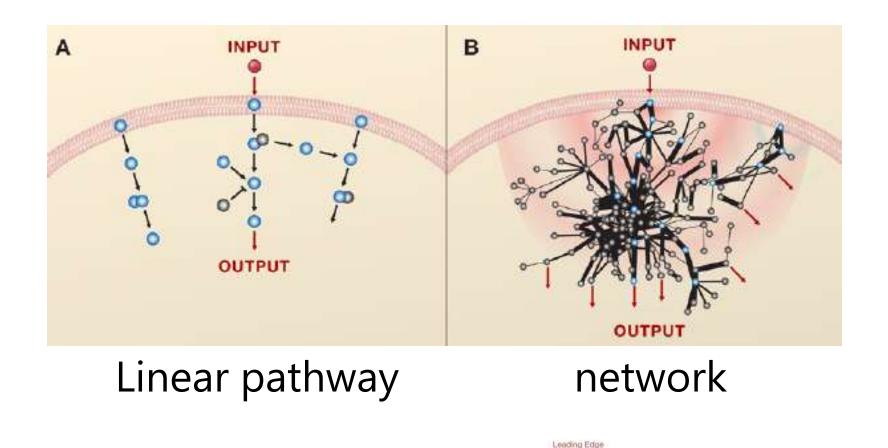


Novel network pharmacology methods for drug mechanism of action identification, pre-clinical drug screening and drug repositioning

用于药物作用机制研究、临床前药物筛选与 药物重定位的网络药理学新方法

Jianghui Xiong 熊江辉

Laserxiong AT gmail.com


航天医学基础与应用国家重点实验室 STATE KEY LAB OF SPACE MEDICINE FUNDAMENTALS AND APPLICAITON

Bioinformatics group

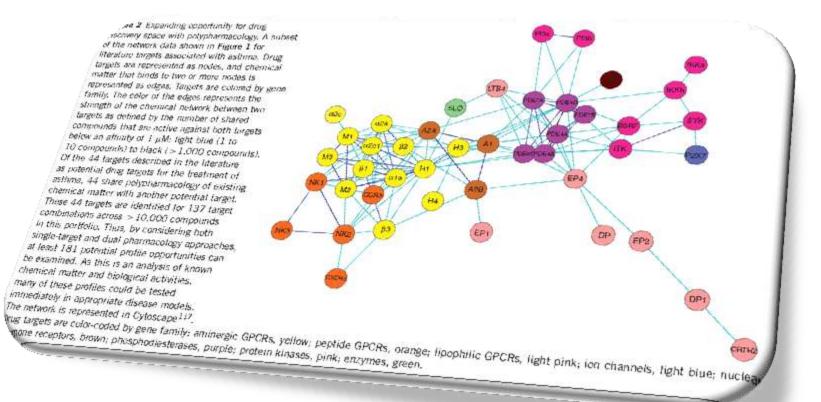
Outline

- Network pharmacology
- Case study I : Pre-Clinical Drug Prioritization via Prognosis-Guided Genetic Interaction Networks
- Case study II : Dynamic remodeling of context-specific miRNAs regulation networks facilitate in silico cancer drug screening
- What's next

Network – a better knowledge representation

Genetic Screening for Signal Transduction in the Era of Network Biology

Essay


Cell

Network pharmacology

nature chemical biology

Network pharmacology: the next paradigm in drug discovery

Network Pharmacology attempts to model the effects of a drug action by simultaneously modulating multiple proteins in a network

..........

Andrew I. Hockins

Case Study I

Pre-Clinical Drug Prioritization via Prognosis-Guided Genetic Interaction Networks

Jianghui Xiong et al. PLoS ONE. 2010

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0013937 (Full text download)

Oncology Drug Development One of most challenging scientific problems

and the second se	
Tumour type	Response number/ total (%)
Colorectal	2/476 (0.4%)
Lung	10/196 (5.1%)
Kidney	6/147 (4.1%)
Breast	5/94 (5.3%)
Prostate	4/88 (4.5%)
Sarcoma	2/86 (2.3%)
Ovarian	2/124 (1.6%)
Head and neck	1/41 (2.5%)
Melanoma	4/97 (4.1%)
Other	9/218 (4.1%)
Total	45/1612 (2.8%)

*Trials conducted between 1999 and 2002 according to standard clinical response criteria (from REF. 4). Note that due to dose-escalation protocols, drug dose in many patients in Phase I trials is below the target-inhibiting dose (see text).

