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Abstract

Time-frequency coherence has been widely used to quantify statistical dependencies in

bivariate data and has proven to be vital for the study of neural interactions in electro-

physiological recordings. Conventional methods establish time-frequency coherence by

smoothing the cross and power spectra using identical smoothing procedures. Smooth-

ing entails a trade-off between time-frequency resolution and statistical consistency and

is critical for detecting instantaneous coherence in single-trial data. Here, we propose

a generalized method to estimate time-frequency coherency by using different smooth-

ing procedures for the cross spectra versus power spectra. This novel method has an

improved trade-off between time resolution and statistical consistency compared to con-

ventional methods, as verified by two simulated data sets. The methods are then applied

to single-trial surface encephalography recorded from human subjects for comparative

purposes. Our approach extracted robust alpha- and gamma-band synchronization over

the visual cortex that was not detected by conventional methods, demonstrating the
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efficacy of this method.

Keywords: coherence, electroencephalography, time-frequency analysis, neuronal

synchronization

1. Introduction

Coherence analysis has been widely used for investigating functional connectivity be-

tween neurophysiological signals to understand perception, action and cognition24,30,9.

Correlations occurring at different frequencies between two or more neuronal signals are

assumed to indicate oscillatory coupling of neuronal groups. Since neural synchroniza-

tion is not constant but varies over time, time-resolved estimate of coherence is used to

capture the dynamics of neuronal synchronization. However, some form of smoothing

is required to estimate time-frequency coherence. This smoothing entails a trade-off be-

tween time-frequency resolution and statistical consistency21. A number of variations

have been proposed to improve this trade-off and obtain a more efficient estimation of

time-frequency coherence11,7,2.

Here, we propose a generalization of the coherency function to further improve the esti-

mation of time-frequency coherency (TFCOH). The classic coherency function is a well-

established approach to measure linear correlation between two arbitrary signals as a

function of frequency27. Coherency is a complex-valued measure of the linear correlation

between two stationary signals6, and the so-called magnitude-squared coherence is the

square of coherency’s magnitude. Coherency is defined as the ensemble averaged cross

spectra normalized by the square root of the product of ensemble averaged power spectra.

As such, it does not capture TFCOH and/or temporal variations in correlation. To obtain

time-resolved coherence, many studies have used a trial averaging method in event-related
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experimental designs25. In event-related coherency, the cross and power spectra are the

average over epochs or trials, which eliminates the need to smooth the coefficients over

time. However, event-related averaging cannot be used in experimental protocols that

do not include any events, such as resting state activity, which requires the estimation of

time-frequency coherency in single trials. In single-trial coherency, a time-resolved esti-

mate can be obtained by smoothing in one or both of the time/frequency domains or by

averaging across orthogonal data tapers in a multiwavelet approach7. Temporal smooth-

ing is the most commonly used in the literature19,11. It involves a trade-off between

temporal resolution and statistical consistency as a function of the smoothing window

size. Alternatively, time-frequency dependency may be estimated by statistical tests of

the non-smoothed cross spectra2. However, without normalization by the product of the

power spectra the method no longer provides an estimate of correlation between 0 and

1, which complicates the comparison of functional connectivity across data sets.

Whereas an identical smoothing operator for the cross and power spectra is used in con-

ventional methods, we propose a generalized coherency function by introducing different

smoothing operators for the cross and power spectra. As a special case, we investi-

gate TFCOH obtained by normalizing the non-smoothed cross spectra by the product

of ensemble averaged power spectra. Two distinct simulation studies are performed to

compare the efficiency of this method against conventional methods; one for a signal pair

with time-varying coherency, and the other for a signal pair with frequency-varying co-

herence buried in white noise of varying strengths. The resulting TFCOH are evaluated

using statistical tests, such as sensitivity, specificity, and z-score. Finally, the methods are

applied to surface electroencephalography (EEG) of three human subjects to characterize
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synchronous alpha activity between occipital channels.

2. Materials and Methods

2.1. Spectral decomposition

Overall, methods for estimating TFCOH vary in two different aspects: (1) spectral

decomposition approaches, and (2) temporally smoothing (or integration) approaches.

