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Fig. 3 Correlation matrix of 10 virtual receptors A) before processing, B) after processing with NeuralGasba
sed lateral inhibition, C) correlationbased lateral inhibition, D) random lateral inhibition. F) Boxplots of the resi
dual correlation for AD.
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Fig. 5 A) Inputoutput relation (firing rate) in the simulator. Firing rate averaged over all neurons in a group (glo
merulus). Colors denote different glomeruli. Each point corresponds to one stimulus presentation. B) Same se

tup on in hardware neurons, C) after calibration. D)
Classifier performance on simulator and

on hardware (without lateral inhibition).

Ten thousand times faster:
Classifying multidimensional data
on a spiking neuromorphic hardware system.
Michael Schmuker1,2, Daniel Brüderle3, Sven Schrader3, Martin P Nawrot1,2

Motivation
� Neuromorphic computing is an emerging technology that aims

at bioinspired highperformance computing with spiking neuro
nal networks.

� The FACETS/Brainscales neuromorphic hardware system runs
networks of spiking neurons with a speedup of 104 [1].

� Our aim was to implement a network of spiking neurons that
can be trained in a supervised fashion, and to run this network
on neuromorphic hardware to classify multidimensional data.

� The structure of the first layers of neuronal processing in the
olfactory system provides a well suited template for a neuronal
architecture processing multidimensional data.

Challenges
Classifier circuit and learning rule
Challenge: Implement a supervised classifier that operates with
spiking neurons.
Solution: A spiking network implemented in PyNN [2], running in
the NEST simulator and on the FACETS/Brainscales hardware.
� A featureencoding layer converges onto an association layer

that has winnertakemost properties (Fig. 1).
� The network is trained in a supervised fashion, using a percep

tronlike learning rule operating on firing rates (Fig. 1 caption).
Sampling data with virtual receptors
Challenge: Firing rates of spiking neurons can only represent a
bounded and nonnegative range of values. We need a suitable
transformation mapping real values into that value range.
Solution: Virtual Receptors (VR). The response strength of a VR
depends on its distance to the presented data point [3].
� We use a Neural Gas (NG) algorithm [4] to distribute virtual re

ceptors in data space, like olfactory receptors sample chemical
space (Fig. 2). Receptor response is computed as a function of
the distance between data point and receptor.

� This transformation yields a bounded and nonnegative repre
sentation of any realvalued data set. Dimensionality can be
adjusted to exceed the number of original data dimensions
(dimensional oversampling), enabling a sparser representation.

Decorrelation
Challenge: Virtual receptors provide correlated data, but the
classifier learning rule works best with uncorrelated data.
Solution: Decorrelation through lateral inhibition in a preproces
sing layer (see decorrelation layer in Fig. 1).
� Three kinds of inhibitory connectivity matrices were tested:

NGbased (inhibitory connections between receptors given by
the NG graph edges), correlation (inhibitory weight depends on
correlation between receptors), and random lateral inhibition.

� Correlationbased lateral inhibition yields best decorrelation,
followed by NG and random connectivity (Fig. 3).

� Benchmarking the impact of decorrelation on classifier perfor
mance shows an increase in accuracy with increasing lateral
inhibition, but no clear preference for a specific method, proba
bly a ceiling effect of the spiking classifier (Fig. 4).

Implementation on neuromorphic hardware
Challenge: Hardware neurons vary in their firing rate response
(Fig. 5B). The classifier learns on output rate, so rate variation
has negative impact on the classifier performance.
Solution: Calibrate the sensitivity of neuron groups (glomeruli) to
achieve more homogeneous representation of input rates.
� We developed a calibration method that balances

inhomogenities across model glomeruli (Fig. 5C).
� After calibration, the hardware implementation of the classifier

reaches the same performance as in the simulator (Fig. 5D).
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Fig. 1: Schematic of the neuromorphic classifier. Input
neurons (ORNs) emit poisson spike trains with averag ra
tes according to the numeric values of the input pattern.
Synaptic weights between the decorrelation and associa
tion layers are subject to plasticity during classifier trai
ning (dashed lines). Classifier training algorithm:
1. Present labeled data point, i.e., set firing rates accor

ding to pattern.
2. Determine winner population in the association layer.
3. Update weights: if association was correct, increase

weights of active synapses; decrease weights if
association was incorrect.

4. Repeat until all training data points have been
presented.

Fig. 2: Sampling Fisher's iris data set
[5] with virtual receptors. A) Virtual
receptors after training the neural
gas (NG) (2D PCA projection of 4D
space). Yellow lines represent edges
in the NG graph. B) Data representa
tion in virtual receptor space (2D
projection of 10D space). The pro
nounced structure indicates a large
amount of residual correlation.

B)A)

References
[1] Brüderle D, Bill J, Kaplan B, Kremkow J, Meier K, Müller E & Schemmel J (2010). Simulatorlike exploration of cortical network architectures with a mixedsignal
VLSi system. In Proc. IEEE ISCAS 2010, p. 2784–8787. [2] Brüderle D, Müller E, Davison A, Muller E, Schemmel J & Meier K (2009). Establishing a novel
modeling tool: a pythonbased interface for a neuromorphic hardware system. Front Neuroinf. 3, 17. [3] Schmuker M & Schneider G (2007). Processing and
classification of chemical data inspired by insect olfaction. PNAS 104, 2028520289. [4] Martinetz T & Schulten K (1991). A“ neuralgas” network learns topologies.
In Artificial Neural Networks T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, eds. (NorthHolland: Elsevier B.V.), pp. 397402. [5] Fisher RA (1936). The Use of
Multiple Measurements in Taxonomic Problems. Ann Hum Genet 7: 179–188. [6] Gorodkin J (2004). Comparing two Kcategory assignments by a Kcategory
correlation coefficient. Comp Biol Chem. 28, 367374.

Funding: DFG SPP 1392: SCHM2472/11  BMBF BCCN Berlin 01GQ1001D

KIRCHHOFF-

INSTITUT

FÜR PHYSIK

A) B)Fig. 4 A) Data representation after cor
relationdependent lateral inhibition (2D
projection of 10D space). Class overlap
may be an artefact from lowdimensio
nal embedding  separability must be
judged by a classifier. B) Effect of de
correlation on classifier performance
(fivefold crossvalidated, Gorodkin's K
category correlation coefficient [6]). Er
ror bars: min/max of three repetitions.

Conclusions
� Virtual receptors provide a nonnegative representation of any real

valued data set, suitable for processing with spiking neurons.
� Correlationbased lateral inhibition efficiently reduced residual

correlation from the virtual receptor representation.
� Decorrelation improved performance of the spiking classifier.
� We successfully implemented the classifier on a neuromorphic

hardware system with high speedup factor, an important step
towards bioinspired highperformance computing.
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