What's wrong with our cancer models? NATURE REVIEWS DRUG DISCOVERY, 2005

What's wrong with our Disease Models

The current models used for pre-clinical drug testing <u>Do NOT</u> <u>accurately predict</u> how new treatments will act in clinical trials

- Heterogeneity in patient populations
- Unpredictable physiology

Table I. Mouse models of hur Cancer site	Contraction Sector (Sector)	Mouse model	Befs		T. C. C. A
Brain Medulleblastoma		Pez ^{ar -} : p53. GFAP-Cre: Ra ^{loughous} CFAP-verre: GFAP-Hilas Nihas	[94] [94]		The Cancer Genome Atlas
Astrocytoma Glioblastoma Breast Low-grade mammary intraspid High-grade mammary intraspid High-grade mammary intraspid High-grade mammary intraspid High-grade mammary intraspid Hisman ductal carcinoma in sha	thelial neoplasia (MMTVLTRinkJ, MTHKF C(J) LISVA pag, WARTGFs MMTVLTRigdie DI, MMTV-PyVint MTV-ct-b2	[32] [72] [32] [32]	?	EGFR ER882 PDGFRA MET
Colon Adenoma Adenotarcinoma Mucinous carcinoma	,	Арс ^{тина} ", Арс ¹²⁷⁸⁴ , Арс ¹²⁸⁸⁴⁻⁴ Мілі ^{—1} ", Арс ¹²⁸⁸⁴⁻⁴ , Молд ⁻¹⁻¹ , Арс ¹²⁸⁸⁴⁻⁴ , Молд ⁻¹⁻¹ , Арс ¹²⁸⁸⁴⁻⁴ Грб ⁻¹⁻¹ , Пад2 ⁻¹⁻¹	[33] [23]		Mutation, amplification Mutation Amplification Amplification in 45% in 8% in 13% in 4%
	sed cancer models				
Type	Subtype	Example			deletion in 18%
Human turnour cell line Human xenograft	Native Engineered	HCT116 colon FLT3-dependent BaF/3 cells			deletion in 18%
Human xenograft	Subcutaneous Orthotopic	PC-3 prostate PC-3 prostate implanted in prostate			
Mouse turnour	Syngeneic implant Induced Genetically engineere	B16 melanoma Radiation-Induced skin tumours d RIP-Tao mouse pancreatic islet			Proliferation survival translation

Drug Discov Today Dis Models, 2008 What's wrong with our cancer models? NATURE REVIEWS DRUG DISCOVERY, 2005

Our proposal

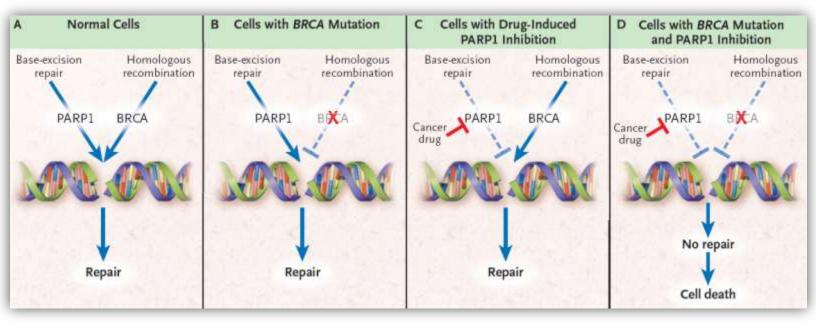
Hypothesis

 The difficulty of identifying effective cancer cures (as evidenced by drug resistance) may be a consequence of the robustness of physiology-level (or microenvironment-level) network regulation

Network (robustness) as drug target

• Gene networks associated with cancer outcome in heterogeneous patient populations

Pre-clinical *in silico* Cancer Models for Drug Prioritization


 Incorporating heterogeneity and in vivo physiology information, which MISSING in pre-clinical cancer models

What type of gene network?

