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ABSTRACT 

We previously reported that polyamidoamine STARBURST™ dendrimer (generation 3, 

G3) (dendrimer) conjugate with α-cyclodextrin (α-CyD) having an average degree of 

substitution of 2.4 of α-CyD (α-CDE) provided remarkable aspects as a novel carriers for 

DNA and siRNA.  To develop novel α-CDE derivatives with tumor cell specificity, we 

prepared folate-appended α-CDEs (Fol-α-CDEs) and folate-polyethylene glycol (PEG)-

appended α-CDEs (Fol-PαCs) with the various degrees of substitution of folate (DSF), and 

evaluated in vitro and in vivo gene transfer activity, cytotoxicity, cellular association and 

physicochemical properties.  In vitro gene transfer activity of Fol-α-CDEs (G3, DSF 2, 5 or 

7) was lower than that of α-CDE (G3) in KB cells, folate receptor (FR)-overexpressing 

cancer cells.  Of the three Fol-PαCs (G3, DSF 2, 5 or 7), Fol-PαC (G3, DSF 5) had the 

highest gene transfer activity in KB cells.  The activity of Fol-PαC (G3, DSF 5) was 

significantly higher than that of α-CDE (G3) in KB cells, but not in A549 cells, FR-

negative cells.  Negligible cytotoxicity of the pDNA complex with Fol-PαC (G3, DSF 5) 

was observed in KB cells or A549 cells up to a charge ratio of 100/1 (carrier/pDNA).  The 

cellular association of the pDNA complex with Fol-PαC (G3, DSF 5) could be mediated by 

FR on KB cells, resulting in its efficient cellular uptake.  Fol-PαC (G3, DSF 5) had higher 

binding affinity with folate binding protein (FBP) than α-CDE (G3), although the 

physicochemical properties of pDNA complex with Fol-PαC (G3, DSF 5) were almost 

comparable to that with α-CDE (G3), although the onset charge ratio and the compaction 

ability of Fol-PαC (G3, DSF 5) were slightly different.  Fol-PαC (G3, DSF 5) tended to 

show higher gene transfer activity than α-CDE (G3) 12 h after intratumoral administration 

in mice.  These results suggest that Fol-PαC (G3, DSF 5), not  Fol-α-CDEs, could be 

potentially used as a FR-overexpressing cancer cell-selective DNA carrier. 
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Introduction 

Polyamidoamine STARBURST™ dendrimers (dendrimers) are biocompatible, non-

immunogenic and water-soluble, and possess terminal modifiable amine functional groups 

for bearing various targeting or guest molecules.1  Unlike classical polymers, dendrimers 

have a high degree of molecular uniformity, narrow molecular weight distribution, specific 

size and shape characteristics, and a highly-functionalized terminal surface.2  Dendrimers 

can form complexes with nucleic acid drugs such as plasmid DNA (pDNA), short-hairpin 

RNA (shRNA) and small-interfering RNA (siRNA) through the electrostatic interaction 

and bind to glycosaminoglycans (heparan sulfate, hyaluronic acid and chondroitin sulfate) 

on cell surface,3, 4 and have been shown to be more efficient and safer than either cationic 

liposomes or other cationic polymers for in vitro gene transfer. 5, 6   

Cyclodextrins (CyDs) are cyclic (α-1,4)-linked oligosaccharides of α-D-glucopyranose 

containing a hydrophobic central cavity and hydrophilic outer surface, and they are known 

to be able to act as host molecules.7-9  CyDs have recently been applied to gene transfer and 

oligonucleotide delivery.10-13  We previously reported that of various dendrimer conjugates 

with α-CyD (α-CDE), α-CDE (G3) with the degree of substitution (DS) of 2.4 was 

revealed to have the highest transfection efficiency in vitro and in vivo with low 

cytotoxicity.14-16  Moreover, we previously reported the potential use of α-CDEs bearing 

galactose (Gal-α-CDE), mannose (Man-α-CDE) or lactose (Lac-α-CDE) with the various 

