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Abstract
Introduction: Pramipexole is a new dopaminergic drug which has been approved for PD
treatment. However, we tried to find new capacity for this drug rather than symptomatic
effect. Materials and Methods: A chronic rotenone model with daily oral dose of
30mg/kg was induced in mice. Pramipexole was tried in a new approach where the
treatment began in the middle of rotenone course with oral dose 1mg/kg /day of
pramipexole. Results: Further analysis of behavioral tests and immunohistochemistry
revealed success of pramipexole in improving the rotenone intoxicated mice. Conclusion:
These results showed possible beneficial effect of pramipexole against rotenone induced
neurotoxicity.
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1- Introduction:

Parkinson’s disease (PD) is a major health concern to the population.

It has been reported in all countries and in all races (Obeso et al., 2010).

Parkinsonism results primarily from abnormalities of basal ganglia

function (Galvan and Whichmann, 2008).   In PD, the degeneration of

dopaminergic SNc neurons and their projections to the striatum is a

slowly evolving process that may take decades to develop (Arias-

Carrión et al., 2009). PD is considered a multifactorial disease resulting

from the effect of environmental factors and genetic susceptibility,

however, due to delay of manifestations it is difficult to attribute - with

certainty- PD to certain risk factor (Caldwell et al., 2009). Various

treatment modalities are used for PD however, due to the lack of

understanding of PD etiology and pathogenesis, there is still no treatment

that can prevent or retard the progression of the disease (Lohle and

Reichmann, 2010).
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The NIH Committee to Identify Neuroprotective Agents in

Parkinson’s (CINAP) published the result of a systematic assessment of

currently available pharmacologic neuroprotective agents. The CINAP

members stated the importance of using PD models in testing drugs

(Emborg 2004). Rotenone model can be used as an alternative to other

classical PD models e.g. MPTP and 6-OHDA specially when testing the

neuroprotective effects of novel therapeutic modalities (Monti et al.

2009). A limiting factor of rotenone models is the high mortality rate of

the examined animals (Dawson et al. 2002). However, oral rotenone

model seems to be devoid of the previous drawbacks which promote its

use for assessing candidate antiparkinson drugs (Takeuchi et al. 2009).

The introduction of second-generation dopamine agonists appeared as

new promising approach for symptomatic treatment (Kano et al., 2008).

These new dopamine receptor agonists are potent in controlling primary

motor symptoms, with little side effects as compared with the old

generations (Toulouse and Sullivan 2008). Moreover, the so called

‘direct’ dopamine receptor agonists can function in the absence of host

dopamine neurons, as they act directly on post synaptic dopamine

receptors (Hedlund and Perlmann 2009). May be, through releasing

dopamine, pramipexole has shown capacity to direct neural stem cells

(NSCs) differentiation towards dopaminergic neurons (Riaz and

Bradford 2005; Winner et al. 2009).

In the present work we tried pramipexole in the middle of toxic exposure

course in a way similar to the natural disease history. In clinical trials

pramipexole is given after the manifestations of PD appears (i.e. losing
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80% of DA neurons). In such scenario the regenerative capacity is more

important. Assessing the neuro-regenrative effects of pramipexole

(besides its known neuroprotective effects) was our main question.

2- Materials and methods:

2-1. Rotenone mouse model and drug administration:

Eight-month-old male BALB/c mice (20–25 g) were purchased from

vacsera animal house (Cairo, Egypt). All animal experiments were

carried out in accordance with the National Institutes of Health Guide for

the Care and Use of Laboratory Animals, and the protocols were

approved by the Ethical Committee for Research at Mansoura University.

The mice were divided into 3 groups (10 mice each):

Group (1) [control group] Received only carboxymethyl cellulose orally
(through gavage) once daily at a volume of 10 ml/kg body weight

Group (2) [Rotenone group] in this group:
Rotenone (Sigma, St. Louis, MO, USA) was administered orally (through

gavage) once a day at a dose of 30 mg/kg for 28 days, as described

previously (Inden et al. 2007). Rotenone was suspended in 0.5%

carboxymethyl cellulose sodium salt (CMC, El Nasr company, Cairo,

Egypt) and administered once daily at a volume of 10 mL/kg body

weight.