Gene A	Gene B	
A	В	Viable
A	b	Viable
а	В	Viable
а	b	Lethal

Synthetic lethal provide approach for drug combination

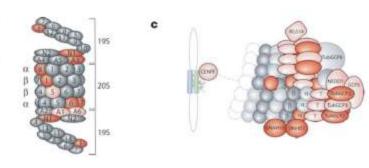
446 12 April 2007 doi:10.1038/nature05697

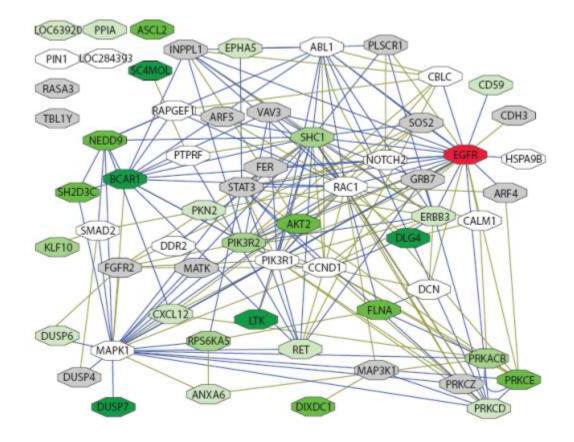
201

osted 24 Sep

ĕ

nature



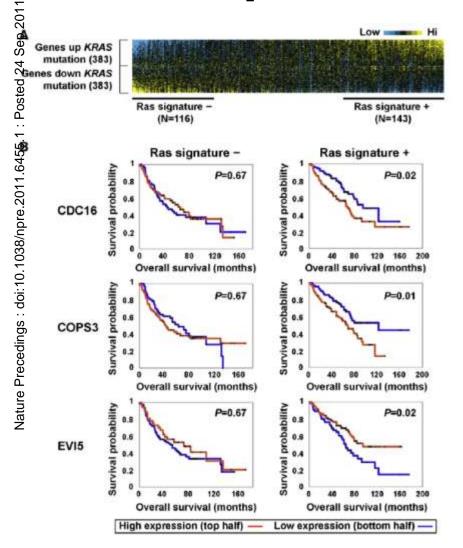

Table 1 | High-confidence hit list

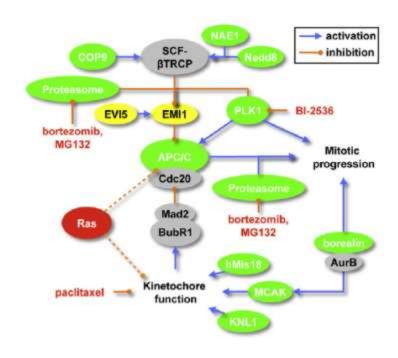
Synthetic lethal screen identification of

Chemosensitizer loci in cancer cells

Senbol	Comments; motifs	Symbol	Comments; motifs
Peteasome		Transcription	
SMA6	Proteasome subunit	RP9	ZnF_C2HC
PSMA7	Proteasome subunit	ZFPM1	ZnF_C2H2(x9)
gSMA8 (MGC26605)	Proteasome subunit	ZNF503	ZnF_C2H2
PSMB1	Proteasome subunit	ZNF585A	KRAB; ZnF_C2H2(x21)
esmc3	Proteasome subunit	C110RF30	ENT
P SMD1	Proteasome subunit	TRIM15	RING, BBOX, PRY, SPRY
PSMD3	Proteasome subunit		
PSMD3		Translation	
Mcrotubule-related		RARSL	Arginyl-tRNA synthetase-like; Arg_S Core, tRNA- synt_1d_C
TUBGCP2	γ-TURC subunit; Spc97_Spc98	LOC390876	Similar to 60S ribosomal protein L35; coiled-coil
TUBA8	α-Tubulin	LOC388568	Similar to ribosomal protein S15 isoform
DNHD1 (FLJ32752)	Dynein heavy-chain subunit	SYMPK	
DNAH10 (FLJ43808)	Dynein heavy-chain subunit	SYNCRIP	RRM
TBL1Y	Transducin (β)-like 1Y-linked; LisH, WD40	BCDIN3 (FLJ20257)	Bin3, PrmA
MPP7	MAGUK family; L27, PDZ_signalling, SH3, GMPK	LOC144233	Bin3