DS values of these sugar moieties as gene delivery carriers.17-20 

The targeted gene delivery using bioconjugates is exploring to increase the efficiency of 

drug delivery to specific tissues as well as to decrease the minimum effective dose of the 

drug as well as its side effects.21  Strategies to develop tumor-cell specific bioconjugates are 

multimodal, but all attempts to selectively deliver therapeutics to cells use nano- and 

submicron-scale carriers such as dendrimers, liposomes, polymers, emulsions, or viruses 

including active and/or passive targeting moieties.22  Folic acid (FA) has been shown to be 

one of the most promising ligands for targeting a range of human carcinomas, including 

breast, ovary, endometrium, kidney, lung, head and neck, brain and myeloid cancers, which 

are known to express folate receptors (FR).23, 24  Moreover, FA is a relatively small 
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molecule (MW 441 Da) which consequently has only limited effects on the dimensions of 

the carrier system, high stability, compatibility with both organic and aqueous solvent, low-

cost, non-immunogenic character and the ability to conjugate with a wide variety of 

molecules, so it has attracted wide attention as a targeting agent.25  So far some papers 

regarding folate-appended dendrimers have been published.  For example, Konda et al. 

reported the novel folate-dendrimer MRI contrast agents to the high affinity folate receptor 

(FR) expressed in ovarian tumor xenografts.26  Shukla et al.27 demonstrated the FR-targeted 

boronated PAMAM dendrimers as potential agents for neutron capture therapy.  In 

addition, Singh et al. reported that folate-PEG-dendrimer conjugate was significantly safe 

and effective in tumor targeting for 5-fluorouracil, compared to a non-PEGylated 

formulation.28   

In the subsequent study, therefore, we prepared folate-appended α-CDEs (Fol-α-CDE) 

and folate-PEG-appended α-CDEs (Fol-PαC) with various degrees of substitution of folate 

(DSF) as novel DNA carriers to clarify the effect of PEG and the DSF values, and 

examined in vitro and in vivo gene transfer activity, cytotoxicity, cellular uptake and the 

physicochemical properties.  

 

Materials and methods 

Materials 

α-CyD was donated by Nihon Shokuhin Kako (Tokyo, Japan).  Dendrimer (G3, the 

terminal amino groups=32, MW=6,909 Da) was purchased from Aldrich Chemical (Tokyo, 

Japan).  Polyethyleneimines (PEIs, linear, 10 kDa and 25 kDa) were obtained from Wako 

Pure Chemical Industries (Osaka, Japan).  p-Toluenesulfonyl chloride and FA were 

purchased from Nakalai Tesque (Kyoto, Japan).  ω-Amino-α-carboxyl polyethylene glycol 

(PEG, MW=3,290 Da) was purchased from NOF corporation (Tokyo, Japan).  Plasmid 

pRL-CMV-Luc vector encoding Renilla luciferase (pDNA) was obtained from Promega 

(Tokyo, Japan).  The purification of pDNA amplified in bacteria was carried out using 

QIAGEN EndoFree plasmid maxi kit (< 0.1 EU/μg endotoxin).  Other chemicals and 

solvents were of analytical reagent grade. 



 

5

 

Preparation of Fol-α-CDEs (G3) and Fol-PαCs (G3) 

Figure 1 shows the schemes for the preparation of Fol-α-CDEs (G3) and Fol-PαCs (G3).  

Fol-α-CDEs (G3) were prepared according to the method of Majoros et al.29 and Oh et al.30  

Herein, α-CDE (G3, DS of α-CyD=2.4) was prepared as previously reported.16  In brief, 

FA in DMF/DMSO containing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) 

was mixed at room temperature (r.t.) for 1 h.  Then, α-CDE (G3) was added to the solution 

and incubated at r.t. for 48 h.  In addition, Fol-PαCs (G3) were prepared as follows: FA in 

DMSO containing N,N-dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide 

(NHS) was mixed at r.t. for 30 min.  Then, ω-amino-α-carboxyl polyethylene glycol (PEG, 

MW=3,290 Da) and pyridine were added into the solution and incubated at r.t. for 2 h.  

After removal of intact FA by a precipitation method with water and a purification by gel-

filtration (TOSOH TSKGel HW-40S, Tokyo, Japan), Fol-PEG-COOH was activated with 

0.2 M boric acid solution containing EDC and NHS, and then mixed at r.t. for 2 h.  Then, 

α-CDE (G3) was added to the solution and incubated for 48 h.  Fol-α-CDEs (G3) and Fol-

PαCs (G3) were purified by a dialysis and/or a gel-filtration. 