We give a brief review on these two aspects in the following subsections. Coherence can

be obtained by different methods of spectral decomposition, such as short-time Fourier

transform (STFT) or wavelet transform (WT)8. STFT uses the Fourier transform of a

windowed signal for spectral estimation. In general, there is a trade-off between spectral

and temporal resolution depending on window length. Short windows give poor spec-

tral resolution and good temporal resolution, and vice versa for long window. Temporal

and spectral resolutions remain constant across frequencies as a fixed window length is

used. In addition, STFT assures stationarity within each data segment. In contrast,

wavelet-based spectral decomposition uses scale-dependent window functions optimizing

the trade-off for each frequency, independently. Wavelet-based methods decompose a sig-

nal to a set of time-domain basis functions with various frequency resolutions. Wavelet

transform is computationally similar to STFT. Unlike the sine and cosine functions used

in the STFT, however, wavelet transform uses wavelet functions to represent a signal

in the time and frequency domains. Often, wavelet based methods use complex Morlet

wavelet for spectral decomposition31,17,14,18,16,5,3, closely related to the Gabor transform.

Irrespective of the differences between spectral decompostion methods, it was shown

that the Fourier, Hilbert, and wavelet-based techniques are in fact formally (i.e. mathe-

matically) equivalent when using the most frequently employed class of wavelets8. The
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generalized coherency function proposed in this paper is independent of the spectral de-

composition and can thus be obtained using either STFT or the WT.

2.2. Smoothing method

Temporal smoothing is commonly used to estimate the cross and power spectra for the

coherency function estimation19,11. Welch’s (or weighted) overlapped segment averaging

(WOSA) is the basis of the smoothing procedure10. Using WOSA, a signal is first divided

into T equivalent segments. Each segment is then weighted by a window function. The

Fourier transform of each weighted segment is computed, and hence the estimation of the

power-spectrum is obtained by averaging over T . It was previously shown that statistical

dependence between two discrete-time signals x[p] and y[p], p = 0, 1, ..., L − 1, where L

denotes total number of samples, is estimated by the coherency function at frequency f

based on the WOSA approach10,22,27,1:

Γ̂xy[f ] =

T�

n=1

sxy[n, f ]

����
T�

n=1

sx[n, f ]
T�

n=1

sy[n, f ]

(1)

where cross spectra sxy[n, f ] at nth segment and frequency f is expressed by,

sxy[n, f ] = DFT {xn[q]} .DFT
∗ {yn[q]} , n = 1, 2, ..., T, q = 1, 2, ..,M (2)

where * denotes the complex conjugation31, M the number of samples taken place at nth

segment, and DFT{xn[q]} stands for the Discrete Fourier Transform of nth segment of

signal x[p]:

DFT {xn[q]} = X̂n[f ] =
M�

q=1

xn[q]w[q]e
−j 2π

M fq
, f = 1, 2, ... (3)
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where w[q] is a weighting/window function (e.g., Hamming window), f the frequency

index, and j =
√
−1. Subsequently, the power spectrum in the nth segment is estimated

by |X̂n[f ]|2. By construction, Eq.(1) does not address changes of coherency over time

because all time segments n are merely averaged. In the literature, it is common to

estimate TFCOH using a smoothing procedure. We further discuss this in the following

section.

2.3. Time-frequency coherency estimators

Generalized TFCOH may be expressed by:

Γ̂xy[n, f ] =
S� (sxy[n, f ])�

S�� (sx[n, f ])S�� (sy[n, f ])
, n = 1, 2, ..., T (4)

where S�(.) and S��(.) both denote smoothing operators28,29,16,8. Smoothing indicates

some form of averaging in frequency, time11,23,19,32, or both, using a multiwavelet method

through the application of several orthogonal wavelet functions7. The smoothing pro-

cedure can be implemented by simple or weighted averaging11,16,28, or alternatively by

convolving the spectral coefficients with a window function (e.g., Gaussian window)7.

