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Comparison of forest growth curves has led many to the conclusion that there is a similarity between forest 

stands growing in different conditions. Thus, in the beginning of the past century Alexander Turin, a well-

known forest scientist, made an important empirical generalization: “The normal pine stands with equal 

heights at a certain age had the same growth in the past and will have the same growth in the future 

regardless of where they grow.”
1,2 

 This empirical generalization (like other generalizations of this sort) defines 

similarities between growth curves in a quantitative way.   

Here we treat the same subject from the viewpoint of similarity theory.  Since the concept of biological 

similarity is extensively reviewed in the seminal work of Stahl
3
, we omit a detailed explanation of the general 

methodology that underlies our research and proceed to its goal.   

Our goal is to form a dimensionless ratio of biophysical entities that could parameterize the diversity of forest 

growth curves. Such ratios are called similarity criteria. Similarity criteria for growth are often formulated in 

the form (1/B)(dB/dt), where B stands for biomass, for example, and  is a time constant, such as generation 

time.  A criterion of this kind parameterizes the family of exponential curves. However, an exponential curve 

can approximate only a short part of a growth curve, because growth slows down with age.  

Jorgensen and Svirezhev
4
 explain the slowdown in growth as follows. The input of energy is proportional to the 

surface area of an organism, whereas its metabolism is proportional to its volume (or biomass). The surface 

area generally grows slower than volume. Therefore, the rate of energy supply comes in balance with the rate 

of energy dissipation. The generation time – that is, the period of more or less significant growth – is 

proportional to two-thirds power of the maximum size of the organism (so-called, Bonner’s relation). The 

Boner’s relation holds if the shape of the organism is relatively simple (e.g. spherical). However, if the surface 

of an organism is a fractal with dimension greater than 2 (but less than 3), then the exponent in the Bonner’s 

relation should be higher than 2/3. That is why Bonner’s relation works well in the case of mammals, and does 

not work well in the case of trees. 

Application of the Jorgensen-Svirezhev theory in the study of forest growth led to conclusion that the biomass 

of a stand should be proportional to the four-fifths power of its biological age
5
. This recalls the well-known 

application of similarity theory that allowed Sir Geoffrey Taylor to evaluate the yield of an atomic explosion 

using only its photographs published in newspapers
6
.  Therefore, we suppose that it might be a meaningful 

analogy between tree crown growth and atomic explosion. If so, we get a fresh insight to the physical nature 

of tree crown growth, which is essential for choosing the right biophisical entities for our similarity criterion. 

The application of similarity theory to the atomic explosion is justified by the fact that the shape of the blast 

wave remains constant within certain time interval. Due to this reason one may apply the method which is 

known as the dimensional analysis
7,8

.   The radius (R ) of the blast wave is determined by the energy (E) 

released by the explosion, air density (), and time (t). Thus, R=F(E,t,), where F is an unknown function. On a 

certain time interval, F could be approximated by the monomial E
a


b
t

c
, where a, b, c are unknown numbers. 

Let us find a, b, с at which the dimension [E
a


b
t

c
] of the monomial E

a


b
t

c
 coincides with the dimension [R] of R. 
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Taking into account that 

[E]=ML
2
T

-2
, []=ML

-3
, [t]=T, [R]=L (where M, T,  and L are dimensions of mass, time, and length, respectively) 

we get 

[E
a


b
t

c
]=M

a+b
L

2a-3b
T

-2a+c
 

and then 

a+b=0; 2a-3b=1; -2a+c=0. 

Thus 

a=1/5, b=-1/5, c=2/5, 

and  

R=c0(E/)
1/5

t
2/5

, 

where c0 is a dimensionless constant. 

The analogy between tree crown growth and blast wave propagation is easier to see in the case of deciduous 

species with spherical crowns. A typical deciduous tree accumulates non-structural carbohydrates during the 

growing season, keeps them over the dormant period, and then, in spring, translocates them to the buds, 

where they are transformed into structural carbohydrates of growing shoots and leaves (Figure 1)
9,10,11

. Since 

the rate of translocation is higher than the rate of transformation, the flow of non-structural carbohydrates 

achieves the tips of branches and enables the radial growth of crown. If the rate of translocation would be 

lower than the rate of transformation, all non-structural carbohydrates will be consumed inside the crown and 

nothing remains for its expansion.  