 

Cell Culture 

KB cells, a human carcinoma of the nasopharynx, were grown in a RPMI-1640 culture 

medium (FA-free) containing penicillin (1 x 105 mU ml-1) and streptomycin (0.1 mg ml-1) 

supplemented with 10% FCS at 37°C in a humidified 5% CO2 and 95% air atmosphere.  

A549 cells, a human lung epithelium cell line, were cultured as reported previously.15, 16   

 

In Vitro Gene Transfer 

In vitro transfection of the pDNA complexes with carriers was performed utilizing the 

Renilla luciferase gene system in the various cells as reported previously.15, 16  The Tris-

EDTA (TE) buffer containing pDNA (2.0 μg) was generally mixed with 200 μl of serum-

free medium containing α-CDE (G3), Fol-α-CDEs (G3, DSF 1, 2 or 3) or Fol-PαCs (G3, 

DSF 2, 5 or 7) mildly agitated, and then allowed to stand at r.t. for 15 min.  These pDNA 
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complexes were prepared at a charge ratio of 50/1 (carrier/pDNA), where the optimal 

points for the gene transfer activity were in all of the pDNA complexes.  The cells (2 x 105 

cells well-1) were seeded 6 h before transfection, and then washed twice with serum-free 

medium.  Four hundred microliters of culture medium containing the complexes with 

various carriers supplemented with 10% FCS were added to each well, and then incubated 

at 37°C for 24 h.  After transfection, the luciferase gene expression was measured as 

reported previously 15, 16. 

 

Cytotoxicity 

The effects of pDNA complex with α-CDE (G3), Fol-PαCs (G3, DSF 5) or PEIs (10 kDa 

and 25 kDa) on cell viability were measured as reported previously.15, 16  In brief, the 

transfection was performed as described in the transfection section.  After washing twice 

with HBSS (pH 7.4) to remove pDNA and/or various carriers, 270 μl of fresh HBSS and 30 

μl of WST-1 reagent were added to the plates and incubated at 37°C for 30 min.  The 

absorbance of the solution was measured at 450 nm, with referring absorbance at 655 nm, 

with a Bio-Rad Model 550 microplate reader (Bio-Rad Laboratories, Tokyo, Japan).  

Cellular Association   

Cellular association of the complex was determined by a flow cytometry.  Two micrograms 

of Alexa488-labeled pDNA (Alexa-pDNA) were mixed with α-CDE (G3) or Fol-PαCs (G3, 

DSF 5) at a charge ratio of 50 (carrier/pDNA).  After transfection with the complexes of 

Alexa-pDNA/carrier for 1 h in KB cells and A549 cells, the cells were washed with PBS 

(pH 7.4) twice and immediately scraped with 1 ml of PBS (pH 7.4).  The cells were 

collected and filtered through nylon mesh.  Data were collected for 1 x 104 cells on a 

FACSCalibur flow cytometer using a CellQuest software (Becton-Dickinson, Mountain 

View, CA). 

 

Confocal Laser Scanning Microscopy (CLSM) 
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To observe the cellular association of Alexa-pDNA complex with α-CDE (G3) or Fol-

PαCs (G3, DSF 5), KB cells (2 x 105 cells dish-1) were incubated with the complexes of 

Alexa-pDNA/carrier for 3 h.  After incubation, the cells were rinsed with PBS (pH 7.4) 

twice and fixed in methanol at 4˚C for 5 min prior to microscopy.  Cells were observed by a 

CLSM (Olympus FV300-BXCarl Zeiss LSM-410, Tokyo) with an argon laser of 350-550 

nm after fixation.  Here, the intracellular distribution of Alexa-pDNA was observed in a 

single plane, not a z-section. 

 

Interaction between pDNA and Carriers   

Electrophoretic mobility of the pDNA complexes with α-CDE (G3) or Fol-PαC (G3, DSF 

5) was measured using a gel electrophoresis system.  Various amounts of α-CDE (G3) or 

Fol-PαC (G3, DSF 5) were mixed with 0.2 μg of pDNA in HBSS (pH 7.4).  Gel 

electrophoresis was carried out at r.t. in TBE buffer (45 mM Tris-borate, 1 mM EDTA, pH 

8.0) in 1% agarose gel including 0.1 μg/ml of ethidium bromide using the MupidTM system 

(Cosmo Bio, Tokyo, Japan) at 100 V for 40 min.  The pDNA bands were visualized using 

an UV illuminator. 