Note that, without any smoothing procedure, Eq.(4) gives the phase difference between

Fourier spectra of signals x[p] and y[p], and the magnitude of TFCOH expressed by Eq.(4)

renders identically one, regardless of the use of wavelet and/or Fourier transforms.

We will first discuss the conventional smoothing procedure and then consider two exam-

ples in which the cross-spectra and the auto-spectra are smoothed with different oper-

ators. First, we derive three specific instances of the TFCOH function from Eq.(4) as

follows:

6

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

61
5.

1 
: P

os
te

d 
17

 N
ov

 2
01

1



2.3.1. Method 1 (conventional approach)

Conventional TFCOH is obtained from Eq.(4) when the smoothing operators are

identical, such that S�(.) = S��(.). That is, spectral coefficients are convolved with an

integration window at each specific frequency f as follows.

S
�(sxy[n, f ]) = sxy[n, f ]� h

�[l�]

S
��(sx[n, f ]) = sx[n, f ]� h

��[l��]

(5)

where � denotes the convolution operator, and the resulting output is restricted to the

same time duration as the cross/power spectra, (e.g., T ), and h�[l�] = h��[l��] is a

rectangular window of length l� = l�� = l

h
�[m] �






1 0 � m � l − 1

0 elsewhere

(6)

used as the integration window. We chose l = 0.75sec in the present paper. Note that

Fourier decomposition was performed using Hamming window of length 0.5sec. To in-

crease the performance of the TFCOH estimator, it is common to vary the length l with

respect to frequency. Although, a smoothing procedure is required, it is not easy to

analytically track the effects of smoothing. That is, different choices of smoothing proce-

dure may produce different TFCOH resolution and sensitivity. In general, an arbitrary

spectral decomposition approach (the Fourier or wavelet transform) can be used to es-

timate cross spectra and power spectrum. In the literature, wavelet coherence is most

considered7,16,28,11,23,19,32. Note that, conventional method indicates that S�(.) and S��(.)

both are equal, and hence numerator and denominator of Eq.(4) are identi-

cally smoothed. The generalization of the coherencye function presently proposed is

obtained by relaxing the constraint that S�(.) = S��(.). By letting S�(.) �= S��(.), we
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introduce two possible solutions for the estimation of TFCOH. These two solutions are

presented by Methods 2 and 3, respectively.

2.3.2. Method 2

The first solution is achieved when the rectangular window h�[l�] becomes very narrow,

for instance l� = 1, and h��[l��] becomes very wide, i.e., l�� ≥ 2T − 1. That is, the size of

the integration window h��[l��] is greater than the time duration of sx[n, f ]. Hence, from

convolution theorem perspective and by restricting the convolved signal to the same time

duration of sx[n, f ], Eq.(5) becomes Eq.(7).

S
�(sxy[n, f ]) = sxy[n, f ]� 1 = sxy[n, f ]

S
��(sx[n, f ]) =

T�

m=1

sx[m, f ]

(7)

By dividing the sum in Eq.(7) by T , the averaged power spectrum is achieved at specific

frequency f . That is, TFCOH is estimated by normalizing the non-smoothed cross spectra

by the product of ensemble averaged power spectra. This product is first estimated using

Welch’s method31, implying that TFCOH is estimated by normalizing a complex cross

spectra estimated at segment n by;

Γ̂xy[n, f ] = T
sxy[n, f ]����

T�

m=1

sx[m, f ]
T�

m=1

sy[m, f ]

, n = 1, 2, .., T (8)

By averaging Γ̂xy[n, f ] over n, we obtain the coherency expressed by Eq.(1). Thus, Eq.(8)

gives the time-resolved estimate of coherency. We note that, the temporal average of

Method 1 does not equate with standard coherency.

8

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

61
5.