Synthetic lethal provide approach for improving targeted therapies (drug combination)

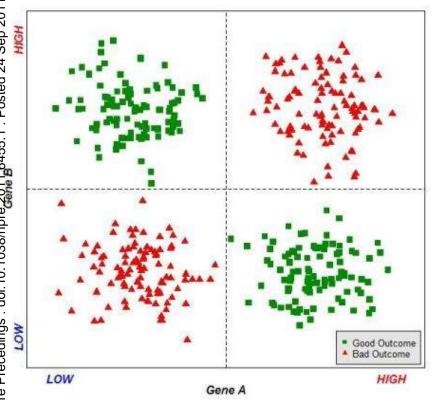




Synthetic Lethal Screen of an EGFR-Centered Network to Improve Targeted Therapies

Igor Astsaturov, Vladimir Ratushny, Anna Sukhanova, Margret B. Einarson,

Synthetic lethal provide approach for personalized therapy



A Genome-wide RNAi Screen Identifies Multiple Synthetic Lethal Interactions with the Ras Oncogene

What type of gene network?

 We proposed a novel *in vivo* genetic interaction between genes as 'synergistic outcome determination' (SOD), in a similar way to 'synthetic lethality'

SOD (Synergistic Outcome Determination) -- not <u>Superoxide</u> <u>d</u>ismutase [©]

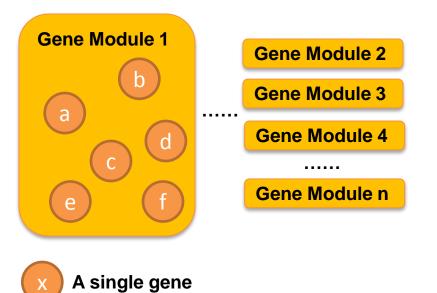
SOD is defined as the synergy of a gene pair with respect to cancer patients' outcome, whose correlation with outcome is due to cooperative, rather than independent, contributions of genes.

Synergistically Infered Nexus (SIN)

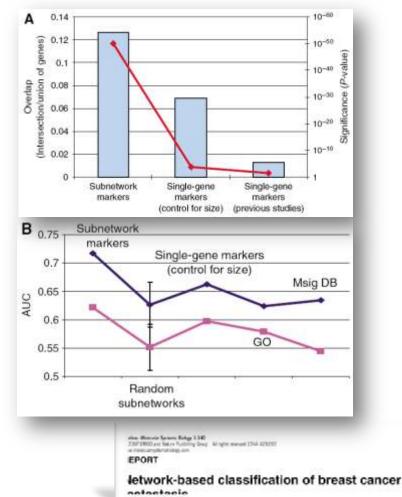
 $Syn(G_1, G_2; C) = I(G_1, G_2; C) - [I(G_1; C) + I(G_2; C)]$ $I(X;Y) = \sum \sum p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$