 

Particle Size and ζ-Potential 

The solution containing α-CDE (G3) or Fol-PαC (G3, DSF 5) at various charge ratios was 

added to Tris-HCl buffer (10 mM, pH 7.4) containing 5 μg of pDNA.  Then, the solution 

was incubated for 15 min.  The particle size and ζ-potential of the pDNA complex of α-

CDE (G3) or Fol-PαC (G3, DSF 5) were determined by dynamic light scattering using a 

Zetasizer Nano (Malvern Instruments, Worcestershire, UK).  The dynamic light scattering 

was analyzed by the general purpose mode.  The measurements were carried out at least in 

triplicates. 

 

DNA Condensed Assay   
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pDNA (0.5 μg) and α-CDE (G3) or Fol-PαC (G3, DSF 5) were added to 350 μl of HBSS 

(pH 7.4) at the various charge ratios.  The solutions were incubated at 25°C for 15 min, and 

then 1.75 μl of Picogreen® dsDNA reagent and 348.25 μl of HBSS were added to the 

solutions and incubated at 25°C for 30 min.  The fluorescence (λex=495 nm, λemi=525 nm) 

was measured by fluorescence spectrometer Hitachi F-4500 (Tokyo, Japan).  Samples 

containing pDNA (0.5 μg) and Picogreen® dsDNA reagent (1.75 μl) were used to calibrate 

the apparatus to 100% fluorescence against a background of Picogreen® dsDNA reagent 

(1.75 μl). 

 

Surface Plasmon Resonance (SPR) Optical Biosensor 

The molecular interaction of FBP with Fol-PαC (G3, DSL 5) was examined using an 

optical biosensor “IAsys” based on SPR (Affinity Sensor, Cambridge, UK).  The 

immobilization of FBP on the sensor cuvette was carried out by the reaction of a reactive 

linker molecule with the cuvette surface.  After activation by washing with 8 M urea 

solution containing 10 mM MnCl2, the interaction curves were measured at the 

concentrations of carriers (10-8 to 10-6 M) in 10 mM acetate buffer (pH 5.3) with 1 mM 

CaCl2 and 100 mM NaCl at 25°C.  The association constant was obtained by measuring the 

change in the refractive index according to the usual procedure.  The computational results 

were derived using a software FAST-fit equipped in the IAsys.   

 

In Vivo Gene Transfer 

Murine colon-26 adenocarcinoma cells (5 x 105 cells 100 μl-1) were inoculated 

subcutaneously in male four-weeks-old BALB/c mice (ca. 20 g).  After 10 days, the tumor-

bearing mice were intratumoraly injected with 500 μl of a 5% mannitol solution containing 

the pDNA complex of α-CDE (G3) or Fol-PαC (G3, DSF 5) at a charge ratio of 20 

(carrier/pDNA) at the amount of 20 μg of pDNA in 30 sec under anesthesia with ether.  

Twelve h after intratumoral administration, the mice were sacrificed, and tumor tissues 

were isolated.  The tissues were washed twice with ice-cold saline and were added to 2 ml 

of the Promega cell lysis buffer (Tokyo, Japan) containing the Roche protease inhibitor, 
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Complete® (Tokyo, Japan).  The tissues were homogenized with a Polytron tissue grinder 

(Ultra-Turrax T25 Basic S1, IKA Works, Wilmington, NC).  After three cycles of freezing 

and thawing, the homogenate was centrifuged for 10 min at 10,000 g (4°C), and 20 μl of 

the supernatant was added to 100 μl of the Renilla luciferase assay buffer (Promega, 

Tokyo, Japan).  Luminescence was immediately measured for 10 sec (Lumat LB9506, 

EG&G Berthhold Japan, Tokyo, Japan).  Total protein content of the supernatant was 

determined by Bio-Rad DC protein assay kit (Tokyo, Japan).  The luciferase activity in the 

tumor cells was determined as described above.   

 

Data Analysis 

Data are given as the mean ± S.E.M.  Statistical significance of mean coefficients for the 

studies was performed by analysis of variance followed by Scheffe's test.  p-Values for 

significance were set at 0.05.  