Group (3) [Pramipexole group]: in this group Pramipexole (1 mg / kg

body weight / day) was administrated via the drinking water to the mice

starting 14 days after beginning of rotenone course.

2-2. Behavioural test: (Vertical grid test (Kim et al. 2010))
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The vertical grid apparatus is an open box of 8 cm×55 cm×5 cm, set

vertically. The back side of the vertically standing box is made of a wire

mesh of 0.8 cm×0.8 cm, the front side is open, and the other four sides

are made of black plexiglass.

The mice were pretrained on the apparatus before applying the test.

During the test, a mouse was carefully placed inside the apparatus at 3cm

from the top, facing upward, and was allowed to turn around and climb

down. The trials were videotaped.

The videos were replayed for analysis of the total time taken for the

mouse to make a turn, climb down, and reach the floor by its forepaw.

The test was made beginning from the 14th day and repeated weakly till

the 28th day. The repeated behavioral tests aimed at monitoring the

progress of PD manifestations.

2-3. Immunohistochemistry:

A prior pilot study was made, where the immunopathology revealed

decrease in TH neuron number in SN. The damage was increased with

progress of time from the 14th day till reaching maximum degeneration in

the 28th day.  According to the pilot study treated mice were perfused in

the 28th day through the aorta with 50 mL of 10 mM phosphate-buffered

saline (PBS), followed by 150 mL of a cold fixative consisting of 4%

paraformaldehyde, 0.35% glutaraldehyde and 0.2% picric acid in 100

mMphosphate buffer (PB), under deep anesthesia with pentobarbital (100

mg/ kg, i.p.). After perfusion, the brain was quickly removed and

postfixed for 2 days with paraformaldehyde in 100 mMPB and then

transferred to 15% sucrose solution in 100 mMPB containing 0.1%

sodium azide at 4 oC. The brain pieces were cut using a cryostat and

collected in 100 mM PBS containing 0.3% Triton X-100 (PBS-T). After
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several washes, the sections were stored until use in a free-floating state

at 4 oC for immunohistochemical analysis.

Brain slices were incubated with primary mouse monoclonal anti-TH

antibody (diluted 1:1,000 Sigma) over the night at 4 oC. After several

washes, sections were incubated with biotinylated secondary antibody

(1:500), as appropriate, for 1 h at room temperature. The sections were

then incubated with ABC solution 1:200 for 1 h at room temperature. All

of the sections were washed several times with PBS-T between each

incubation, and labeling was then revealed by 3,3'-diaminobenzidine

(DAB).

2-4. Stereological analysis of DA neurons in the ventral midbrain:

TH-immunopositive neurons in the substantia nigra pars compacta

(SNpc) were estimated using stereological counts of cell numbers, on a

Stereo-investigator system and optical density measurements on a Leica

Q-win system). Six sections (30 µm-thick), from the anterior to the

posterior midbrain, were used for counting in each case. The total number

of TH-immunopositive neurons was estimated using the optical

fractionator method.

2-5 Statistical methods:

All data were given as the mean + standard error of the mean (SEM).

Two groups of data where analyzed by the Student's t-test. Three groups

of data were analyzed by ANOVA with a Tukey post hoc test. For all

tests, p<0.05 was deemed significant.

3-Results:

3-1. development of progressive PD model:
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Regarding the locomotor affection of the mice,  the control mice usually

take about 10 seconds to complete the vertical grid test. On the other

hand, the period increased with progress of time from 14-21-28th day

where the rotenone group has taken more than 80 seconds to complete the

test (Table 2A). This progressive deterioration of locomotor functions of

the mice points to the progressive nature of the induced PD model.

As shown in (Fig. 1B), the oral administration of rotenone at 30 mg/kg

for 28 days obviously reduced the number of TH-immunopositive

neurons in the SNpc. Stereological analysis of nigral TH-immunopositive

neurons showed that rotenone caused a significant loss of DA neurons

(Table 1). It is important to mention that the pilot study showed that the

number of TH +ve neurons was decreased with progress of time (after 14

and 21 days), denoting the progressive nature of this model.

3-2. Effect of pramipexole on nigrostriatal DA neurons in rotenone mice

On investigating whether treatment with pramipexole (oral 1 mg/kg/ day

for 14 days) can offers neuroprotection against the effects caused by the

chronic oral administration of rotenone. The rotenone-induced loss of

TH-immunopositive neurons in the SNpc was significantly improved by

the pramipexole treatment (Fig. 1B and 1C).