SOD (Synergistic Outcome Determination) vs Synthetic Lethality

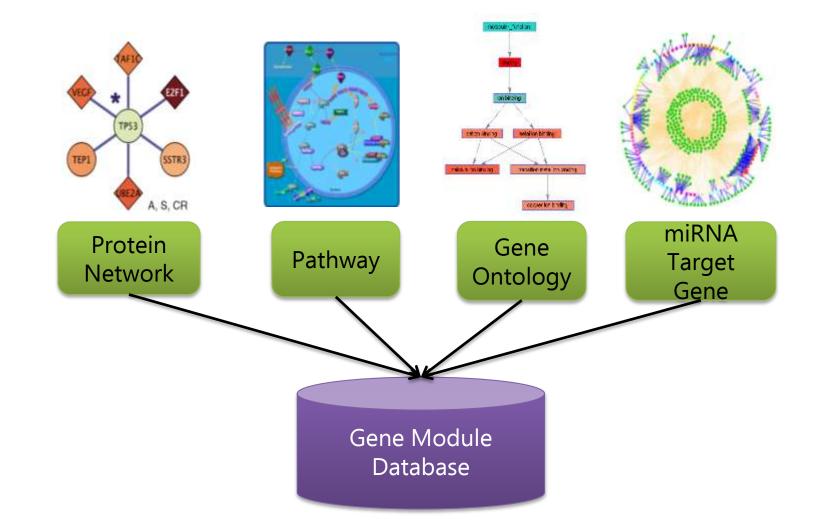
Feature compared	SOD	Synthetic Lethality
Phenotype	Survival outcome of individual patient	Cell death/growth
Systems Level	human body	Cell
Data Accessible	Human population (via computation)	Yeast (SGA); Human cell lines; Human population


The pipeline

What is **Gene Module**? And Why We use it instead of the single genes?

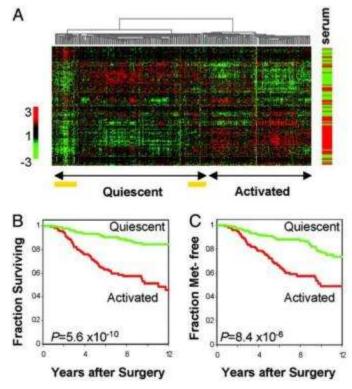

Gene Module:

a group of genes which share similar function



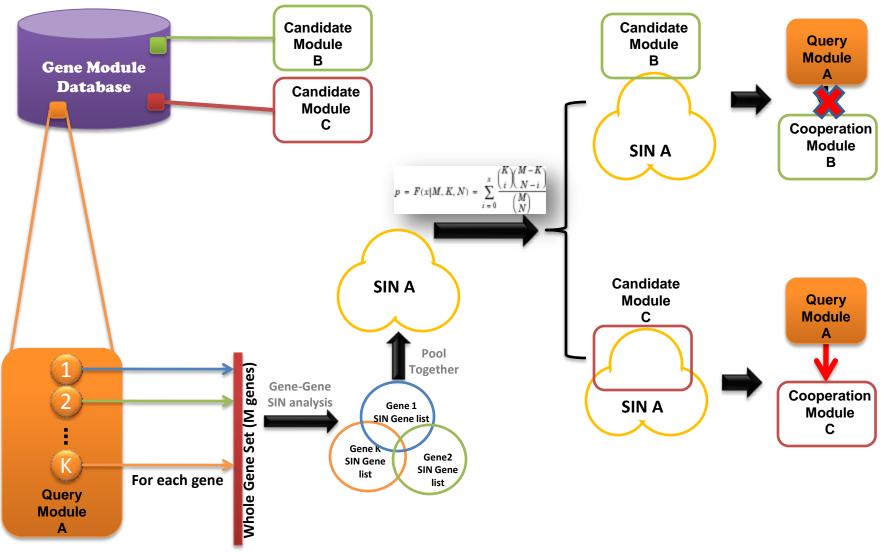
Gene Module:

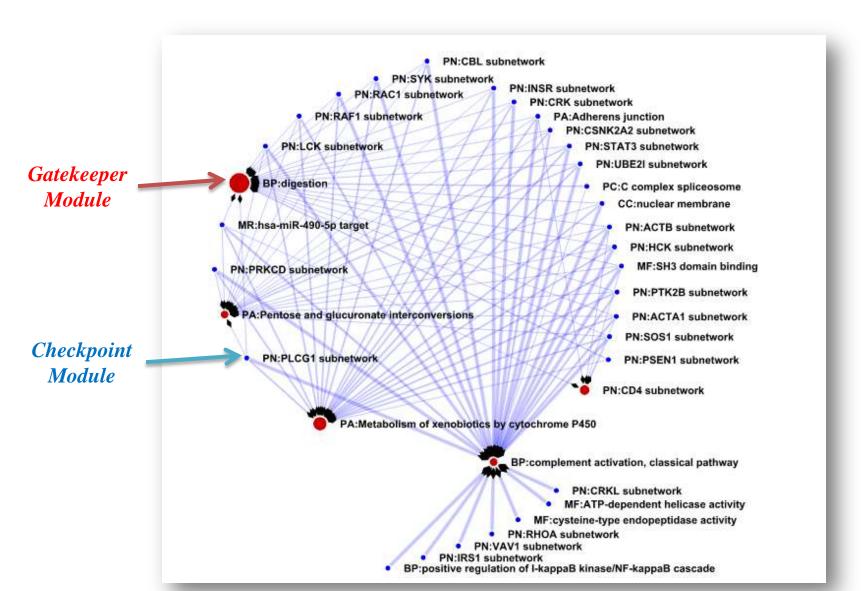
robust/reproducible features rather than single genes


Gene Module Database

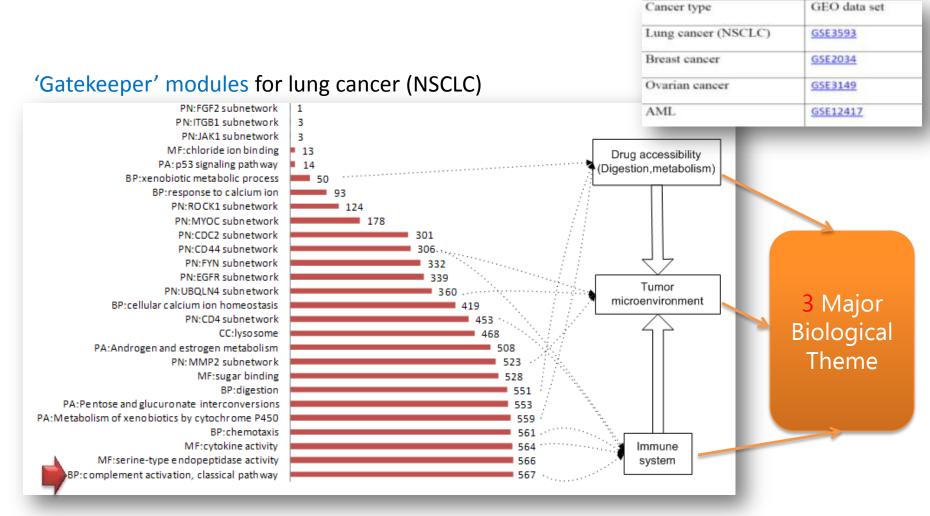
Prognosis Data -- data associated gene expression with patients' phenotype (prognosis)