 

RESULTS AND DISCUSSION 

Preparation of Fol-α-CDEs and Fol-PαCs 

The preparations of Fol-α-CDEs (G3) and Fol-PαCs (G3) were carried out according to the 

method of Majoros et al.29 and Oh et al.30.  Fol-α-CDEs (G3) were prepared by direct 

conjugation of FA to the α-CDE (G3, DS of α-CyD = 2.4) by using EDC and NHS in 

DMF/DMSO, and then the resulting conjugates were purified by a dialysis (MWCO = 

3,500) and a gel-filtration (Fig. 1).  In the case of Fol-PαCs (G3), Fol-PEG-COOH was 

firstly prepared by using ω-amino-α-carboxyl polyethylene glycol (PEG, MW = 3,290 Da), 

and the preparation of Fol-PEG-COOH was confirmed by the MALDI-TOF-Mass spectrum 

(Supplementary Fig. 1).  Next, a carboxyl group of the Fol-PEG-COOH was condensed 

with primary amino group of α-CDE (G3, DS of α-CyD=2.4), and then the resulting 

conjugates were purified by a dialysis (MWCO = 15,000) (Fig. 1).  The DSF values of Fol-

α-CDEs (G3) and Fol-PαCs (G3) were controlled by adjusting the additive amounts of FA 

and Fol-PEG-COOH, respectively.  All of the resulting conjugates included no unreacted 
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FA or Fol-PEG-COOH.  In the 1H-NMR spectra, Fol-α-CDEs (G3) and Fol-PαCs (G3) 

gave peaks of each component, such as dendrimer, α-CyD and FA or Fol-PEG 

(Supplementary Figs. 2, 3).  The DSF values of these conjugates were accurately 

determined by measuring peak areas of the anomeric proton of α-CyD and benzoic proton 

of FA.  The product yields of conjugates were 28% (DSF 1), 61% (DSF 2) and 54% (DSF 

3) in the Fol-α-CDEs (G3) system, and 72% (DSF 2), 79% (DSF 5) and 89% (DSF 7) in 

the Fol-PαCs (G3) system, respectively.  

 

In Vitro Gene Transfer Activity 

To investigate whether Fol-α-CDEs (G3) and Fol-PαCs (G3) have tumor cell-specific and 

efficient gene transfer activity and which carrier has the highest gene transfer activity, 

Renilla luciferase activity after transfection of pDNA complexes at a charge ratio of 50/1 

(carrier/pDNA) in various cells was determined (Figs. 2, 3).  Here, we confirmed that FR 

expresses in KB cells, but not in A549 cells, using a RT-PCR method (Supplementary Fig. 

4), which is consistent with the results previously reported.31   In KB cells, α-CDE (G3) 

showed efficient gene transfer activity, compared to dendrimer (G3), possibly due to the 

enhancement of endosomal escape of pDNA as reported by Arima et al.14-16   Gene transfer 

activity of Fol-α-CDE (G3, DSF 2) and Fol-α-CDEs (G3, DSF 1 and 3) was almost 

comparable to α-CDE (G3) and significantly lower than α-CDE (G3), respectively, in the 

KB cells (Fig. 2).  The insufficient gene transfer activity of Fol-α-CDEs (G3) may result 

from the low receptor binding activity to FR on the KB cells.  Meanwhile, the previous 

reports demonstrated that an introduction of PEG as a spacer between FA and carriers 

increases FR-dependent gene transfer activity of liposomes32 and poly-L-lysine.33  To 

improve the FR binding activity of Fol-α-CDE (G3), therefore, we prepared Fol-PαCs 

(G3), which have a PEG spacer between dendrimer and FA (Fig. 1), and examined FR-

selective gene transfer activity of Fol-PαCs (G3, DSF 2, 5 or 7) in KB cells and A549 cells 

(Fig. 3).  In KB cells, Fol-PαC (G3, DSF 5) showed higher gene transfer activity than α-

CDE (G3) and Fol-PαCs (G3, DSF 2 and 7) (Fig. 3A).  Meanwhile, in A549 cells, all of 
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Fol-PαCs (G3, DSF 2, 5 or 7) showed markedly lower gene transfer activity than α-CDE 

(G3) (Fig. 3B).  The activity of Fol-PαC (G3, DSF 5), not Fol-α-CDE (G3, DSF 2), in KB 

cells was 3.7-fold higher than that in A549 cells, although the activity of α-CDE (G3) in 

KB cells was decreased 0.9-fold relative to that in A549 cells (Fig. 3C).  These results 

suggest that gene transfer activity of Fol-PαC (G3, DSF 5) in KB cells is in a FR-dependent 

manner.  