3-3. Effect of pramipexole on locomotor coordination in rotenone mice.

In our study the control mice usually took about 10 seconds to complete

the vertical grid test. On the other hand the rotenone group has taken

more than 80 seconds to complete the test (Table 2A). On studying the

effect of treatment we can see that the pramipexole group took about 18

seconds to complete the test which represents a significant improvement

in their activity (Table 2B).
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4-Discussion:

One of the major drawbacks of rotenone models for PD was the high

mortality rates associated with their parenteral administration (Lapointe

et al. 2004). This high mortality may lead to inconsistency of results

(Cicchetti et al. 2010). Despite this major drawback, rotenone models are

characterized by many advantages making them more related to the

pathogenesis and pathology of idiopathic PD so mimicking the clinical

reality (Moussa et al. 2008; Greene et al. 2009; Verma and Nehru

2009). Moreover, rotenone models have been found ideal to test the

proposed therapies due to the chronic course they have and the similarity

with PD pathology to great extent (Mao et al. 2007; meurers et al. 2009;

Greenamyre et al. 2010). In the present study we have got a rotenone

model with 0% mortality and on the other hand induced effective

progressive PD manifestations as can be seen from the deterioration in

behavioral tests and immunohistochemical examination results with

progress of time.

Usually PD therapies were tested in two ways. The first is to test the

effect of the therapy after complete development of the injury (Fu et al.

2006; Weiss et al. 2006; Hall et al. 2007; Kong et al. 2008; Blandini et

al. 2010). The other, is testing the neuroprotectant effects e.g. nicotine or

pramipexole against toxic models (Inden et al. 2009 and Takeuchi et al.

2009). In this way, the therapy is given in the beginning of the toxic

model seems an attractive point of research. However, in the present

study we tried to explore the role of pramipexole in a way similar to

clinical real life, where the drug is given in the middle of the disease

course (i.e. regenerate damaged neurons and at the same time offers

neuroprotection for the rest of the others). Our results show that

pramipexole improved the disease both functionally (behavioral tests) and

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
64

0.
1 

: P
os

te
d 

22
 N

ov
 2

01
1



8

structurally (immunohistochemistry). Inden and colleagues have

suggested multiple mechanisms for pramipexole effects on PD pathology

e.g. inhibition of oligomerization of human wild-type ά-synuclein by

H2O2 plus cytochrome c, directly scavenged hydroxyl radical (OH)

generated from H2O2 and Fe2+ and increased Bcl-2 immunoreactivity in

DA neurons in the SNpc. In the present study we suggest new mechanism

which is regeneration of damaged dopaminergic neurons in the SN. This

damage is caused by 14 day treatment of rotenone before we began the

pramipexole therapy. The regenerated neurons points to the fact that

pramipexole can be valuable as neuroregenerative therapy and not only

neuroprotectant as suggested by previous studies.

5-Conclusion:

In conclusion, the chronic oral administration of rotenone induced DA

neuronal death and was associated with a motor deficit. This pathology

was improved by the dopaminergic agent pramipexole that was given in

the middle of the toxic model. These results suggest that pramipexole can

improve the pathological condition and not just a symptomatic therapy

for PD.

Acknowledgement:

The present study was supported by the Medical experimental research

Center (MERC) of Mansoura University.

References:
Arias-Carrio´n, O., Yamada, E., Freundlieb, N., Djufri, M., Maurer, L., Hermanns, G.
et al. (2009) Neurogenesis in substantia nigra of Parkinsonian brains? J Neural
Transm Suppl 73: 279-285.

Blandini, F., Cova, L., Armentero, M., Zennaro, E., Levandis, G., Bossolasco, P.,
Calzarossa, C., Mellone, M., Giuseppe, B., Deliliers, G., Polli, E., Nappi, G. and

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
64

0.
1 

: P
os

te
d 

22
 N

ov
 2

01
1



9

Silani, V. (2010):  Transplantation of undifferentiated human mesenchymal stem cells
protects against 6-hydroxy dopamine neurotoxicity in the rat. Cell Transplantation,
DOI: 10.3727/096368909X479839.

