for lists containing a few dozen or more genes. The 
FC-, WAD- and shrinkage t-scores are judged rather as complementary measures than as competitive 
ones providing information which mutually supplements each other because of their specific 
advantages and disadvantages.  
To extract the functional context of spot and metagene related lists of single genes we applied 
overrepresentation- and overexpression analysis, and a combination of both with respect to pre-defined 
gene sets of basically known functional impact. Overreprepresentation analysis combines the criterion 
membership in a gene set with that of co-(i.e. correlated-) expression in a series of samples whereas 
overexpression analysis compares the mean expression of genes from the set with that of all genes. 
The mapping of overrepresentation of a selected gene set into the SOM mosaic provides a ‘functional’ 
map showing areas which are potentially relevant for this function. Alternatively, one can screen the 
degree of overrepresentation of a large number of gene sets in a selected metagene spot to discover its 
potential functional context. Both complementary views provide a link between the tiles and/or spots 
of the SOM mosaic and their potential molecular function. It applies to all samples of the series due to 
the fixed distribution of single genes in the mosaics.  
Overexpression analysis of a selected gene set, on the other hand, profiles a selected molecular 
function across the different samples studied, for example, to identify tissues with highly active or 
inactive genes from the set of interest. The gene set enrichment approach combines both 
overrepresentation and –expresssion analysis. It was applied to discover the functional context of the 
metagene overexpression spots in a sample specific fashion by estimating significance using either the 
hypergeometrical statistics or the gene set enrichment Z-score with similar results in both cases. GSZ-
enrichment however tends to select more diverse lists of gene sets because it explicit takes into 
account the expression profile of the associated genes in the different samples. The use of multiple 
options of ranking scores for differential expression and for gene set functional analysis enable to test 
the robustness of single gene and gene set rankings with potential consequences for their biological 
interpretation.  
The tissue related spots of the SOM typically contain enriched populations of gene sets corresponding 
to molecular processes in the respective tissues in most cases. The representative expression profiles 
of the leading metagenes of the spots well agree with the expression profiles of gene sets functionally 
related to the respective tissues. This result strongly supports the ‘guilt-by-association’ principle that 
co-expressed genes are likely to be functionally associated. It, in turn, implies the ability to define 
either new gene sets using selected SOM spots or to verify and/or to refine existing ones. This 
objective requires further study to judge the significance of these spot- or metagene-related sets using 
suited correlation or mutual information metrics. In addition to overexpression criteria for selecting 
SOM spots (given in units of expression differences) we study absolute ones (given in units of 
expression values) which allow identification of alternative sets of housekeeping genes and of 
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consistently-high or -low expressed genes. Finally, we considered molecular function of the 
overexpression spots of the SOM after zooming–in. 
Application of SOM-based analysis to the full set of 67 tissues provides the comprehensive and 
detailed characterization of the transcriptome of human tissues as seen by GeneChip microarrays. Our 
study produced an extensive collection of results which are provided as supplementary reports to 
illustrate the potency of the method and also as data base for further studies in the context of gene 
regulation in different tissues and its dysfunction. The methods of differential gene expression and 
enrichment analysis are implemented in the R-program ‘oposSOM’ available as CRAN package. 
 

4. Data and Methods 

4.1. Microarray data and SOM-cartography 
The raw microarray data and their primary and secondary analysis in terms of calibration, 
normalization and SOM-cartography was described in [6]. In short: Gene expression profiles were 
downloaded from Gene Expression Omnibus under accession number GSE7307 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307 ). The data set consists of 677 human 
tissue samples measured with the Affymetrix HG-U133 plus 2.0 array. We selected 187 of these 
samples derived from 67 different tissues for further analysis. 
Microarray intensities were transformed into expression values, Eg,m,r, using hook calibration [35], [36] 
and quantile normalization. The indices assign the gene (g=1…N), the tissue (m=1…M) and the 
replicate (r=1…Rm) where the number of replicates can vary between the tissues. The logged 

expression values of each gene, g,m,r 10 g,m,re log E≡ , are averaged over the replicates, g,m r,g,m r
e e≡  

(angular brackets denote arithmetic averaging), and transformed into differential expression values, 

g,m g,m ge e e∆ ≡ − , with respect to the mean expression of each gene averaged over all tissues studied, 

g g,m m
e e≡ .  

Subsequently self organizing maps (SOM) machine learning was applied to all differential expression 
data. The algorithm initializes K so-called metagene expression profiles. These profiles represent 
vectors of dimensionality M given by the number of conditions studied. Then a gene is picked from 
the gene list and its vector of differential expression g,me∆  is compared with the metagene profiles 
using the Euclidian distance as similarity measure. The metagene profile of closest similarity is then 
modified, so that it more closely resembles the expression profile of the selected gene. In addition, the 
neighboring metagene vectors in the two-dimensional grid closest to this metagene are also modified, 
so that they also resemble the gene's expression vector a little more closely. This process is applied to 
all genes and repeated about 250,000 times. The radius of considered neighbors is decreased with 
progressive iteration which modifies fewer metagene vectors by smaller amounts, so that the metagene 
vectors asymptotically settle down. The resulting map becomes organized because the similarity of 
neighboring metagenes decreases with increasing distance in the map. Each ‘single’ gene is assigned 
to the metagene vector of closest similarity.  
The final SOM thus consists of regions of similar metagene profiles each of them represents a 
minicluster of single genes with similar expression profiles. The distance similarity metrics and the 
training algorithm used gives rise to a characteristic metagene spot pattern where spots of high-
variable metagene profiles arrange near the edges of the map about a central region of less variable 
metagenes. The spots of highly variable metagenes differ by the particular sample in which they are 
over- and underexpressed. These sample-specific over- and underexpression spots are selected among 
all metagenes using the 98% and 2% quantile criterion, respectively. These spots collect sets of genes 
with highly correlated expression profiles. 
In our particular application the method sorts the individual genes into K=60x60 miniclusters. Each 
minicluster is characterized by one metagene profile which is used for visualizing the expression 
pattern of each tissue in terms of an individual mosaic picture of characteristic texture showing distinct 
over- and underexpression spots. 
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4.2. Differential expression scores 
A large multitude of various methods have been developed in the last decade to assess statistical 
significance of differential expression in microarray data analysis (see, e.g., the overview given in [7] 
and the references cited therein). Most statistical methods aim at generating ranked lists of single 
genes which are differentially expressed according to a certain level of significance. Microarray data 
are very noisy and prone to systematic errors [8-13]. The proper estimation of the level of precision 
constitutes therefore one basal problem in significance analysis, especially if only a few replicates are 
available. Another problem is raised by the highly multivariate character of the data which requires 
suited concepts to control significance in multiple testing. 
In this study we estimated differential expression of individual genes using three alternative scores: 
1. The fold change (FC) simply estimates the expression change in logarithmic scale, log

g,m g,mFC e≡ ∆ .  
 
2. The weighted average difference (WAD)-score, 

( )
( ) ( )

g,m g,m
g,m g,m g,m g,m

g,m g,m

e min e
WAD w e with w

max e min e

∆ − ∆
= ⋅∆ =

∆ − ∆
,     (1) 

 
is a fold-change based measure well performing in differential expression analysis [24], [25]. The 
main idea behind the WAD method assumes that relevant marker genes tend to have high expression 
levels, i.e. ‘strong signals are better signals’ in the gene ranking problem [8], [26], [40]. This 
assumption accounts for the fact that the experimental error of expression values inflates at small 
expression levels in logarithmic scale [41-43]. Note that the weighting factor in Eq. (1) can be 
expressed as a function of the absolute expression values as in the original paper of Kadota et al. [24], 

( )( ) ( ) ( )( )g,m g,m g,m g,m g,mw e min e / max e min e= − − , showing that the weighting factor linearly scales 

with the expression level of the gene. 
 