 

Cytotoxicity 

Cytotoxicity is often associated with less transfection efficiency of non-viral vectors.34  

Therefore, we evaluated cytotoxicity of Fol-PαC (G3, DSF 5) by the WST-1 method (Fig. 

4).  No cytotoxicity of pDNA complexes with Fol-PαC (G3, DSF 5) was observed in KB 

cells (Fig. 4A) and in A549 cells (Fig. 4B) up to a charge ratio of 100/1 (carrier/pDNA).  

Meanwhile, cytotoxicity of the pDNA complexes with α-CDE (G3) increased as the charge 

ratio increased in the both cells, indicating that the pDNA complex with Fol-PαC (G3, DSF 

5) possesses low cytotoxicity rather than that with α-CDE (G3), which has been reported as 

a safe carrier.16  As described above, an introduction of PEG between dendrimer and FA in 

the Fol-PαC (G3, DSF 5) molecule can be improved its binding activity to FR.  In addition, 

an introduction of a PEG chain to drug carriers is generally acknowledged to improve its 

half-life in blood and biocompatibility.35    Therefore, an introduction of PEG is useful to 

improve not only binding activity to FR but also low cytotoxicity.  Meanwhile, the pDNA 

complexes with PEIs (10 and 25 kDa) markedly lowered cell viability, i.e. it decreased to 

about 50% even at a charge ratio of 20/1 (PEI/pDNA) (Fig. 4).  These results suggest that 

Fol-PαC (G3, DSF 5) has negligible cytotoxicity under the present experimental 

conditions. 

 

Cellular Association and Intracellular Distribution 

As FR, which likely increases local folate concentrations at the plasma membrane to allow 

its efficient uptake via folate transporters, is a GPI-linked protein, which is entered by the 
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clathrin-independent carrier (CLIC)/GPI-AP-enriched early endosomal compartment 

(GEEC) pathway.36  Therefore, we hypothesized that pDNA complex with Fol-PαC (G3, 

DSF 5) is entered by CLIC/GEEC endocytosis pathway.  To verify this hypothesis, we 

examined the cellular association of Alexa-pDNA 1 h after transfection of the complexes of 

Alexa-pDNA/carriers with or without FA, a competitor for FR, in KB cells by a flow 

cytometric analysis (Fig. 5).  The cellular association of Alexa-pDNA in the α-CDE (G3) 

system was not changed by addition of FA (Fig. 5A).  Meanwhile, the competitive effect of 

FA on the cellular association of pDNA complex with Fol-PαC (G3, DSF 5) was observed 

in KB cells (Fig. 5B).  These results suggest that cellular association of the pDNA complex 

with Fol-PαC (G3, DSF 5) could be mediated by FR on KB cells. 

Next, we investigated the intracellular distribution of Alexa-pDNA after transfection of 

the complexes of Alexa-pDNA/carriers using a CLSM (Fig. 6).  The complex of Alexa-

pDNA with dendrimer or α-CDE (G3) gave a moderate fluorescence in KB cells.  

Meanwhile, more intense fluorescence was observed in the pDNA/Fol-PαC (G3, DSF 5) 

complex system, suggesting FR-dependent and efficient cellular uptake of pDNA complex 

with Fol-PαC (G3, DSF 5) in KB cells.  This cellular association and intracellular 

distribution of pDNA complex with Fol-PαC (G3, DSF 5) is likely to be accordance to its 

gene transfer activity (Fig. 2).  These results suggest that FR-mediated cellular uptake of 

pDNA complex with Fol-PαC (G3, DSF 5) is strongly involved in its cell-specific and 

efficient gene transfer activity.   

 

Physicochemical Properties 

To make sure whether pDNA/Fol-PαC (G3, DSF 5) complex has adequate 

physicochemical properties, we examined the complex formation between pDNA/α-CDE 

(G3) and pDNA/Fol-PαC (G3, DSF 5) using an agarose electrophoresis.  As shown in Fig. 