Solar energy, 
CO2, H2O, etc 
etc. 

 

non-structural 
carbohydrates  

structural 
carbohydrates 

Figure 1. Conceptual scheme of tree crown growth. (NB: one may distinguish two phases in the annual 
cycle of growth: accumulation of non-structural carbohydrates and their transformation to structural 
carbohydrates.) 
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The rate of radial growh (dR/dA) thus depends on tree age (A), the energy (E) embedded in translocated non-

structural carbohydrates, and crown density () – that is, dR/dA =F(E,,A). (The crown density, , is defined as 

the ratio of crown biomass to crown volume, V=(4/3)πR
3
.)  Let us assume that F could be approximated by the 

monomial E
a


b
A

c  
within each 1-year interval of tree growth (that is, when Ai  A< Ai+1, where Ai stands for the 

tree age at the beginning of the i-th 1-year interval). Then we can find a, b, с, at which the dimension M
a+b

L
2a-

3b
T

-2a+c
 of the monomial E

a


b
A

c
 coincides with the dimension L T

-1
 of dR/dA: 

dR/dA=c0i(E/)
1/5

A
-3/5

   (Ai  A< Ai+1) 

If c0i=c0 for each interval of tree growth, and E/=const, then integration of the above equation results in 

R=(5/2)c0(E/)
1/5

A
2/5

 . 

Tree crowns cannot grow freely in a forest stand: space is limited there. If there would be no competition for 

space, the projective area of each crown (Sk) would grow proportionally to the radius squared, and hence Sk 

would be proportion to the stand age (A) raised to the 4/5-th power: 

Sk=c1k(Ek/k)
2/5

A
4/5

 

The total projective area of crowns (S) would grow in similar way: 

S=Sk=(c1k(Ek/k)
2/5

)
 
A

4/5
 

where  c1k(Ek/k)
2/5

  can now indicate the class of growth (stand productivity) and can be identified by the 

S/A
4/5

 ratio. 

Since competition for space changes the growth of an individual tree, we cannot expect that coefficients c1k 

remains constant.  We may only hope in this case that the sum c1k(Ek/k)
2/5

 remains constant. This may really 

happen in the normal forest stands.  Normal stands are the stands where the density of forest cover is the 

highest among the stands of the same age and the same class of growth either due to optimal forest 

management or due to natural conditions. The negative effects of competition are minor there because the 

number of trees decreases in an optimal way. Hence S should be proportional to A
4/5

 in normal forest stands, 

and the curves displaying S growth in different normal stands should form an anamorphic spectrum, where 

each curve is identified by a single number which is equal to S/ A
4/5

.  

The density of forest cover is characterized in practice by the stand basal area Sb. (The basal area is easier to 

measure than the total projective area of crowns.) Let us assume that Sb provides an indirect measure of S.  

Then we can suppose that Sb grows proportionally to A
4/5

 (like the projective area of crowns), and propose the 

following similarity criterion for normal stands: 

𝛱𝑛 =
𝑆𝑏 𝐴4 5  

max
𝐴𝐼

 𝑆𝑏 ,𝐼 𝐴𝐼
4 5   

 

where SI and AI refer to the case of the I class growth.  

The result of our study provides some theoretical ground for the empirical generalization made by Turin. We 

could explain now why the normal stands with equal heights at a certain age should have the same growth in 

the past and in the future. Our theory is as follows. 

Every normal stand goes through the phase at which tree crowns are changing in scale, not in shape. During 

this phase (e.g. from age A1 till age A2) the basal area grows proportionally to the stand age raised to the 4/5 

power. The coefficient of proportionality is completely determined by the basal area at a given age A
*
 that can 
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be taken arbitrarily from the interval from A1 to A2  (A1< A
*
< A2).  Due to this reason the curves displaying the 

growth of basal area cannot have common points within this interval: if two curves have a common point, they 

coincide. The same can be said about the height growth curves, because the average height of a normal stand 

and its basal area are linked by some allometric relationship. 