3. The shrinkage t-score, 

( ) ( )2shr2shr shrg,mg,mg,m g,mdiff m
g,m g,m Mdiff

g,m m m
m

m 1

e
t with SE

SE R RR

σσ σ

=

∆
= = + ≈

∑
 ,    (2) 

accounts for the standard error of the expression values of each gene in replicated measurements. Our 
shrinkage statistics was defined in Eq. (2) in analogy with previous approaches [44-46]. Here SEg,m

diff 
denotes the standard error of differential expression of gene g measured under condition m. To 
estimate the standard error in Eq. (2) we first calculate the standard deviation of the log-expression 

values using the available replicates, ( )2

g,m r,g,m g,m
r

e eσ ≡ − . These values are then plotted for each 

sample as a function of the logged expression degree, eg,m, and locally pooled over a moving window 
of a few hundred neighboring values. The obtained locally pooled error (LPE) estimates the mean 
standard deviation as a function of the expression, . It is combined with the individual 
standard deviation for each gene to provide the shrinkage error estimate used in Eq. (2) 

  .     (3) 

The parameter λ (0≤ λ≤ 1) scales the degree of shrinking g,mσ  towards LPEσ .  
The shrinkage t-statistics was developed in the framework of James-Stein analytic shrinkage and 
applied in different modifications in gene expression analysis (see [44] and references cited therein). 
The basic idea behind Eq. (3) assumes that the error estimate based on σg,m alone might be very 
imprecise, e.g. if only a few replicates are available. The resulting large ‘error of the error’ leads to 
highly uncertain naive t-scores associated with large false positives rates (see Eqs. (2) and (3) with 
λ=1).  

LPE g,m(e )σ

shr 2 2
g,m g,m LPE g,m(1 ) (e )σ λ σ λ σ= ⋅ + − ⋅
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It has been suggested previously that estimates of the variance from individual genes is questionable 
[26][39][47-50]. Yet accurately estimating variability of gene expression is essential for correctly 
identifying differentially expressed genes. Additional information may be gained by combining 
variance estimates across all or part of the experiment. Such information borrowing methods that 
exploit this information are able to improve the results [26], [47], [49]. Particularly, local-pooled-error 
(LPE) estimates for evaluating significance of each gene’s differential expression have been shown to 
effectively identify significant differential expression patterns with a small number of replicated arrays 
[49]. 
To get more precise error estimates, the shrinkage t-score makes therefore use of the fact that the 
variability of microarray expression values is governed by methodical factors which allow to express 
the measurement error as a function of the expression level [43], [51]. This error can be estimated with 
high precision using the LPE averaging approach. Finally, Eq. (3) combines the pooled and the gene-
specific error to take into account both, individual and common factors. Shrinkage t-scores 
consistently lead to accurate gene rankings which might outperform simple t-statistics or FC-scores 
[44]. 

4.3. Locally pooled error functions of single tissues 
The LPE approach pools genes with similar expression values to estimate their variance with 
improved precision. It is justified by the observation that the experimental error of microarray 
expression values is governed by systematic factors caused by the physico-chemical principle of probe 
intensity detection. Particularly, the technical error of the measurement is a function of the expression 
degree [8], [26], [40], [47], [49] which can be derived using error propagation of the underlying 
hybridization isotherm [8], [43]. It predicts that the uncertainty of determining expression estimates 
inflates towards small expression levels due to the increasing contribution of the non-specific 
background and it progressively decreases towards large expression degrees due to saturation effects. 
Indeed, the locally pooled error of the array data studied typically decreases with increasing expression 
degree (see Figure 14, Additional file 3 and Additional file 2 which shows the error functions of all 
tissues). The significance level of strongly expressed genes is consequently larger than that of weakly 
expressed genes for identical fold changes (see Eqs. (2) and (3) with λ<1). In addition, the mean error 
level averaged over all probes can markedly vary between the different samples. We proved two 
summary measures to quantify the mean error level of each sample:  
a) the mean standard deviation averaged over all probes,  

( ) ( ) ( ) ( ) ( )
max

min

e
2 2 2 2

g,m g,m g,m LPE max min
all probes all g,m e

1with P(e) (e) de / e e
N M

σ = σ σ ≡ σ ≈ ⋅ σ ⋅ −
⋅ ∑ ∫ , 

 and  
 
b) the mean LPE-error, 

( ) ( ) ( ) ( )
max

min

e
2 2 2

LPE LPE LPE LPE max min
e

(e) with (e) (e) de / e eσ = σ σ ≡ σ ⋅ −∫  ,  

where emax and emin are appropriate integration limits of maximum and minimum expression values. 
Note that also <σ> can be obtained by integrating over the LPE-error function to a good 
approximation (see the right part of the equation above), where P(e) is the normalized probability 
density to find a probe with expression e. Accordingly, the mean LPE-error equally weights the error 
function whereas the mean standard deviation in addition considers the population of the expression 
values. In consequence, the value of <σ> is closer to the standard deviation of strongly populated 
background probes whereas <σLPE> better reflects the error of specifically hybridized, more strongly 
expressed but less populated probes.  
Both error measures strongly correlate with r=0.99 (Figure 14, panel a). In the remainder of this study 
we will use <σLPE> as a characteristic measure of the mean level of scattering of the expression values 
between replicated samples. Group-averaging over the tissue categories (see [6] for details) reveals 
significant differences of their mean error level (Figure 14, panel b). For example, adipose tissues and 
tissues related to digestion show nearly twice as large gene-related error levels than tissues of sexual 
reproduction, of exocrine function and partly of homeostasis. 
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Figure 14: Tissue specific error levels of microarray expression data: Panel a) Comparison of <σ> and <σLPE> 
for all tissues studied reveals strong correlation with r=0.99. LPE error functions are shown for selected tissues 
referring to low, intermediate and high error levels: ‘frontal cortex’ (no.52, tissue numberings are assigned in 
[6]), ‘bone marrow’ (no.40) and ‘small intestine’ (no.12). Panel b) Boxplot of <σLPE> for different tissue 
categories defined in [6]. Note the different error levels. The color code is used also in the scatter plot (panel a). 
The error plots and <σLPE> values of all tissues are given in Additional file 2. 
 

4.4. Significance analysis 
The shrinkage t-statistics (Eq. (2)) transforms into p-values characterizing the significance of 
differential expression for each gene assuming Student’s t-distribution. The obtained density 
distribution for the p-values of all genes in one selected tissue, ρ(p), meets the normalization condition 
1

0

( ) 1p dpρ ⋅ =∫ . Examples for selected tissues of different mean error level are shown in Additional 

file 3. Under the null hypothesis one expects a uniform distribution, ρ0(p)= 1, whereas the alternative 
hypothesis will produce a skewed distribution, ρDE(p), decaying with increasing p because 
differentially expressed genes tend to cluster closer to p=0 [52]. In the general case, the observed 
distribution can be interpreted as the superposition of two components due to differentially and not-
differentially expressed genes, ρ(p)= ρDE(p) (1- η0) + ρ0(p) η0 , where η0 is the fraction of non-
informative ‘null’-genes among all genes considered [52], [53]. It was derived using the “fdrtool” R-
package [54] under the assumption of vanishing differential expression at p=1, ρDE(1)=0, giving rise to 

0(1)ρ η=  [55]. “fdrtool” was further used to calculate false discovery rates (FDR) to control the 
number of false discoveries: 

0 0
p

0

pfdr(p) and Fdr(p)
(p) (p) dp

η η
ρ ρ

⋅
= =

⋅∫
   .    (4) 

Here fdr and FDR denote the local and tail area-based FDR estimates, respectively. The latter Fdr(p)-
values provide a cumulative estimate of FDR referring to all genes on top of a list with p-values p’≤p 
whereas fdr(p) estimates the FDR of a selected gene with p’=p [56]. For a monotonically decaying 
total density ρ(p) both, fdr(p) and Fdr(p), are increasing functions which well correlate in the 
intermediate p range. The local FDR-estimate however systematically exceeds the tail-based one, 
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fdr(p)≥ Fdr(p), at intermediate and large values of argument (see the examples shown in Additional 
file 3). Their limiting values at p=0 and 1 are given by the equations Fdr(0)= fdr(0), Fdr(1)= η0 and 
fdr(1)= 1, respectively. 
 