7, the intensity of the band derived from pDNA decreased as the charge ratio of pDNA/α-

CDE (G3) increased, and at a charge ratio of 1 (carrier/pDNA) the band disappeared.  In the 

case of Fol-PαC (G3, DSF 5), the bands vanished at a charge ratio of 2.  These results 
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suggest that Fol-PαC (G3, DSF 5) can form the complex with pDNA at a charge ratio of 

more than 2, although the complexation ability of Fol-PαC (G3, DSF 5) with pDNA could 

be slightly lower than that of α-CDE (G3), owing to a decrease in the number of the 

positively charged primary amino groups in the molecule and/or steric hindrance by an 

introduction of Fol-PEG moieties to dendrimer molecule.  Meanwhile, Fol-PαC (G3, DSF 

5) provided the highest gene transfer activity at a charge ratio of more than 50 

(supplementary Fig. 5).  Herein, we calculated molar raios (carrie/pDNA) at the charge 

ratio (carrie/pDNA) of 50, i.e. the molar ratios of pDNA complexes with Fol-PαC (G3, 

DSF 5) and α-CDE (G3) calculated were 1.66 x 104 and 1.43 x 104 under the optimal in 

vitro transfection conditions.  Thus, the free extents of Fol-PαC (G3, DSF 5) and α-CDE 

(G3) must be raised, when the charge ratios increased, because the molar ratios were so 

high that these carriers may be unable to bind to pDNA.  Therefore, the enhancement of 

gene transfer activity may be ascribed to the additional free Fol-PαC (G3, DSF 5) and α-

CDE (G3) at the higher charge ratios, causing enhancing endosomal escape of pDNA 

complexes with Fol-PαC (G3, DSF 5) and α-CDE (G3) as previously reported.14-16 

Next, we determined the particle sizes and ζ-potential values of the pDNA complexes 

with α-CDE (G3) and Fol-PαC (G3, DSF 5) (Table 1).  The mean diameters of the 

complexes with these carriers were around 100 nm, and the ζ-potential values were 

negative values at a charge ratio of 1 (carrier/pDNA).  Meanwhile, the particle sizes and ζ-

potential values of the pDNA complexes increased at a charge ratio of 50 in the both 

systems.  It should be noted that ζ-potential values of the pDNA complex with Fol-PαC 

(G3, DSF 5) at a charge ratio of 50 were close to neutral, compared to that of α-CDE (G3), 

because of an introduction of Fol-PEG moieties to dendrimer molecule.  Leamon et al. 

reported that a neutral complex is desirable to incorporate into a ligand-targeted gene 

transfer carrier, because it eliminates the opportunity for the non-specific adsorptive 

binding to non-target cells.33  Reddy et al. demonstrated that folate-linked carriers of 

diameters less than 150 nm are efficiently bound and internalized by FR-expressing cells.37, 
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38  Thus, the low ζ-potential values of the pDNA complex with Fol-PαC (G3, DSF 5) at a 

charge ratio of 50 may be associated with its cell-selective gene transfer activity. 

Cationic non-viral vectors such as cationic polymers and cationic lipids are 

acknowledged to exert pDNA compaction through electrostatic interaction, leading to the 

enhancing gene transfer activity.39-41  To examine the effects of α-CDE (G3) and Fol-PαC 

(G3, DSF 5) on pDNA condensation, fluorescence intensity of Picogreen® dsDNA reagent 

was determined (Fig. 8).  The relative fluorescence intensity decreased to 15% and 20% in 

the α-CDE (G3) system and the Fol-PαC (G3, DSF 5) system at a charge ratio of 100, 

respectively (Fig. 8).  These results suggest that the compaction ability of Fol-PαC (G3, 

DSF 5) to pDNA was lower than that of α-CDE (G3).  Nathan et al. reported that the 

release of pDNA from complexes with cationic polymers such as PEI in cellular nucleus is 

crucial for higher gene transfer activity.42  Therefore, low compaction ability of Fol-PαC 

(G3, DSF 5) may accelerate the release of pDNA from the complex in cells.  However, low 

compaction ability of carriers has also the possibility of decreasing in a stability of pDNA 

complex in vivo.  Thereafter, we are currently investigating the release behavior of pDNA 

from the complex with Fol-PαC (G3, DSF 5) and the stability of the complex in cells, 

tissues and blood circulation. 