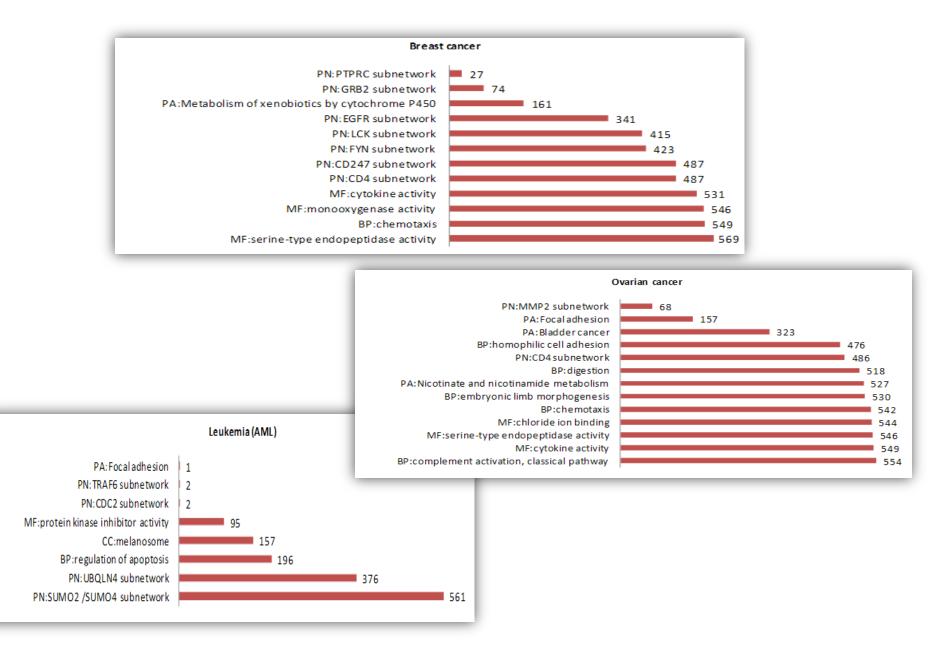
Prognosis Data Instance

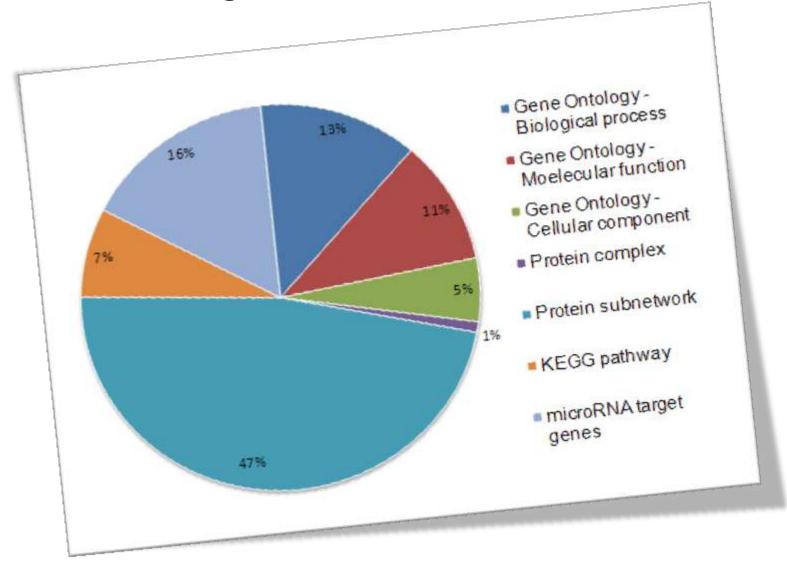

a "wound response" gene expression signature in predicting breast cancer progression

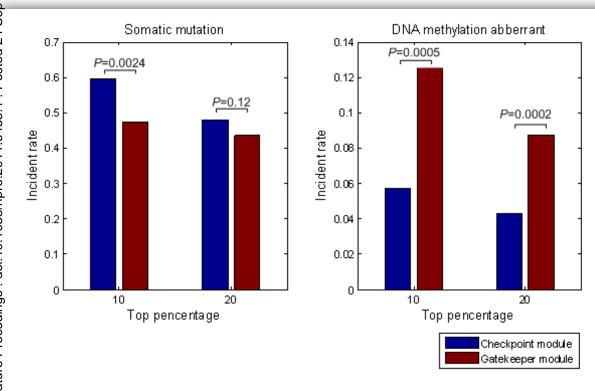

Benefit of Prognosis Data

- Natural population
 - Heterogeneity
- Tumor tissue
 - Microenvironment reflection
- Final point phenotype
 - Survival time
- Comprehensive genomic characterization
- Large Data Set


Module-module cooperation network


Inter-Module Cooperation Network (IMCN) for lung cancer suggests that the network robustness highly dependent on gatekeeper modules


The biological themes of the most highly connected gatekeeper modules in multiple types of cancer


These common themes indicate the pivotal role of the *in vivo* tumor microenvironment, and the efficacy of drugs could be regulated by these components