4.5. Non-informative and absent-called genes  
The total fraction of differentially expressed and thus informative genes per sample can be estimated 
using the background level of the respective p-value distribution, 

0%DE 1 η= −     .       (5) 
%DE decreases with increasing mean error level <σLPE> and with increasing FDR at a selected p-value 
(p=const; see Additional file 3). In analogy to %DE we define %fdr (and %FDR) as the fraction of 
genes, the FDR-value of which falls below a given threshold, e.g. fdr(p)<fdrthreshold for the local FDR-
value. We arbitrarily chose fdrthreshold=0.5 > Fdrthreshold=0.2 where the latter relation ensures similar 
values of %fdr and %Fdr (see previous subsection). Both, %fdr and %Fdr, strongly correlate with each 
other (r=0.97; data not shown) and with %DE (see the %fdr-vs-%DE plot in Figure 15, r=0.98). The 
latter result indicates that %fdr is largely determined by the noise floor of non-informative probes 
whereas the slope of the decay of the p-value distribution near its left boundary has, if at all, an almost 
tiny effect. Note that both factors, the non-informative noise floor and the particular shape of the 
distribution of informative probes, can affect %fdr. 
%DE (and %fdr) negatively correlates with the mean error level <σLPE> (r= -0.79, Figure 15), i.e., a 
higher uncertainty of the expression measures is accompanied by a smaller number of differentially 
expressed genes on the average. This result reflects the fact that a larger uncertainty of the expression 
estimates effectively increases the fraction of non-informative probes which contribute to the null 
distribution only. Note that %DE more than halves from values about 0.7 to 0.3 if <σLPE> increases 
from ~0.1 to 0.3.  
On the other hand, <σLPE> is related to absolute expression values whereas %DE refers to differential 
expression relative to a reference level. %DE of a particular tissue is consequently affected by its 
expression profile and by the respective noise floor. The expression level is governed by biological 
factors, e.g. by the tissue specifics of gene activity, whereas the noise level mainly depends on the 
precision of the measurement, which is affected by biological and methodical effects as well. Hence, 
the obtained correlation between %DE and <σLPE> indicates that the precision of the expression 
measurement largely affects the number of detected differentially expressed features.  
To further analyze the noise-level inherent in the data we included the fraction of absent-called genes 
(%N) in our correlation plot where %N is defined as the fraction of genes the expression of which falls 
below the detection threshold of the microarray measurement. It is determined separately for each chip 
in the calibration step [6], [35], [36]. Interestingly, %N does virtually not correlate with %DE (r=-
0.04), however it moderately correlates with <σLPE> (r=0.38), which, in turn, correlates with %DE (r=-
0.79, see previous paragraph). The quantile normalization and scaling algorithms used transform the 
individual sample-specific density distributions of expression values into one common average 
distribution [6]. As a result the potential relation between %N and %DE gets mostly lost in this step 
presumably because also absent-called genes can differentially express in different samples. In 
consequence, %N essentially does not affect the differential expression estimates whereas it is directly 
related to the mean error level of each array. In turn, <σLPE> affects %DE because it determines the 
significance of the differential expression values and thus %DE. 
This somewhat puzzling relation between the error measures considered shows that data 
transformation after preprocessing and normalization can mask mutual relations. Most importantly, the 
number of differently expressed genes meeting a given significance criterion is governed by the error 
level of the expression measures which, in turn, systematically varies between the different tissues and 
tissue types. 
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Figure 15: Correlation plots of different error estimates, the fraction of differentially expressed genes (%DE), of 
genes meeting a minimum FDR-criterion (%fdr), absent-called genes (%N) and the mean error level (<σLPE>), of 
the tissues studied. Regresssion lines and the respective regression coefficients are given within the figure. 
 

4.6. Comparing alternative gene lists 
Each of the alternative scores of differential expression provides an ordered list of differentially 
expressed genes per tissue which are ranked, for example, with decreasing absolute value of the score. 
The similarity between two lists of length r can be described using the ‘correspondence at the top’ 
(CAT(r)) plot. It shows the fraction of genes commonly found at the top of both lists up to rank r [57]. 
Note that ‘null-correspondence’ for randomly ranked genes can be estimated using the 
hypergeometrical distribution and Eqs. (8) and (12) (see below). The respective CAT(r) value is given 
by the probability that a selection of Nset=r genes is found among the top Nlist=r positions of a total list 
of length N, pHG= r/N (see below). 
The CAT-plot thus estimates the agreement between two lists irrespective of the particular score 
values of the genes in the lists. For example, two lists can agree with CAT=0.5 but differ with respect 
to the significance level of the remaining 50% of genes. To assess this aspect of pairwise list 
comparisons we define the p-CAT(r) value as the cumulative logged p-values of the t-shrinkage score 
of the r genes at the top of the list obtained from the t-shrinkage or from the alternative scores. The p-
CAT value of the t-shrinkage score provides the lower limit because it per definition is ranked with 
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increasing p value. The corresponding p-CAT value of an alternative score such as the WAD-statistics 
consequently judges the degree of discordance with respect to the t-shrinkage statistics. It is given as 
the difference ∆p-CAT = p-CAT(r)alternative score – p-CAT(r)t-shrinkage. 
Finally, the rank-correspondence (RC) plot illustrates the agreement between two lists by color-coding 
each position either in red or in green: green symbols assign ranks which agree with ±20 positions in 
the alternative list whereas red ranks do not. 
 

4.7. Differential expression of metagenes  
SOM machine learning identifies k=1…K metagenes where each of them is representative for a 
minicluster of nk real genes of correlated expression profiles. A simple natural approach of combining 
significance information for a group of genes is to calculate the mean characteristics averaged over the 
group members. Accordingly, we calculate the mean p- and fdr- (Fdr) values for each metagene via 
arithmetic averaging, 

,,
1

1
∈

=

= ∑
kn

g k mk m
gk

S S
n

,          (6) 

where Sg,m= tg,m, log(pg,m), fdrg,m are the single gene significance characteristics of gene g in metagene 
k and tissue m. Ranking of the averaged characteristics provides ordered lists of metagenes according 
to their differential expression.  
In [6] we defined spots of adjacent metagenes by applying different criteria, such as the mutual 
correlations between the metagene profiles or their differential expression beyond an appropriately 
chosen threshold value. For example, metagenes are classified as over- (or under-) expressed, if their 
expression value exceeds the 98% (or falls below the 2%) quantile-level of the expression range of all 
metagenes in the particular tissue studied. These spots are characterized by their mean significance 
characteristics as averages over all genes of the respective spot in analogy with Eq. (6) 

kn

m g k,mspot
k spot g 1k

k spot

1S S
n ∈

∈ =
∈

= ∑ ∑∑
.        (7) 

 

4.8. Gene set overrepresentation analysis: integrating concepts of molecular function 
Gene set analysis requires the knowledge of predefined gene sets to study their enrichment in gene 
lists which are obtained from independent differential expression analysis (see [14], [15] for a critical 
review and references cited therein). A large and diverse collection of such sets can be downloaded 
from the ‘gene-set-enrichment-analysis’-website (http://www.broadinstitute.org/gsea). Particularly, we 
included in total 1454 gene sets in our analysis according to the GO terms ‘biological process’ (825 
sets), ‘molecular function’ (396 sets) and ‘cellular component’ (233 sets). These sets can partly 
overlap in component genes, and some gene sets are subsets of others due to the hierarchical nature of 
the GO-systematics [39]. Rather than merge these sets we kept them all in order to maximize the 
functional annotation conveyed by the gene set names.  
We will use the term ‘overrepresentation’ to assign the probability to find members of a given set in a 
list compared with their random appearance independent of the values of their expression scores. 
Contrarily, the term ‘overexpression’ will be used to characterize deviations between the mean 
expression score averaged over the set-members in a list compared with the mean score of all list 
members independent of their overrepresentation. The term ‘enrichment’ will be used for estimates 
which combine overrepresentation and overexpression (see below). 
Particularly, in gene set overrepresentation analysis, each gene studied is classified according to two 
memberships leading to a 2×2 contingency table for further testing (Table 5): firstly, its membership in 
the particular set of functionally related genes of length Nset and, secondly, its membership in the 
respective list of differentially expressed genes of length Nlist. The intersection of the set and the list is 
given by the number of ‘positive’ genes, N+. Then, one can estimate overrepresentation of these 
positive genes using the hypergeometric distribution by calculating the cumulative probability that 
there is more overlap between the list and the set than would be expected by chance [58-60], 
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 .  (8) 

The obtained p-value estimates the probability to find a stronger overlap between the list and the set 
by chance than actually detected.  
The gene set overrepresentation approach thus considers the joint membership of a gene in a gene set 
and in an independent list of genes without taking into account the rank and the particular values of the 
respective test statistics of the genes in the list. For example, it ignores whether a positive gene is 
found on top or on bottom of the list or whether a gene is strongly or weakly differentially expressed. 
In contrast, the so-called gene set overexpression approach compares the gene set statistics with the 
null given by the ensemble of all genes studied (see refs. [15] and [17] for a review). In this case 
however no enrichment of a set in a sub-ensemble of a gene list is taken into account. 
 