1 
: P

os
te

d 
17

 N
ov

 2
01

1



2.3.3. Method 3

The second solution is closely related to the Method 2. The aim of Method 3 is to

improve the statistical consistency (e.g., robustness of TFCOH estimators against noise)

of Eq.(8) by smoothing the cross spectra. For this, a smoothed TFCOH is estimated by

substituting numerator of Eq.(4) into the numerator of Eq.(8) :

Γ̂xy[n, f ] = T
S� (sxy[n, f ])����

T�

m=1

sx[m, f ]
T�

m=1

sy[m, f ]

(9)

If TFCOH expressed in Methods 2 and 3 are estimated in the presence of independent

identically distributed (i.i.d) noise (e.g., white noise sequence with mean zero and unit

variance), then two distinct time and frequency based covariance matrices are estimated

at time lag, 0, to eliminate the influence of noise in the TFCOH plane. Hence, we have:

Γ̂xy[n, f ] = γ̂xy[n, f ] + η[n, f ] (10)

where γ̂xy[t, f ] denotes the noise-free TFCOH, and η[n, f ] is the noise coherency, such

that E{η[n, f ]} = 0, ∀f, n, where E is the expectation operator. Then, the time-based

covariance matrix of Γ̂xy[n, f ] is estimated as R̂xy[n, n] = E{Γ̂xy[n, f ]Γ̂Tr
xy[n, f ]}, where Tr

refers to matrix transposition. Similarly, the frequency-based covariance matrix is esti-

mated by R̂xy[f, f ] = E{Γ̂Tr
xy[n, f ]Γ̂xy[n, f ]}. In consequence, the time-based covariance

9
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matrix that gives an estimation of noise-free time-course of the coherency, is obtained by

E{Γ̂xy[n, f ]Γ̂
Tr
xy[n, f ]} ≡ E

��
γ̂xy[n, f ] + η[n, f ]

�

�
γ̂xy[n, f ] + η[n, f ]

�Tr ]
�

≡ E
�
γ̂xy[n, f ]γ̂

Tr
xy [n, f ]

�

+
�
E{ηxy[n, f ]}E{ηTr

xy [n, f ]}
�

≡ E{γ̂xy[n, f ]γ̂Tr
xy [n, f ]}

(11)

Note that, noise components are deflated due to their independency.

2.3.4. Wavelet coherency

Alternatively, wavelet functions can also be used for spectral decomposition rather

than Fourier-based methods used in Eqs.(4) , (8), and (9). Hence, the equivalent of

Methods 1, 2, and 3 can be defined for wavelet coefficients. We shortly describe these

variations below and demonstrate its use in the experimental data. Following23,32, and

similar to Eq.(4), the bivariate continuous wavelet coherency of two continuous-time

signals x(t) and y(t) at location b and scale a is estimated as follows:

Γ̂xy(b, a) =
S�

�
wxy(b, a)

�

�
S��

�
|wx(b, a)|2

�
S��

�
|wy(b, a)|2

� (12)

where S�
�
wxy(b, a)

�
denotes the smoothed wavelet cross-spectra, and

S��
�
|wx(b, a)|2

�
and S��

�
|wy(b, a)|2

�
are both smoothed wavelet power spectra. The

wavelet power spectrum is usually computed by square of the magnitude of wavelet

transform (see Eq.(13)). The WT of discrete-time signal, x[p], p = 0, 1, 2, ..., L − 1, is

computed by convolving x[p] with a scaled and translated version of a mother wavelet

10
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function ψa,b[p]:28

wx(a, b) =
1�
|a|

L−1�

p=0

x[p]ψ∗
�
p− b

a

�
(13)

The result of convolution in Eq.(13) is the inverse Fourier transform of the product of the

DFT of discrete-time signal x[p] with DFT of a mother wavelet, for instance, the complex

Morlet wavelet, ψ(t) = π−1/4ej2πω0(t)e−t2/2. Therefore, Eq.(13) can be written as28:

wx(a, b) =
�
|a|

N−1�

f=0

Fx(f)Fψ∗(aκ)ej2πfb (14)

Where Fx(f) denotes the DTF of x[p], and Fψ∗(af) is the DFT of the complex conjugate

of ψ(af) at scale a. The relationship between the equivalent Fourier period (or Fourier

frequency) and the Morlet wavelet scale is given by f = 4πa/
�
ω0 +

�
2 + ω2

0

�
28. As a

consequence of the above description, we write f ∝ (a) and t ∝ (b, n). These proportions

provide appropriate replacements for the scale and translation parameters with their

analogues frequency and time, respectively. Therefore, the discrete version of wavelet