It must be emphasized here that S grows proportionally to A
4/5

 only within a certain age interval. Our theory is 

based on the assumptions which are valid for a certain phase of stand growth. During this phase of growth Πn 

remains relatively constant. However, one may distinguish three phases of stand growth: juvenile, mature, and 

senescent. Πn increases during the juvenile phase, remains relatively constant during the mature phase, and 

decreases during the senescent phase. Hence, the similarity criterion for growth curves should be formulated 

as follows: the growth curve of a normal stand can be identified by the maximum value that Πn achieves over 

the whole period of growth. 

Figure 2 is to show how the similarity criterion could be applied to classification of growth curves. The upper 

left panel displays the growth of basal area in the normal stands of Siberian pine
12

. The changes in Πn are 

displayed at the lower left panel. One may notice that Πn remains relatively constant, 0.8±0.025, over a span of 

50 years (from 50 to 100 years of age). If a forest stand belongs to the I or III class of growth, Πn varies in a 

wider range within the same age span (from 0.9 to 1.0 in the case of I class growth, and from 0.55 to 0.65 in 

the case of III class growth). Therefore, we can identify the class of growth based on Πn calculated for a stand 

of any age that falls within this age span. If Πn is above 8.5, the stand belongs to the I class of growth; and if it 

is below 7.5 (but above 0.5), the stand belongs to the III class of growth. 

This case study suggests (in line with the empirical generalization made by Turin) that the variety of growth 

patterns can be represented by an one-parameter family of curves.  However, it is almost impossible to prove 

the general validity of such a postulate on an empirical basis. Moreover, the Chapman–Richards model, which 

is often used in the studies of forest growth, generates a 4-parameter family of curves. Can we identify all the 

curves from the 4-parameter family by means of only one parameter? 

As we can see in Figure 2, the highest value of Πn (Πn,max) is achieved earlier in the more productive stand as 

compared to the less productive stands: at the age of 50 in the case of the I class of growth, at 70 in the case of 

the II class of growth, and at 90 in the case of the III class of growth. The delay in transition to the mature 

phase of growth can be conceptualized through the notion of biological age
13,14,15

 and “rejuvenation bias”
5
 (the 

difference between the calendar and biological age of the stand). The model S=(c1k(Ek/k)
2/5

)
 
(A-u)

4/5
, where u 

is the rejuvenation bias, approximates well the Chapman–Richards model within the age interval 

corresponding to the mature phase of growth
16

. In other words, the middle part of a curve generated by the 

Chapman–Richards model for a set of 4 model parameters is determined by two parameters: c1k(Ek/k)
2/5

, 

which characterizes stand productivity, and u. These two parameters are not independent: the higher is the 

first, the lower is the second. Hence, the middle parts of growth curves can be represented by an one-

parameter family of curves. 

In conclusion we would like to cite Zeide, who clearly depict the long-standing problem that we attack in our 

research: “Shortcomings of the presentation of growth by formulas are rarely discussed. Unlike equations for 

physical laws, functions used to describe tree or stand growth do not reflect the essence of growth.”
1
 

We employed here the method which is commonly used to derive physical laws
7,17,18

. In contrast to the 

previous work
5
 on the similar subject, we focus on the analogy to atomic explosion.  A blast wave is formed 

when the rate of energy release is much higher than the rate of energy dissipation. The difference between 

the rates of energy release and dissipation is the essence of this phenomenon. The essential feature of crown 

growth is the difference between the rates of non-structural carbohydrate supply and demand.  Since the rate 

of supply is much higher than the rate of demand, the flow of non-structural carbohydrates achieves the tips 

of branches and enables the radial growth of crown. (Otherwise, crowns would grow in weight, not in size.) 
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Proceeding from these ideas, we derived the similarity criterion which supposedly captures the “essence of 

growth” that emerges from the geometric similarity of tree crowns.  

 

Copyright and use of materials. The Figure1 can be copied and re-used in the articles or presentations, but 

only if the original source is cited in the caption as “Courtesy by Alexandrov and Golitsyn (Nature Precedings, 

2011)” and correct reference is added to the reference list. 

 

NB. This is a pre-publication release of research results that will be submitted for publication to a peer-

reviewed journal. 
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