Table 5: 2x2 contingency table of the number of genes in different classes for gene set overrepresentation in a 
list of differentially expressed genes 
 

# of genes in list  not in list total 
in set N+ Nset- N+ Nset 

not in set Nlist- N+ N- (Nlist+ Nset)+ N+ N- Nset 
total Nlist N- Nlist N 

 

4.9. Gene set enrichment analysis: the GSZ-score 
The so-called gene set Z-score (GSZ) merges both options provided by the gene set overrepresentation 
and the gene set overexpression approaches [17]. Namely, the GSZ method estimates 
overrepresentation of a gene set in a list using its score statistics, for example, g list g listS t∈ ∈= . It is 
designed in such a way that members of the list with high values on top of the list more heavily 
contribute than members with lower values down the list. Particularly, one first transforms the total 
sum of the score function over the gene list into two components containing members and non-
members of the set,  

list g list list
all g list

S S S S+ −

∈

= = +∑   with 
g list AND g set g list AND g set

list g list gS S and S S
∈ ∈ ∈ ∉

+ −= =∑ ∑  .  (9) 

Secondly, one defines the regularized Z-value of the differential score, list list listS S S+ −∆ = − , of the form 
(see [17] for details) 

list list
2 2

list 0

S E( S )GSZ
SE( S ) (1 ) SEλ λ

∆ − ∆
=

⋅ ∆ + − ⋅
 .       (10) 

Here,  
( ) ( )

( )( )
list listlist HG HG list HG

22 list
list listHG HG list

list

E( S ) S N N S 2 N N and

var(S)SE( S ) 4 N N N var(N ) S var(N )
N 1

+ − +

+ + + +

∆ = ⋅ − = ⋅ −

 
∆ = ⋅ − − + ⋅ − 

     (11)  

are the expected mean and the standard error of ∆Slist for the selected list under the null hypothesis. 

list listlist
S S / N=  and ( )2

list g list
g listlist

1var(S) S S
N ∈

= −∑  are the mean and the variance of the 

expression score in the list, respectively. SE0 and λ denote the regularization constant and a scaling 
factor (1 ≤λ ≤1) which were chosen to stabilize the variance in the denominator of Eq. (10) especially 
for short lists (see below).  
The mean and the variance of positive members of the hypergeometrical distribution are

list set list
setHG HG

N N N NN N and var(N ) N 1
N N N 1+ + +

−  = = ⋅ −  −  
 ,    (12) 

set

setset
N

list
HG HG

n N 1

list

N NN
N nn

p P(n N ) p (n) with p (n)
N

N
+

+
= +

−  
   −  = > = =
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respectively. The respective mean number of negative members is listHG HG
N N N− += − . One gets 

after inserting Eq. (12) into Eq. (11) for the special case listN, N 1>>  

set
list listlist

22 list set set list
list set list list

2 NE( S ) S N 1 and
N

N N N NSE( S ) 4 N var(S) (1 ) S (1 ) (1 )
N N N N

⋅ ∆ = ⋅ ⋅ − 
 

 ∆ ≈ ⋅ ⋅ ⋅ − + ⋅ − ⋅ − 
 

.    (13) 

Eq. (13) indicates that the standard error in Eq. (10) vanishes for small sets and/or short lists 
(compared with the total number of genes , i.e. Nlist/N<<1) giving rise to instable estimates of the 
GSZ-score [17]. Making use of approximation Eq. (13) we chose the regularization constant according 
to  

min min min min
22 min set set set list

0 list list list

min min
list set

list set

N N N NSE 4 N var(S) (1 ) S (1 ) (1 )  
N N N N

N Nand 1 min 1,
N N

λ

 
≈ ⋅ ⋅ ⋅ − + ⋅ − ⋅ − 

 
 

= − ⋅  
 

  (14) 

to penalize small lists and sets. Nlist
min and Nset

min are minimum settings (typically 5-10) and 

listlist
S and var(S)

 
are the mean and the variance of the significance score in the ensemble of all 

genes of the list. The ad-hoc estimate of the scaling factor λ ensures that SE0 progressively increases 
with decreasing number of genes in the list and/or set. Obtained GSZ-values were transformed into p-
values using a permutation approach which generates the respective null distribution by random 
rearrangement of genes in the collection of predefined gene sets. One and two tailed tests were applied 
to assess over- or underexpression and differential expression (i.e., under- and overexpression), 
respectively. 
In the following we consider two special cases of the GSZ-score referring to overexpression and 
overrepresentation, respectively.  
Firstly, the GSZ-score can be calculated for the whole gene list with Nlist=N. Eq. (13) provides for this 
special case ( )

list
list setN N list

E( S ) S 2 N N
=

∆ = ⋅ ⋅ −  and 
N Nlist

2
list set listSE( S ) 4 N var(S)

=

∆ ≈ ⋅ ⋅ . The difference 

score becomes ( )
list

list setN N list list
S 2 S N S N+

=
∆ = ⋅ − ⋅  where list setlist

S S / N+ +=  is the mean expression 

score averaged over all members of the gene set. Insertion into Eq. (10) for the special case λ=1 
provides the GSZ-score of the full list 

list

list list
N N

list set

S S
GSZ

var(S) / N

+

=

−
=  .        (15) 

It represents a Z-statistics estimating the overexpression in terms of the deviation of the set average of 
the expression score from its total average over the whole gene list where the standard error is 
estimated using the variance of S for sample size Nset. The respective shrinkage statistics is obtained 
with the substitution min min

set setvar(S) var(S) ( (1 ) N ) var(S) Nλ λ→ ⋅ + − ⋅ ≈ ⋅  in the denominator of Eq. (15). 
The second special case assumes an identical value of the expression score for all genes, Sg=1, after 
ranking. The difference score thus simply counts the difference of members and non-members of the 
set in the list, list listS 1

S N N 2N N+ − +=
∆ = − = − . The expected mean and the variance in Eqs. (11) and 

(13) are given by <S>list=1 and var(S)list=0, respectively. Insertion into Eq. (10) provides the GSZ-
score with λ=1 

( ) ( )HG HG
S 1

set list list set

N N N N
GSZ

var(N ) N N N N(1 ) (1 )
N N N

+ + + +

=
+

− −
= ≈

⋅  ⋅ − ⋅ − 
 

 ,    (16) 

where the right hand approximation assumes listN, N 1>> . It represents a Z-statistics estimating the 
overrepresentation in terms of the deviation of the actual number of positive members from the 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
66

6.
1 

: P
os

te
d 

4 
D

ec
 2

01
1



35 
 

expected mean according to the hypergeometrical distribution and the respective variance. Eq. (16) 
further simplifies for short lists and sets, Nlist,Nset<<N, into:  

( )list HG
S 1

set list

N N
GSZ

N N
N

+
+

=

−
≈

⋅
  .        (17) 

The denominator substitutes for the shrinkage statistics with 
min min

set list list set list setN N max(N N , N N )
N N
⋅ ⋅ ⋅

→ . 

Eqs. (15) and (16) thus illustrate that the GSZ-score in its general formulation in Eq. (10) estimates 
enrichment in terms of a combination of overexpression and overrepresentation Z-scores. It has been 
shown in ref. [17] that the GSZ-score is related to alternative scores, namely the Random Sets [61] and 
the max-mean gene set statistics [62] representing a unification between these relevant scoring 
functions. Another comparative study on different gene set enrichment methods showed that removing 
incoherent pathways prior to analysis improves specificity [39]. The GSZ-score implicitly accounts for 
coherency because inconsistent genes with positive and negative contributions to the sum in Eq. (9) 
virtually compensate each other. 
 