TFCOH analogue with Eqs.(8) and (9) are respectively given by:

Γ̂xy[n, f ] =
wxy[n, f ]�����wx[n, f ]

���
2�����wy[n, f ]

���
2� (15)

Γ̂xy[n, f ] =
S�

�
wxy[n, f ]

�

�����wx[n, f ]
���
2�����wy[n, f ]

���
2� (16)

where �.� denotes the average operator. Note that, cross wavelet spectra are normalized

by the product of the averaged wavelet power spectra at each specific frequency f .

2.4. Simulated and Experimental Data

Two simulated signal pairs with different properties were generated to study the three

different TFCOH representations:
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1. A signal pair with time-varying coherence, e.g., modulated Gaussian noise at frequency

0.6Hz

2. A signal pair with frequency-varying coherence, e.g., a jump in synchronous frequencies

from 10Hz to 20Hz, over time.

We also sought to explore the different ability of these three methods to characterize

dynamic coherence in an examplar complex physiological signal, namely human EEG

data.

2.4.1. Simulated Data, Example 1 (Time-varying coherence)

Two independent noise sequences {α1m}Mm=1 and {α2m}Mm=1 with mean 0 and variance

1 were modulated by a sinusoid signal β[m], where M is the total number of samples.

This modulation produces two signals S3[m] = α1[m] + β[m]α2[m], and S4[m] = α2[m] +

β[m]α1[m], which are synchronized and desynchronized over time19. We defined a pure

sinusoid signal β[m] as β[m] = a(1 + sin[2π0.6m]). The amplitude a determines the

boundaries of the coherence, (see Eq.(17)). Since α1[m] and α2[m] are Gaussian noise

with variance σ2 = 1, the power-spectra of α1 and α2 are both equal to σ2 = 1 for all

frequencies, and their cross-spectra is equal to 0. The coherence between signals S3[m]

and S4[m] can be analytically defined as a function of β[m] as:

Γ[a,m] =
4a2F 2[m]

(1 + a2F 2[m])2
(17)

where F [m] = 1
aβ[m], and a ∈ [0.01, 0.5]. By substituting amax = 0.5 and amin = 0.01

into Eq.(17), one respectively obtained two bounds for time-varying coherence, one is

0 ≤ Γ[0.5,m] ≤ 1, and the other 0 ≤ Γ[0.01,m] ≤ 1.6× 10−3.

Methods 1, 2, and 3 were employed to estimate time-varying coherence under the ampli-

tude condition a ∈ [0.01, 0.5]. To assess the performance of methods, statistical measures
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including sensitivity, specificity, and z-score are also calculated with confidence interval

(CI= 50%). We used CI= 50% to binarize the coherency spectra for the purpose of

computing the sensitivity and specificity.

2.4.2. Simulated Data, Example 2 (Frequency-varying coherence)

We simulated two independent signals S1[m] =
�
x1[m1]+η1[m1], x2[m2]+η2[m2]

�
and

S2[m] =
�
x1[m2] + η3[m2], x2[m1] + η4[m1]

�
of length 20sec. Note that m1 = 12sec, and

m2 = 8sec. η[m] is Gaussian noise: η[m] ∼ N(µη = 0, σ2
η = 1). Two sinusoid signals

x1[m] = A sin[2π10m] and x2[m] = A sin[2π20m] were contaminated by four independent

Gaussian noise ηi[m], i = 1, 2, 3, 4 as stated above. To produce signals with different

amplitudes, we defined a range of amplitudes A by using a wide range of Signal-to-Noise

Ratio (SNR) as:

A = Anoise

�
10

SNR
20

�
(18)

where SNR ∈ [−30, 10]dB, where dB is a logarithmic unit that indicates the ratio of a

physical quantity (noise strength, signal strength, etc). Noise amplitude is Anoise ∈ R.