Caldwell, K.A., Tucci, M.L., Armagost, J., Hodges, T.W., Chen, J., Memon, S.B. et
al. (2009) Investigating bacterial sources of toxicity as an environmental contributor
to dopaminergic neurodegeneration. PLoS One 4: e7227.

Cicchetti, F., Drouin-Ouellett, J. and Gross, R.E. (2010): Viability of the rotenone
model in question. Trends in pharmacological sciences, 31(4): 142-143.

Dawson, T.M., Mandir, A.S.  and  Lee, M.K. (2002): Animal Models of PD Pieces of
the Same Puzzle? Neuron, 35: 219-222.

Emborg, M.E. (2004): Evaluation of animal models of Parkinson’s disease for
neuroprotective strategies. Journal of Neuroscience Methods, 139: 121–143.

Fu, Y.S., Cheng, Y.C., Lin, M.A., Cheng, H., Chu, P.M., Chou, S.C., Shih, Y.S., Ko,
M.H. and Sung, M.S. (2006): Conversion of Human Umbilical Cord Mesenchymal
stem Cells in Wharton's Jelly to Dopaminergic Neurons in Vitro: potential therapeutic
application for parkinsonism. Stem Cells, 24:115-24.

Galvan, A. and Wichmann, T. (2008): Pathophysiology of Parkinsonism. Clinical
neurophysiology, 119: 1459-74.

Greenamyre, J., Cannon, J., Drolet, R. and Mastroberardino, P. (2010):  Lessons from
the rotenone model of Parkinson’s disease. Trends in pharmacological sciences,
31(4): 141-142.

Greene, G., Noorian, A. and Srinivasan, S. (2009): Delayed gastric emptying and
enteric nervous system dysfunction in the rotenone model of Parkinson's disease.
Experimental Neurology, 218: 154-161.

Hall, V.J.,  Li, J-Y. and Brundin, P. (2007): Restorative cell therapy for Parkinson’s
disease: A quest for the perfect cell. Seminars in Cell & Developmental Biology 18:
859–869.
Hedlund, E. and Perlmann, T. (2009): Neuronal cell replacement in Parkinson’s
disease. J. Intern. Med., 266: 358–371.

Inden, M., Kitamura, Y., Takeuchi, H., Yanagida, T., Takata, K., Kobayashi, Y.,
Taniguchi, T., Yoshimoto, K., Kaneko, M., Okuma, Y., Taira, T., Ariga, H. and
Shimohama, S. (2007): Neurodegeneration of mouse nigrostriatal dopaminergic
system induced by repeated oral administration of rotenone is prevented by 4-
phenylbutyrate, a chemical chaperone. Journal of neurochemistry, 101: 1491-1504.

Inden, M.,  Kitamura, Y., Tamaki, A.,  Yanagida, T., Shibaike, T., Yamamoto, A.,
Takata, K., Yasui, H., Taira, T., Ariga, H. and  Taniguchi, T. (2009): Neuroprotective
effect of the antiparkinsonian drug pramipexole against nigrostriatal dopaminergic
degeneration in rotenone-treated mice. Neurochemistry International, 55: 760–767.

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
64

0.
1 

: P
os

te
d 

22
 N

ov
 2

01
1



10

Kano, O., Ikeda, K., Kiyozuka, T., Iwamoto, K., Ito, H., Kawase, Y., et al. (2008):
Beneficial effects of pramipexole for motor function and depression in Parkinson’s
disease. Neuropsychiatric disease and treatment, 4(4): 707-710.

Kong, Z., Cai, Z., Pan, L., Zhang, L., Shu, J., Dong, Y., Yang, N., Li, Q., Huang, X.
and Zuo, P. (2008): Transplantation of human amniotic cells exerts neuroprotection in
MPTP-induced Parkinson disease mice. Brain research,  1205: 108-115.

Lapointe, N., St-Hilaire, M., Martinolli, M., Blanchet, J., Gould, P., Rouillard, C. and
Cicchetti, F. (2004): Rotenone induces non-specific central nervous system and
systemic toxicity. The FASEB Journal, 18:717-719.

Lohle, M. and Reichmann, H. (2010) Clinical neuro protection in Parkinson’s disease
- still waiting for the breakthrough. J Neurol Sci 289: 104-114.