To confirm whether Fol-PαC (G3, DSF 5) actually binds to FR, the association constant 

of Fol-PαC (G3, DSF 5) with FBP was determined using the SPR method (Table 2).  

Herein, we confirmed that the data showed fairly reproducibility. The association constant 

of Fol-PαC (G3, DSF 5) showed 35,000-fold and 317-fold increase greater than that of FA 

alone and α-CDE (G3), respectively, indicating the strong interaction of Fol-PαC (G3, DSF 

5) with FBP.  In this experiment, however, the association constant is derived from carrier 

alone, not from pDNA complex.  Therefore, the association constant of pDNA complex 

with Fol-PαC (G3, DSF 5) may increase, compared to that of the carrier alone, possibly 

due to intense multivalent interaction.  Thereafter, the association constant of the complex 

with Fol-PαC (G3, DSF 5) should be measured.  Anyhow, these results indicate that Fol-

PαC (G3, DSF 5) had a strong binding affinity with FBP, compared with α-CDE (G3).   
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In Vivo Gene Transfer 

We examined in vivo gene transfer activity of pDNA complexes with Fol-PαC (G3, DSF 5) 

in mice bearing Colon-26 tumor cells.  Figure 9 shows gene transfer activity 12 h after 

intratumoral administration of the solution containing the pDNA/α-CDE (G3) complex or 

pDNA/Fol-PαC (G3, DSF 5) complex at a charge ratio of 25 to mice bearing tumor cells.  

In vivo gene transfer activity of Fol-PαC (G3, DSF 5) in the tumor cells was higher than 

that of α-CDE (G3).  However, there was not statistically significant difference among the 

both carriers.  As described above, the interaction of pDNA with Fol-PαC (G3, DSF 5) was 

weaker than that of α-CDE (G3) (Figs. 7, 8).  Therefore, the pDNA may rapidly dissociate 

from Fol-PαC (G3, DSF 5) under the in vivo condition, existing many biological 

compounds such as proteins and/or cellular matrixes.  Thereafter, we should optimize the 

chemical structure of Fol-PαC for its in vivo application.  Recently, Navarro et al. reported 

that polyplexes of dendrimer with pDNA allow targeted and extended transgene expression 

in tumors after systemic administration.43, 44  Meanwhile, Fol-PαC (G3, DSF 5) has the 

PEG chain in the molecule, expecting to increase circulating half-life and tumor-selective 

accumulation by the EPR effects 45 after intravenous administration.  Thereby, we should 

examine the in vivo gene transfer activity and antitumor effects of the pDNA complexes 

with optimized Fol-PαC after intravenous injection.   

 

CONCLUSION 

The present results suggest that Fol-PαC (G3, DSF 5) could be potentially used as a FR-

overexpressing cancer cell-selective gene transfer carrier, because of its FR-mediated gene 

delivery, the extremely low cytotoxicity, endosomal escaping ability and adequate 

physicochemical properties.  These findings may provide useful information for design and 

evaluation of FR-overexpressing cancer cell-selective gene transfer carriers using cationic 

polymers in vitro and in vivo. 
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Table 1

Carrier Charge ratio
(carrier/pDNA)

Mean diameter
(nm)

ζ-Potential
(mV)

α-CDE
(G3)

(carrier/pDNA) (nm)

1
50

108.1 ± 9.5
142.0 ± 0.6

(mV)

-23.5 ± 2.7
31.3 ± 1.0*

*†

*

Fol-PαC
(G3, DSF 5)

1
50

94.3 ± 4.3
140.3 ± 2.6

-1.7 ± 0.6
8.6 ± 2.0

*†

*†‡



Table 2

Carrier ka [M-1s-1]a kd [s-1]b

4 2 3 9 x 10-3

Ka [M-1]c

1 1 x 103FA

α-CDE (G3)

Fol-PαC
(G3 DSF 5)

4.2 3.9 x 10 3 1.1 x 103FA

2.4 x 103 2.0 x 10-2 1.2 x 105

1.2 x 105 3.2 x 10-3 3.8 x 107
(G3, DSF 5) 1.2 x 10 3.2 x 10 3.8 x 10
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