In this paper, we set Anoise = 0.2
√
2 mV . To assess performance of Methods 1, 2, and

3 in the measurement of TFCOH in the presence of a wide range of noise strengths,

statistical measures including sensitivity and specificity were calculated. Sensitivity is

defined by Sensitivity = TP
TP+FN% (as a measure of the method’s ability to detect true

TFCOH), and specificity is expressed by Specificity = TN
TN+FP% (as a measure of the

method’s ability to successively exclude non-coherence). TP, TN, FP and FN denote

number of true positives, true negatives, false positives, and false negatives, respectively.

Furthermore, a quantitative assessment of the robustness of Methods 1, 2, and 3 against

white noise, was carried out by z-scores at each specific noise strength. To determine

13
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the values of significant threshold, sensitivity, and specificity for TFCOH at CI= 50%,

surrogate data were used. We employed the technique of linear surrogate data generation

given in4, namely derived through the Fourier phases of signals S1[m] and S2[m]. TFCOH

of surrogate data was generated for 100 repetitions at each specific noise strength.

2.4.3. Experimental Data (Human EEG)

We also sought an exploratory assessment of the TFCOH estimators (Methods 1, 2,

and 3) in characterizing synchronization in an exemplar physiological dataset, namely

human EEG. To be precise, we studied TFCOH between the two scalp channels over

occipital cortex (O1 and O2). Subjects were requested to sit still with eyes close for

10 minutes. EEG data was acquired from three healthy human subjects at sampling

frequency Fs = 500Hz and digitized by an analog to digital convertor (ADC) with

resolution of 16 bits/sample. The protocol was approved by the Human Research Ethics

Committee of The University of New South Wales. All subjects gave voluntary and

informed consent according to National Health and Medical Research Council guidelines.

Acquired EEG signals were passed through a band pass filter with cut-off frequencies

[0.01, 250]Hz prior to analysis. This data were chosen because it is known to contain

complex patterns of intermittent synchronization within and between channels within

the alpha frequency range (8-13 Hz). Full details of data acquisition and preprocessing

can be found in12.

3. Results

We first report the validation and comparison of the Methods in simulated data,

whose time frequency properties are known through construction. We then report an

exploratory analysis of the TFCOH methods in human EEG.
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Figure 1: Left panel represents the analytic time-varying coherence obtained from Eq.(17) at amplitude
a = 0.5, and the desired TFCOH (right panel) for the frequency-varying coherence described in Example
2.

3.1. Simulation results

Fig.1 shows the analytic time-varying coherence obtained from Eq.(17) at amplitude

a = 0.5 for Example 1, and the desired TFCOH (right panel) for the frequency-varying

coherence described in Example 2. TFCOH estimates based on Method 1, 2, and 3 for

the simulated data described in Example 1 are depicted in Fig.2. Overall, Methods 2 and

3 could detect the lower bound of the coherence near 0.15, whereas Method 1 failed to

measure TFCOH< 0.4 as shown in the right panels. That is, Methods 2 and 3 facilitated

the detection of a wider range of coherence compared to Method 1. Similarly, percentage

of TFCOH obtained from Methods 2 and 3 indicate coverage of a wider range of the

coherence boundaries. In Fig.3 sensitivity (top row), specificity (middle row), and z-

score (lower row) of all three methods are represented at f1 = 0.6Hz (left column) and

f2 = 1.2Hz (right column), respectively. In general, Method 1 has the highest sensitivity

at both frequencies due to high TP rate and a low number of TN compared to Methods

2 and 3. In other words, the effects of the variance and bias of Method 1 are reflected in

the lower false negative rate (higher sensitivity) which comes at the cost of higher rate
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Figure 2: Time-varying synchronization of simulated data described in Example 1 using Methods 1,
2, and 3 (top to bottom row, respectively). Left column represents the percentage of significant time-
frequency points at 50% confidence interval estimated across 100 simulations. Middle column shows raw
TFCOH estimates of a single trial. Right column represents time-course of the coherence (i.e., magnitude
of coherency as function of the time) at specific amplitude a = 0.5 defined in Eq.(17) obtained from the
main diagonal of the time-based covariance matrix.