4.10. SOM-based metagene and spot enrichment 
SOM analysis provides two-dimensional contour maps visualizing the expression pattern of k=1…K 
metagenes in a series of m=1…M tissues. Each tile of the SOM refers to a minicluster of nk genes 
associated with the respective metagene. The overrepresentation and/or overexpression of a gene set 
can be estimated for these metagene-related lists of genes using the methods presented in the previous 
subsection. Importantly, the list of length Nlist=nk per tile is invariant in all SOMs independently of the 
chosen tissue sample. In consequence, overrepresentation analysis in terms of the hypergeometric 
distribution (Eq. (8)) provides p-values for each gene-set s and metagene, ps,k, which apply to all 
particular SOMs of the series of tissues studied. In other words, metagene-related overrepresentation is 
independent of the particular sample considered. We estimated overrepresentation of the whole 
collection of 1454 gene sets in terms of a ranked list of p-values to identify the most relevant gene sets 
for each metagene. 
One can also pursue an orthogonal approach which calculates the significance of one selected gene 
sets in all metagenes to identify those of them which contain an enriched population of the genes from 
the chosen set. The results are visualized in terms of the so-called overrepresentation map. It color-
codes the p-values of a particular gene-set in the two-dimensional mosaic of the SOM. The 
overrepresentation map also allows to link overrepresentation of a particular gene set with 
overexpression of the respective metagene by comparison with the sample-specific SOM. Particularly, 
overrepresented and overexpressed genes can be simply identified if overrepresentation and 
overexpression spots overlap in both maps. Note that the metagenes are located at the same positions 
in both maps. 
In contrast to these sample-independent overrepresentation maps based on the hypergeometrical 
distribution one can use the GSZ-score (Eq. (10)) to study metagene-related gene set enrichment in a 
sample-specific fashion. Also in this case we calculated p-values for all 1454 gene sets as default. The 
null distribution of the GSZ-score was calculated for each list using randomly composed gene sets of 
equal length. 
Gene set overrepresentation and enrichment analysis was also applied to gene lists which are extracted 
from spots of adjacent metagenes. In this case, the respective length of the list is given by the sum of 
the number of real genes belonging to all metagenes forming the spot, . Spot-related 

overrepresentation analysis based on the HG-distribution is characterized by one p-value per gene set 
and spot. It is independent of the selected sample if the spot is invariant in all samples. We applied this 
approach by using the global spots taken from the overexpression summary map which apply to all 
samples of the series. In addition, sample-specific spots are determined using a common 
overexpression threshold criterion to the SOM of different tissues. In this case one gets sample-
specific overrepresentation lists because the size and position of each spot can vary from sample to 
sample and it can even disappear if the expression of the metagene strongly drops in a particular 

list k
k spot
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= ∑
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tissue. The GSZ-score delivers sample specific lists of gene sets for global and local spots as well 
because it explicitly processed the expression values of the genes in each spot. 
 
 
Additional Material 
Additional file 1: Atlas of the ranking maps of all tissues studied 
Additional file 2: Atlas of errors and p-value distributions of all tissues studied 
Additional file 3: The supplementary text addresses the error characteristics in different tissues, the 
gene ranking of single genes, gene set overrepresentation and alternative spot selection, GSZ-
enrichment of selected spots in selected tissues and the selection of gene sets using global lists and 
gene set. Furthermore, the results of gene set analysis of subsets of tissues (zoom-in) and examples of 
summary reports are provided. 
Additional file 4: Tissue specific gene sets 
Additional file 5: Special gene sets of highly and weakly expressed and of housekeeping genes 
Additional file 6: Results of gene set averaging approach 
 
Complete sets of results for full tissue dataset as well as zooming-in analysis can be found on our 
website: http://som.izbi.uni-leipzig.de 
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1. Error characteristics of different tissues 
We calculated the standard deviation of the expression of each probed gene for each tissue using the 
replicate samples available. The level of variability markedly decreases as a function of the expression 
value (Figure S 1). The locally pooled error function (LPE, see green curves in Figure S 1) was 
combined with the gene-specific error into the regularized t-shrinkage values which provide specific p-
value distributions for each tissue (Figure S 1). These distributions are used to estimate the false 
discovery rate (local and tail-based ones, fdr and FDR, respectively) and the fraction of differentially 
expressed genes, %DE. Details of the method are given in the Methods section of the main paper. 

 
 

Figure S 1: Error characteristics of selected tissues: The first and third row of figures show error distributions 
(dots) and locally pooled estimates (green curves) of selected tissues as a function of the logged expression, e. 
The LPE-curves are calculated as moving average over 500 single probe values under the condition of non-
positive slope which ensures that the LPE is maximal at small expression values. The second and fourth rows of 
figures show the respective p-value density distributions (bar histograms) together with the local FDR (dotted 
curves) and tail area-based FDR (dashed curves) obtained from the shrinkage t-statistics. The density-levels of 
null-genes, η0, are shown by horizontal thin lines. The examples shown are ordered with increasing fraction of 
differentially expressed genes %DE. 
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2. Single gene ranking characteristics 
We calculated mean global and local CAT(r) and ∆p-CAT(r) values for lists of length r=10 and 100 of 
all tissue samples studied considering either all genes or the genes taken from the strongest 
overexpression spot, respectively. Figure S 2 shows boxplots of the data. The results of these global 
and local rank comparisons at both rank positions consistently show that similarities between the 
different lists are maximum for FC/WAD, and worse but virtually similar for WAD/t-shrinkage and 
FC/t-shrinkage pairings. Lists agree to about 70% (FC/WAD) and 50% (WAD/t-shrinkage and FC/t-
shrinkage) on both, the global and local level and for both considered lengths (r=10 and 100) on the 
average. Local lists are slightly more similar by a few percent than global ones due to the pre-filtering 
of the genes in the SOM-spots. The averaged ∆p-CAT values show that the penalty of the WAD- and 
FC-lists in units of the cumulative p-value of the t-shrinkage statistics is very similar for the global 
lists at rank r=10 and 100 and for the local lists of the overexpression spots at r=10. The former results 
indicate that the global lists are virtually equivalent at r>10 for all scores applied. Interestingly, the 
penalty of the ∆p-CAT score of the local list almost completely disappears at r=100. This result can be 
rationalized by the fact that genes which penalize the p-CAT score at r<10 are simply shift to ranks 
10<r<100 in the alternative lists where they compensate the penalty on top of the list. This effect of 
compensation is not observed for the global lists. Overexpressed genes are obviously preselected 
within the respective overexpression spots by the SOM machine learning algorithm making the local 
rankings more stable in the considered r-range. 
The spot-filtering effectively combines the scoring of differential expression with the selection of co-
expressed and correlated genes. It has been previously shown that ‘correlation-sharing’ for the 
detection of differentially expressed genes improves the performance of the analysis in terms of the 
false discovery rate [1]. 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
66

6.
1 

: P
os

te
d 

4 
D

ec
 2

01
1



4 
 

 
 