Mao, Y., Jiang, L.,  Duan, Y., An, L. and Jiang, B. (2007): Efficacy of catalpol as
protectant against oxidative stress and mitochondrial dysfunction on rotenone-induced
toxicity in mice brain. Environmental Toxicology and Pharmacology, 23: 314-318.

Meurers, B., Zhu, C., Fernagut, P., Richter, F., Hsia, Y., Fleming, S., Oh, M.,
Elashoff, D., DiCarlo, C., Seaman, R. and Chesselet, M. (2009): Low dose rotenone
treatment causes selective transcriptional activation of cell death related pathways in
dopaminergic neurons in vivo. Neurobiology of Disease, 33: 182-192.

Monti, B., Gatta, V., Piretti, F., Raffaelli, S.S.,  Virgili, M. and Contestabile, A.
(2009): Valproic Acid is Neuroprotective in the Rotenone Rat Model of Parkinson’s
Disease: Involvement of a-Synuclein. Neurotox. Res.,17(2): 130-41.

Mousa, C., Rusnak, M., hailu, A., Sidhu, A. and Fricke, S. (2008): Alterations of
striatal glutamate transmission in rotenone-treated mice: MRI/MRS in vivo studies.
Experimental Neurology, 209: 224-233.

Obeso, J.A., Rodriguez-Oroz, M.C., Goetz, C.G., Marin, C., Kordower, J.H.,
Rodriguez, M. et al. (2010) Missing pieces in the Parkinson’s disease puzzle. Nat
Med 16: 653-661.
Riaz, S.S. and Bradford, H.F. (2005): Factors involved in the determination of the
neurotransmitter phenotype of developing neurons of the CNS: Applications in cell
replacement treatment for Parkinson’s disease. Progress in Neurobiology 76: 257–
278.

Takeuchi, H., Yanagida, T.,  Inden, M., Takata, K., Kitamura, Y., Yamakawa, K.,
Sawada, H., Izumi, Y., Yamamoto, N.,  Kihara, T., Uemura, K., Inoue, H.,
Taniguchi, T.,  Akaike, A., Takahashi, R. and Shimohama, S. (2009): Nicotinic
receptor stimulation protects nigral dopaminergic neurons in rotenone-induced
Parkinson’s disease models. Journal of Neuroscience Research, 87:576–585.

Toulouse, A. and Sullivan, A.M. (2008): Progress in Parkinson’s disease—Where do
we stand? Progress in Neurobiology, 85(4):376-92.

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
64

0.
1 

: P
os

te
d 

22
 N

ov
 2

01
1



11

Verma, R. and Nehru, B. (2009): Effect of centrophenoxine against rotenone-induced
oxidative stress in an animal model of Parkinson's disease. Neurochemistry
International, 55: 369-375.

Weiss, M., Medicetty, S., Bledsoe, A.R., Rachakatla, R.S., Choi, M., Merchav, S.,
Luo, Y., Rao, M.S., Velagaleti, G. and Troyer, D. (2006): Human Umbilical Cord
Matrix Stem Cells: Preliminary Characterization and Effect of Transplantation in a
Rodent Model of Parkinson’s Disease STEM CELLS, 24:781–792.

Winner, B., Desplats, P., Hagl, C., Klucken, J., Aigner, R., Ploetz, S., Laemke, J.,
Karl, A., Aigner, L., Masliah, E., Buerger, E. and Winkler, J. (2009): Dopamine
receptor activation promotes adult neurogenesis in an acute Parkinson model.
Experimental Neurology, 219: 543-552.

Tables and Figure Legends:

Table 1: Stereological cell counts in substantia nigra
A)Control group B)Rotenone group C)Rotenone+pramipexole

group
1970+ 120 1000 + 56* 1930 + 88

*p < 0.05 compared to the control group.

Table 2: vertical grid test results:

Groups A)Control group B) rotenone

group.

C) rotenone +

pramipexole

group.

Total time to

climb down

10.9 + 2.4 83.7+ 6.8* 18.7+3.4

*p < 0.05 compared to the control group.
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1-A                               1-B 1-C
Fig. 1: Tyrosine hydroxylase immunohistochemistry  in the control group
(1-A), the rotenone group (1-B) and the rotenone+ pramipexole group (1-
C). Medium magnification images in dorsolateral region of nigra show
cell loss in this particularly vulnerable area in the rotenone group with
regeneration in the rotenone+pramipexole group.
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