0 0.1 0.2 0.3 0.4

0.6

0.8

1
Sensitivity

0.1 0.2 0.3 0.4 0.5

0.6

0.8

1
Sensitivity

0 0.1 0.2 0.3 0.4
0.2

0.4

0.6

Specificity

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6
Specificity

0 0.1 0.2 0.3 0.4
−0.5

0

0.5

1

1.5

Amplitude [mV]

Z−score

0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5

1

Amplitude [mV]

Z−score

 

 

Method 1

Method 2

Method 3

Figure 3: The sensitivity (top row), specificity (middle row), and z-scores (lower row) of the Methods 1,
2, and 3, at frequencies f1 = 0.6Hz (left column) and f2 = 1.2Hz (right column), respectively.
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Figure 4: Results from Methods 1, 2, and 3 (left to right column, respectively) of simulated data described
in Example 2. Top row (left to right panels) represents TFCOH for a single trial at SNR = 0dB based
on Methods 1, 2, and 3, respectively. Two middle rows show the time and frequency based covariance
matrices using Eq.(11) at SNR = 0dB. The bottom row represents the sensitivity, specificity, and
z−scores in the interval of SNR ∈ [−30, 10]dB for all three methods across 100 simulations.

of false positives (lower specificity) than Methods 2 and 3 in the case of time-varying

coherence. This is further underscored by the lower specificity of Method 1. Robustness

and stability of Method 3 against white noise modulated by carrier frequency f1 = 0.6Hz

is better than the other 2 methods as reflected by the higher z-score value. This was

changed for carrier frequency f2 = 1.2Hz. That is, Method 2 reveals the highest stability

and robustness against noise, reflecting its superior temporal resolution due to the non-

smoothed cross spectra. Fig.4 represents TFCOH estimates obtained using Methods 1,

2, and 3 for the simulated data described in Example 2. Although all methods show the

synchronous frequencies at f1 = 10Hz (from t = 0 to t = 8sec) and f2 = 20Hz (from
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t = 12 to t = 20sec ), the results obtained by Methods 2 and 3 appeared more robust

at SNR = 0dB compared to Method 1. The next two rows represent time-based and

frequency-based covariance matrices using Eq.(11). Method 3 has improved statistical

consistency in revealing the time-course of the coherence represented by the time-based

covariance matrix. In addition, frequency-based covariance matrices implied Methods 2

and 3 to be consistent in detecting synchronous frequencies by avoiding the construction

of spurious synchronous frequencies. Spurious synchronous frequencies appeared in the

off-diagonals of the frequency-based covariance matrix of Method 1 at f1 = 10Hz and

f2 = 20Hz. In contrast, Methods 2 and 3 only represented the synchronous frequencies

(10 and 20Hz) along their main diagonals. Bottom row shows the result of sensitivity,

specificity, and z-score measurements. Method 3 yields better sensitivity compared to

Method 1. In addition, Method 2 rendered higher sensitivity at interval of SNR ∈

[−10, 10]dB compared to Method 1. For example, sensitivity of methods 2 and 3 at

SNR = −5dB are 1, whereas Method 1 showed sensitivity ≈ 0.95. This gap is remained

consistent until SNR = 10dB. Specificity of all methods approximately agreed. Method

3 had the highest z-score, approximately zscore = 4.2 at SNR = −3dB indicating its

robustness and stability against noise strength. Combining these results signifies that

presently proposed technique (i.e., Methods 2 and 3) has an improved trade-off between

statistical consistency and temporal resolution of TFCOH. This enables better recognition

of (linear) correlations in the presence of noise. Comparing the analytic solution for the

time-varying coherence (Fig.1, left panel) and the estimated one (Fig.2, right column)

indicates that Methods 2 and 3 estimated a broader range of the coherence, in particular,

the lower coherence rate where Method 1 fails. Similarly, TFCOH of Example 2 estimated
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by Methods 2 and 3 (Fig.4, top row, the last two right panels) show lower bound of the

coherency where Method 1 shows noisy TFCOH.