Figure S 2: Boxplots of rank-differences of ordered lists obtained from the different significance scores used at 
position r=10 (left) and r=100 (right) of all tissues studied: The differences are estimated using the CAT- and ∆p-
CAT scores for global and local lists considering all genes or genes of the strongest overexpression spot, 
respectively. The ∆p-CAT(r) values are given as difference with respect to respective p-CAT(r) value of the t-
shrinkage statistics. 
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3. HG- and GSZ-enrichment of selected spots in selected tissues 
Figure S 3 shows bar plots of the top-twenty HG-overrepresented gene sets in the three spots A, B and 
F. Ten out of the top-twenty gene sets of spot A are related to nervous system and virtually all twenty 
gene sets overrepresented in spot B to muscle. Spot F overrepresents sets related to inflammation, 
leukocyte function etc. as expected for immune systems tissues. The annotation of the overrepresented 
gene sets clearly agrees with the tissues overexpressing the respective spot. 
GSZ-enrichment analysis takes into account overrepresentation and overexpression of the genes of 
each set. It consequently provides sample-specific enrichment lists for constant spots due to the 
changing expression values of each gene in contrast to HG-overrepresentation which is sample 
independent. Figure S 4 shows bar plots of the top-ten GSZ-scored gene sets which are over- and 
underexpressed in the three spots A, B and F in three selected tissues (frontal lobe, skeletal muscle, 
lymph node).  
The three arrows indicate the same three gene sets enriched in each of the spots for comparison. The 
GSZ-ranking provides very similar positions on top of the enrichment list in the tissues which 
overexpress a given set of genes in the respective spot (compare with Figure S 3): for example gene 
sets related to nervous processes are overexpressed in spot A of nervous tissue taken from the frontal 
lobe; gene sets related to muscle contraction are overexpressed in the muscle-related spot B of skeletal 
muscle tissue and gene sets related to immune system processes are overexpressed in the ‘immune 
system spot’ F of lymph node tissue. The expression of these spots can drop drastically in the other 
tissues considered. In consequence, part of the discussed gene sets occupy even leading position in the 
respective underexpression lists: for example, the gene sets addressing nervous processes (spot A) and 
muscle processes (spot B) are on leading positions in the underexpression list of lymph node tissue 
and the gene sets addressing immune system processes (spot F) and muscle processes (spot B) are 
found on top of the underexpression list in frontal lobe tissue. This result illustrates the property of the 
GSZ-score to combine gene set overrepresentation with over- (and under-) expression of the 
associated genes.  
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Figure S 3: The top-twenty gene sets of three selected spots. The length of the bars scales with the logged 
overrepresentation p-value of the sets. The color assigns the category of the gene sets according to the GO terms 
‘molecular process’ (green), ‘molecular component’ (red) and ‘molecular process’ (blue). 
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Figure S 4: Top-ten GSZ-over- and -underexpression lists of gene sets in the three spots for three tissues (the 
spot assignments are given in the main paper and in ref. [2]). The arrows indicate the same sets in each spot for 
direct comparison. 
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4. Functional context of over- and underexpression spots 
The heatmaps in Figure S 5 show the mean expression of the overexpression and underexpression 
spots selected (see also the over- and underexpression maps in the right part of the figure for 
assignments of the spots). The three top overrepresented gene sets given in the figures allow to assign 
the functional context of each of the spots. Note that the terminus ‘over-/under-expression’ spot refers 
to the criterion of spot detection. Both types of spots show usually high expression in one and low 
expression in other tissues. A few of the over- and underexpression spots occupy the same (e.g. spots 
D and g) but mostly different positions in the maps. They consequently carry complementary 
information of high- and low-expression genes. For example, overexpression spot F can be assigned to 
‘immune response’ whereas the nearby located underexpression spot b refers mainly to the translation 
machinery in the nucleus. The underexpression map detects also spots in regions without strongly 
overexpressed genes: For example, underexpression spot ‘a’ which can be assigned to endocytosis and 
membrane-related transport. Note also that the underexpression landscape is less sharp compared with 
the overexpression landscape. 
 

 
 
Figure S 5: Overrepresentation analysis of overexpression (panel a) and underexpression (panel b) spots. The 
heatmaps show the mean expression of the selected spots in all tissues studied. The top three overrepresented 
gene sets in each spot are given for each spot. The respective spot maps are redrawn from the main paper for 
direct assignment of the respective spot positions in the map.  
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5. Alternative spot selections 
We applied alternative methods of spot selection partly described previously [2]. K-means clustering 
of the metagene profiles provides an area-filling spot pattern (Figure S 6). Here we arbitrarily set the 
number of clusters to fifteen to distribute the metagenes over a similar numbers of clusters as detected 
in the unsupervised spot selection based on the over- or underexpression of the metagegenes. Partly 
the position and size of the obtained spots agree with that of the overexpression and/or 
underexpression maps (e.g. the clustering spot C with overexpression spot A, and also H with F and J 
with f). Other spots occupy different areas of the map not selected by the over- or underexpression 
criteria (e.g. M, K). Moreover, most of the cluster-spots are larger than the typical over-
/underexpression spots giving rise to a more coarse fragmentation of the map. On the other hand, the 
clustering spots enable the gapless sorting of genes into cluster-spots. Note that four of these cluster-
spots are specifically overexpressed in nervous tissues (C, G, I, J, see Figure S 6b) with subtle 
differences in their functional context: Whereas spot C and G both overrepresent genes related to 
synaptic transmission, spots I and J collect genes associated with the pernuclear region and 
axiogenesis, respectively. The former ones are strongly underexpressed in most of immune system 
tissues. 
 

 
 
Figure S 6: Spot map based on k-means clustering of the metagene profiles (panel a). The heatmap shows the 
mean expression of the spots detected in all tissues studied. Spots are assigned using capital letters. 
 
As an additonal option we selected spots of highly correlated metagenes (see ref. [2] for details of the 
spot selection algorithm). The obtained spot areas are again partly different compared with the spots 
obtained by the other methods discussed so far. The correlation spots tend to fragment the regions 
along the border of the map which refer to the metagenes of strongest variability of their expression 
profiles ([2]). The functional context reveals further details of SOM-mapping: For example, spots C, 
O, D, I, J and K are related to different aspects of nucleus function such as sexual reproduction (D), 
the ubiquitin ligase complex (O) and RNA metabolism (I).  
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Figure S 7: Spot map based on Perssons correlation coefficient between adjacent metagenes (panel a; see [2] for 
details). The heatmap shows the mean expression of the spots detected in all tissues studied. Spots are assigned 
using capital letters. 
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6. Selecting gene sets from global lists 
Our basic algorithm applies the ‘top-three’ criterion to the local lists of gene sets and extracts the 
selected sets into one global list. Particularly, it selects the three top gene sets per spot and merges 
them into the global list of gene sets which is further used to characterize gene expression in the 
different tissues in a functional context. This approach equally weights each spot in terms of the 
number of selected gene sets. This way, it ensures that each spot-feature is equally represented in the 
resulting global list.  
Alternatively one can merge the full local spot lists of gene sets (i.e. without selecting the top-three 
sets) into one global one, rank them with increasing p-value and finally cut the list either at a suited 
significance threshold or after a certain number of positions. In this case the spots contribute with 
different numbers of gene sets depending on the respective degree of enrichment. We applied this 
approach using the p-values of the hypergeometrical distribution and of the GSZ-score which was 
calculated separately for over- and underexpression spots.  
Figure S 8b shows the respective density distribution of the p-values (from the left to the right). These 
p-value distributions provide the total fraction of significantly enriched gene sets, %DE, and the 
respective local (fdr) and tail based (FDR) false discovery rates in analogy with the single gene 
analysis described in the methodical part of the main paper. The FDR- and fdr-functions increase 
much more steeply for the GSZ-lists compared with the HG-list. In consequence, application of a 
constant significance level (e.g. FDR<0.1) selects much less features from the GSZ-list than from the 
HG-list. Recall that the respective null distributions are given either analytically by the 
hypergeometrical distribution or they are estimated empirically for the GSZ-distributions using 
random permutations. These different approaches presumably produce the different FDR-levels of 
both approaches. Note that the null distribution of a test statistic under permutation is not necessarily 
the same for equally and differentially expressed genes. Previously it was suggested to use suited 
subsets of the data to more accurately estimate true nulls and to substantially increase the power of 
significance testing [3-4]. Moreover, methodical problems with the proper definition of the null 
hypothesis and the proper calculation of p-values which arise in the context of gene set enrichment 
analysis have been identified [5].  
To compare the results of both approaches we select similar numbers of gene sets in each of the global 
lists referring to HG-enrichment (145 gene sets with fdr<0.0001), GSZ-overexpression (169 gene sets 
with fdr<0.1) and GSZ-underexpression (72 gene sets with fdr<0.2). The obtained gene set enrichment 
heatmaps in Figure S 8a reveal very similar spot pattern with essentially the same lists of enriched 
genes sets (Table S 1). Note that the underexpression GSZ-heatmap collects sets of virtually inactive 
genes whereas the overexpression heatmaps (HG and GSZ) refer to strongly overexpressed gene sets. 
The obtained sets refer consequently to different functions. 
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Figure S 8: One-way hierarchical clustering heatmap of significantly enriched gene sets (rows) versus tissues 
(columns) using the HG- and the GSZ-statistics using a fdr-threshold (panel a). The GSZ-statistics was applied 
separately to over- and underexpression spots. The heatmap color codes the p-values of the respective score in 
log-scale (see the legends in the figure). The tissue categories are color coded in the bar above the heatmap 
according to the assignments given in [2]. The gene sets are clustered in vertical direction. Panel b shows the 
respective p-value density distributions together with the local (dotted curves) and tail based (dashed curve) false 
discovery rates (see right ordinates).  
 
Table S 1: Top gene sets from selected spots of the heatmaps shown in Figure S 8 
 
spot HG GSZ-overexpression GSZ-underexpression a 
A Cell-cell signaling 

Neurological system process 
Synaptic transmission 
Nervous system development 

Cell-cell signaling  
Transmission of nerve impulse 
Synaptic transmission 
Nervous system development 

Skeletal development 
Regulation of I-κB cascade 
Translation 
Apoptosis 

F Lymphocyte activation 
Regulation of immune system 
Immune response 
Defense response 

Lymphocyte differentiation 
Immune system development 
Immune response 
Defense response 

Regulation of neurogenesis 
Cytoplasm organization 
Axonogenesis 
Neuron development 

C1 Organic acid metabolic process 
Carboxylic acid metabolic process 
Excretion 

Organic acid metabolic process 
Carboxylic acid metabolic process 
Glutamine family metabolic 
process 

Microtubule polymerization 
Negative regulation of cellular 
component organization 

 
a assignment of underexpression spots to capital letter is arbitrary 
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7. Zoom-in: Nervous tissues 
We applied a ‚zoom-in‘ step of SOM analysis to study the expression profiles of the subgroup of 
nervous immune systems and the remaining ‘diverse’ tissues with enlarged resolution as described in 
ref. [2]. They show ‘new’ textures of characteristic over- and underexpression spots which reflect the 
expression profiles of the tissues of interest more in detail than the original SOM. Figure S 9a shows 
the obtained overexpression spots and the three leading overexpressed gene sets after global 
overexpression analysis of nervous tissues. Spot H collects processes directly related to nervous 
system whereas spots G and H refer to nucleus-related and cell membrane-related processes, 
respectively. The zoom-in map amplifies subtle details of the expression profile of these genes in the 
reduced subset selected for zoom-in analysis. Also that the GSZ-overexpression profile of the gene set 
‘nervous system development’ shows a heterogeneous fine structure which reflects modulation of the 
expression of this set in the nervous tissues. The GSZ-enrichment heatmap after zoom-in is shown in 
Figure S 9b. It provides a detailed picture of the gene set enrichment in nervous tissues. 
Figure S 10 and Figure S 11 provide overrepresentation maps and overexpression profiles of the same 
gene sets selected in the respective plots in the main paper. The genes of the sets widely distribute 
over the maps. The gene sets related to synaptic transmission and to the transmission of nerve impulse 
indeed accumulate in the region of spot H and the gene set ‘immune systems process’ in the region of 
spot H, as expected. The overexpression level however can strongly vary in the different nervous 
systems tissues: For example, the former two gene sets are clearly underexpressed in corpus callosum 
and subthalamic nucleus, which, on the other hand, show relative overexpression of the gene set 
immune systems process. The overexpression of the remaining three gene sets considered is mostly 
invariant in nervous tissues. 
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Figure S 9: The overexpression summary map of nervous tissues shows eight spots (A – H) which are strongly 
overexpressed in at least one of the 19 nervous tissues studied. Global overrepresentation analysis is estimated 
for each spot using the hypergeometrical distribution. The right legend assigns the two most significantly 
overrepresented gene sets in each spot. Expression heatmaps of the spots are shown in the supplementary 
material of ref. [2]. 
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Figure S 10: Overrepresentation maps of six selected gene sets for the zoom-in SOM of nervous tissues. 
Overrepresentation in each tile of the mosaic is calculated in units of log(pHG) using the hypergeometrical 
distribution and color-coded (maroon>red>yellow>green>blue). White areas indicate metagenes not containing 
genes from the respective set). 
 
 

 
 
Figure S 11: Overexpression profiles of selected gene sets in nervous tissues. The bars are colored in accordance 
to the color-codes of the tissue categories. They are scaled in units of the GSZ-score (left axis). The horizontal 
dotted lines mark the fdr=0.2 significance threshold estimated from the p-value distribution of the GSZ-score. 
The inserted curves show the logged FC-expression profiles of the top-three metagenes of strongest enrichment 
of the respective gene set.  
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8. Zoom-in: Immune systems tissues 
Figure S 12 shows the global spot overexpression maps after zoom-in of immune system tissues, and 
Figure S 13 below the respective GSZ-enrichment heatmap. Both approaches of gene set analysis 
provide consistent results where local GSZ-enrichment analysis shows a slightly more diverse pattern 
than global overrepresentation analysis. Note however, that the overexpression spot maps list only the 
three leading gene sets. Extended lists are available in the detailed reports described below. 
The respective overrepresentation (Figure S 14) and overexpression profiles (Figure S 15) show that 
gene sets which are obviously not related to these tissue categories (e.g. ‘synaptic transmission’) are 
virtually invariant and accumulate around the centre of the map. On the other hand, gene sets related to 
selected tissues accumulate in special regions of the maps and show heterogeneous overexpression 
(see, for example, the gene sets ‘striated muscle contraction’ and ‘epidermis development’ in Figure S 
18). 

 
 
Figure S 12: The overexpression summary map of immune systems tissues shows nine spots (A – H) which are 
strongly overexpressed in at least of the 11 immune systems tissues studied. Global overrepresentation analysis 
is estimated for each spot using the hypergeometrical distribution. The right legend assigns the most significantly 
overrepresented gene sets in each spot. Expression heatmaps of the spots are shown in the supplementary 
material of ref. [2]  
 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
66

6.
1 

: P
os

te
d 

4 
D

ec
 2

01
1



17 
 

 
 
Figure S 13: One-way hierarchical clustering heatmap of significantly enriched gene sets (rows) in immune 
systems tissues (columns) using the GSZ-statistics. The top-three gen sets per overexpression spot are selected. 
The heatmap color codes the p-values of the respective score in log-scale (see the legends in the figure). The 
tissue categories are color coded in the bar above the heatmap according to the assignments given in [2]. The 
gene sets are clustered in vertical direction. The capital letters assign clusters of enriched gene sets in 
correspondence with the spots shown in Figure S 12. 
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Figure S 14: Overrepresentation maps of six selected gene sets for the zoom-in SOM of immune sytem tissues. 
 

 
 
Figure S 15: Overexpression profiles of selected gene sets in immune system tissues. 
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9. Zoom-in: Diverse tissues 
The collection of ‘diverse’ tissues subsumes the categories adipose, endocrine, homeostasis, digestion, 
exocrine, epithelium and muscle tissues which cluster relatively tightly together in the agglomerative 
analyses provided previously. Figure S 16 shows the global spot overexpression maps after zoom-in, 
and Figure S 17 below the respective GSZ-enrichment heatmap. Both approaches of gene set analysis 
show consistent results where local GSZ-enrichment analysis provides a slightly more diverse pattern 
than global overrepresentation analysis.  
The respective overrepresentation (Figure S 18) and overexpression profiles (Figure S 19) show that 
gene sets which are obviously not related to these tissue categories (e.g. ‘synaptic transmission’) are 
virtually invariant and accumulate around the centre of the map. On the other hand, gene sets related to 
selected tissues accumulate in special regions of the maps and show heterogeneous overexpression 
(see, for example, the gene sets ‘striated muscle contraction’ and ‘epidermis development’ in Figure S 
18 and Figure S 19). 
 

 
Figure S 16: The overexpression summary map of the group of ‘diverse’ tissues shows ten spots (A – J). The 
right legend assigns the two most significantly overrepresented gene sets in each spot. Expression heatmaps of 
the spots are shown in the supplementary material of ref. [2] 
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Figure S 17: One-way hierarchical clustering heatmap of significantly enriched gene sets (rows) in the selection 
of diverse tissues (columns) using the GSZ-statistics. The top-three gen sets per overexpression spot are selected. 
The heatmap color codes the p-values of the respective score in log-scale (see the legends in the figure). The 
tissue categories are color coded in the bar above the heatmap according to the assignments given in [2]. The 
gene sets are clustered in vertical direction. 
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Figure S 18: Overrepresentation maps of six selected gene sets for the zoom-in SOM of the group of diverse 
tissues. 
 
 

 
Figure S 19: Overexpression profiles of selected gene sets in the group of diverse tissues. 
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10. Selecting special sets of genes using ranking and expression criteria 
We applied different criteria to select genes which are consistently expressed in all tissues studied. The 
first method uses the rank product approach [6]: The genes are ranked with decreasing expression 
score in each tissue. Then, the genes are re-ordered according the geometric mean of their ranks 
averaged over all tissue lists (i.e. by calculating the product of the tissue-specific ranks of each gene). 