3.2. Experimental results

As mentioned earlier, we sought to compare the TFCOH estimators (e.g., Methods

1, 2, and 3) in characterizing dynamic patterns of coherence between regions of human

occipital cortex, as reflected in surface electrode recordings at O1 and O2 channels. For

the EEG analyses, we only used the imaginary part of TFCOH to avoid the spurious

synchronization due to volume conduction. Previous studies have shown that the imag-

inary part reflects genuine neural interactions in electrophysiological recordings and it

is unaffected by volume conduction20,26. The results are shown in Fig.5. An example

of the EEG recordings is provided in the top row. Results for Methods 1,2 and 3 are

shown below in the left, middle and right column respectively. The second row shows the

Fourier-based TFCOH plots for each method whereas the third row represents the cor-

responding wavelet-based results (notice the adaptive tessellation of the time-frequency

plane). When visually comparing the methods, it is clear that Method 1 (both Fourier and

wavelet-based variants) shows uniformly higher coherency at all frequencies and times:

There appears to be reduced information. The most specific results appear to be in the

wavelet-based TFCOH plane derived from method 3, where discrete instances of high

coherency intermittently appear within the alpha (8− 13Hz) frequency range. The two

bottom rows show the frequency-based covariance matrices of each of the three methods

derived from the entire time series. Method 1 - both wavelet and Fourier-based - indicate

coherence across a broad range of frequencies (e.g., f < 10Hz). In contrast, Methods 2

and 3 both indicate that there is a specific coherent frequency between the two EEG sig-
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Figure 5: Fourier and wavelet TFCOH between two occipital EEG channels, O1 and O2 measured by
Methods 1 (left column), 2 (middle column), and 3 (right column). Top row shows an example of the
bivariate time series. Next two rows show the imaginary part of the Fourier- and wavelet-based TFCOH
results. The two lower rows show the frequency-based covariance matrices for the Fourier (top) and
wavelet (bottom) TFCOHs. Note the striking coherence at both 10 and 35 Hz evident most clearly
when using Method 3 in conjunction with the wavelet transform (very lower right panel).
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nals, O1 and O2 isolated to the alpha frequency range. Furthermore, the frequency-based

covariance matrix of wavelet TFCOH, using Method 3 in particular, suggests coherence

about approximately 35Hz, in the so-called gamma frequency range (see Fig.5, bottom

row). Gamma-band synchronization in visual cortex has previously been observed using

invasive recording techniques and extensively discussed in literature15,13. The detection

of gamma-band synchronization in single-trial EEG data obtained from surface record-

ings underscores the robustness and sensitivity of the proposed method. The TFCOH of

the other two subjects showed similar effects, i.e. coherency at both alpha and higher

frequencies, evident most strikingly when using Method 3.

4. Conclusion

In the present paper, we proposed a generalized time-frequency coherency function to

improve the estimation of TFCOH in single-trial data. Generalization of the coherency

function was obtained by relaxing the constraint of using identical smoothing operators

for the cross and auto spectra. This opens broader possibilities in the estimation of

TFCOH. This novel approach improves the trade-off between time-frequency resolution

and statistical consistency by reducing the negative side effect of smoothing of the power

spectrum. Specifically, TFCOH is estimated by normalizing the non-smooth temporal

cross-spectra by the product of ensemble averaged power spectra. We showed that the

method gives the time-resolved estimation of the classic coherence function. Efficiency

was tested in two simulated data sets involving time-varying and frequency-varying corre-

lations using statistical tests, i.e. sensitivity, specificity and z-score. Our method rendered

the highest statistical consistency against a wide range of noise strength compared to the

conventional approach. In experimental study, TFCOH was estimated between two oc-

21

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

61
5.

1 
: P

os
te

d 
17

 N
ov

 2
01

1



cipital EEG signals, which revealed that our method could exclusively extract alpha-

and gamma-band synchronization in visual cortex from single-trial data. As such, the

proposed method appears particularly suitable for assessing functional connectivity in

resting-state EEG.
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