Panel a of Figure S 20 shows the obtained logged average rank, 10
10

log RankProductlog rr
M

< >=  as 

function of rank number r for the three alternative scores, FC, WAD and t-shrinkage. The initial part 
of the curves steeply increases. It collects the genes which are consistently ranked on top of the 
individual tissue lists with small rank numbers. The slope of the curves markedly drops and virtually 
levels off for rank numbers greater than 3,000 revealing a background floor of weakly expressed genes 
with almost high rankings in the individual tissue lists. The three alternative scores provide very 
similar curves showing a transition between both classes of consistently high and weak expressed 
genes near r= 1000- 3000. We arbitrarily select 10% of the genes on top of the lists as consistently 
expressed (2,227). The slightly smaller value of the mean rank of the FC-scores in the transition range 
indicates the slightly better consistency of the FC-score at ranks smaller than 3000 compared with the 
alternative scores (red curve in Figure S 20a). 
Panel b of Figure S 20 compares the gene lists obtained from the different scores using the respective 
CAT-plots of all three pairwise combinations of the respective lists. For the FC/WAD- and WAD/t-
pairings of lists we found overlap of about 70% of the genes for rankings r< 2000 whereas FC/t-
pairings are common to only 50% in this range. This result is slightly different if compared with the 
CAT-values of the tissue specific lists (see Figure S 2 and the main paper). In these comparisons the 
FC/WAD-lists best agree to about 70% whereas WAD/t- and FC/t- lists overlap to 50% only. Hence, 
rank-averaging over all tissues slightly modifies the overlap between the different lists. Nevertheless, 
the observed differences are relatively small confirming our conclusion that all scores considered 
provide reliable and partly complementary results. 
In addition to the rank product approach we applied another one which makes use of the present call 
parameter, 0≤pc≤1, estimated in the normalization step of gene expression data (see ref. [2] for 
details). Figure S 21 shows the distribution of the number of genes significantly expressed in a certain 
number of tissues. The histogram ranges from genes which are consistently absent in all tissues (with 
present calls pc<1) to genes consistently present (pc=1) in all tissues. Interestingly, the distribution 
shows maxima at their left and right borders. This result reveals that many genes tend to be expressed 
either in most of the tissues or in only a few ones. A number of about 200 – 300 genes forms a sort of 
constant background level which characterizes the incremental cumulative tissue specificity of gene 
expression. Eisenberg and Lavanon [7] obtained a similar histogram using an alternative tissue data 
set. We collect the genes which are strictly absent or strictly present in all tissues into two groups for 
further analysis (see also Figure S 21). 
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Figure S 20: Logged rank product of ranked gene lists of all 67 tissues as a function of the gene index. 2,227 
genes are selected on top of the list over the range of steep slope as ’consistently high ranked’ (see the vertical 
dashed line). 
 

 
 

Figure S 21: Histogram of the number of genes expressed in different numbers of tissues using the present-call 
criterion. Absent genes (not expressed in any tissue) and housekeeping genes (expressed in all tissues) are found 
at the left and right positions, respectively. 
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11. Summary reports 
Our SOM analysis of human tissues produces a series of additional reports allowing extraction of 
details not explicitly presented in the publication. Here we describe the reports characterizing the 
different tissue samples (sample summaries) and the different spots collecting groups of correlated and 
coexpressed genes (spot summaries). 

11.1. Global and local tissue characteristics (sample summaries) 
The ‘global summary’ sheet resumes the results of differential expression analysis of all genes studied 
whereas each ‘local summary’ sheet resumes the results of differential expression analysis of genes 
from one selected metagene spot. The collection of all spots detected in the respective tissue is 
depicted in the right small map shown in the ‘Global summary’ sheet. The small map shown in the 
‘Local summary’ sheet depicts the spot selected for analysis. Figure S 22 presents the PDF-report for 
one particular tissue (accumbens). Table S 2 and Table S 3 provide glossaries of the data given in the 
sheets.  
 
 
Table S 2: Glossary of data given in the global summary sheet  
 
 Description 
1 Sample name 

2 General characteristics: number of differentially expressed genes (“#DE”); numbers of genes below 
particular fdr thresholds (“#genes with fdr < …”); number of genes covered by GO genesets (“#genes 
in genesets”); average scores (“<FC>”, “<shrinkage-t>”, “<p-value>”, “<fdr>”) over all genes 

3 Expression profile (SOM) & map showing all spots selected using the 98%-quantile criterion 

4 Ranking of differentially expressed genes: Affymetrix gene id (“Affy-ID”), gene symbol (“Symbol”), 
log10 fold-change (“log(FC)”), p-value(“p-value”), fdr (“fdr”), x-y-position of associated metagene in 
expression profile (“Metagene”, x-y are the tile numbers in horizontal and vertical directions, 
respectively) and GO-term (“GO-Term”) 

5 Distribution of p-values from gene list (4) along with FDR-analysis: η0 level is shown as horizontal line, 
fdr and Fdr are shown as dotted and dashed lines, respectively 

6 GSZ enrichment list of top-20 over- and underexpressed genesets: GSZ score (“GSZ”) and p-value 
(“p-value”), number of genes in particular set (“#in”), GO-category and -term (“Geneset”) 

7 Distribution of p-values from GSZ enrichment analysis (6), analogous to (5) 
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Figure S 22: Global (panel a) and local summary sheet (panel b) of accumbens. Note that only one out of three 
local summary sheets of this particular tissue is shown as example. 
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Table S 3: Glossary of data given in the local summary sheet  
 
 Description 
1 Sample name 

2 General characteristics: number of differentially expressed genes (#DE); numbers of genes & 
metagenes in current spot; numbers of genes below particular fdr thresholds (“#genes with fdr < …”); 
number of genes covered by GO genesets (“#genes in genesets”); average scores (correlation 
coefficient r (“<r>”), “<FC>”, “<shrinkage-t>”, “<p-value>”, “<fdr>”) over spot genes 

3 Expression profile (SOM map) & the local spot analyzed 

4 Ranking of differentially expressed genes: Affymetrix gene id (“Affy-ID”), gene symbol (“Symbol”), 
log10 fold-change (“log(FC)”), p-value(“p-value”), fdr (“fdr”), x-y-position of associated metagene in 
expression profile (“Metagene”, x-y are the tile numbers in horizontal and vertical directions, 
respectively) and GO-term (“GO-Term”) 

5 Distribution of p-values from gene list (4) along with FDR-analysis: η0 level is shown as horizontal line, 
fdr and Fdr are shown as dotted and dashed lines, respectively 

6 GSZ enrichment list of top-40 over- resp. underexpressed genesets: GSZ score (“GSZ”) and p-value 
(“p-value”), numbers of genes in particular geneset (#all) and associated genes found in current spot 
(#in), GO-category and -term (“Geneset”) 

7 Distribution of p-values from GSZ enrichment analysis (6), analogous to (5) 
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11.2. Spot summary reports 
The sample summary reports collect analysis data for each sample either considering all genes or 
genes taken from a selected spot as described in the previous subsection. The spot summary reports 
pursue the orthogonal view: Each relevant over-/underexpression spot is characterized across all 
samples. Figure S 23 and Table S 4 show one example and the glossary of data listed in the sheet, 
respectively.  
 

 
 
Figure S 23: Spot summary sheet for the ‘immune systems’ spot F. 
 
 
Table S 4: Glossary of data given in the spot summary sheet 
 
 Description 
1 Summarization criterion 

2 General characteristics: numbers of genes (“#genes”) & metagenes (“#metagenes”) in current spot; 
average correlation coefficient (“<r>”) among spots genes & metagenes 

3 Summary map & mal showing the analyzed spot  

4 Ranking of samples according to average fold change of genes within current spot: sample name 
(“Sample”); average scores (“<FC>”, “<shrinkage-t>”, “<p-value>”, “<fdr>”) of respective sample 

5 HG-overrepresentation list: p-value (“p-value”), GO-category and –term (“Geneset”) are given for top-
40 genesets 

6 Distribution of p-values from HG-overrepresentation list (5) along with FDR-analysis: η0 level is shown 
as horizontal line, fdr and Fdr are shown as dotted and dashed lines, respectively 
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