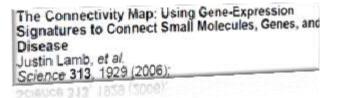
Contribution of various evidence sources for gene module definition

Association of gatekeeper modules with genetic and epigenetic aberration events

- Gatekeeper modules
 have a significantly
 lower incident rate of
 somatic gene
 mutation, but a
 notably higher
 incident rate of DNA
 methylation
 aberration
- Supporting the role of epigenetic plasticity in tumor phenotype
- Comparing genetic (somatic mutation) and epigenetic (DNA methylation) aberration rate (in tumor vs. normal) of two types of modules
- Top 10% or 20% of genes which highly used (i.e. one gene involved in multiple gene modules) as representative of each types of modules

Mapping compound action into gene networks

strong


CONNECTIONS

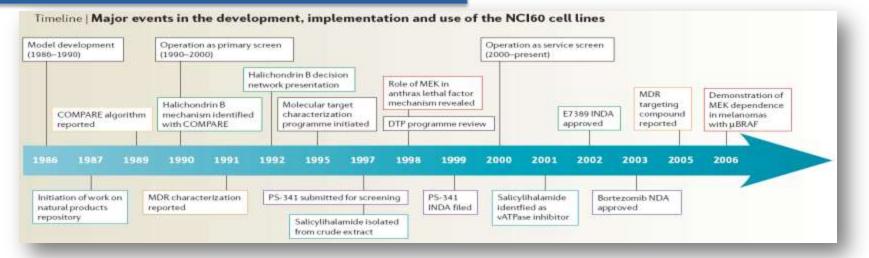
positive

negative

Connectivity MAP BIOLOGICAL STATE REFERENCE DATABASE OF INTEREST (PROFILES) (SIGNATURE) output

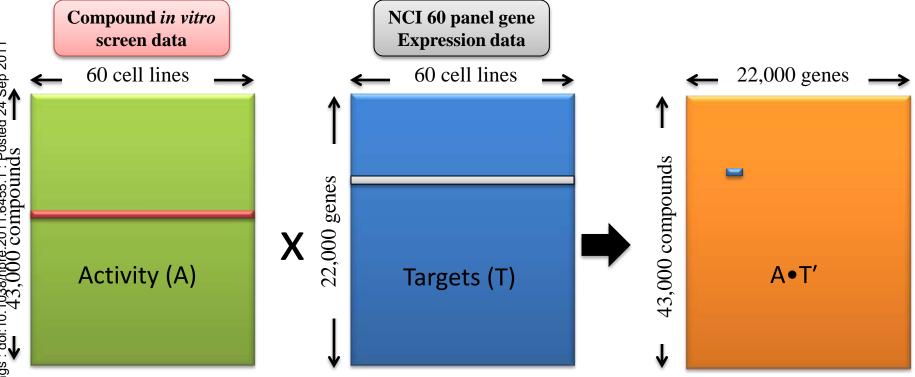
query

NCI 60 in vitro Drug screen Project


wook

positive

null


strong

positive

NATURE REVIEWS CANCER VOLUME 6 OCTOBER 2006 813

Compound-Gene Correlations

Activity

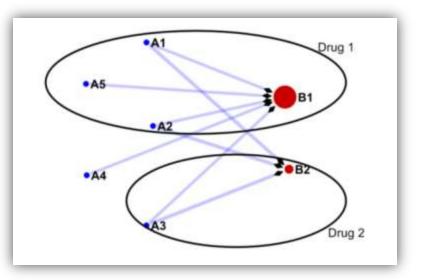
Compound/drug A's there are a measurement of drug activity (A) cross 60 cell line is determined by GI 50 (the 50% growth inhibition values), the concentration of the drug necessary to reduce the growth rate of cells by 50% to that of controls.

Activity (A) = -loq10(GI50)

Sensitivity

"Sensitivity" = the sensitivity of one particular cell lines to a drug.

if drug d1 can effectively inhibit the cell growth of cell line c1, we say " cell line c1 is sensitive to drug d1"


Define Perturbation Index (PI) to quantify Drug action

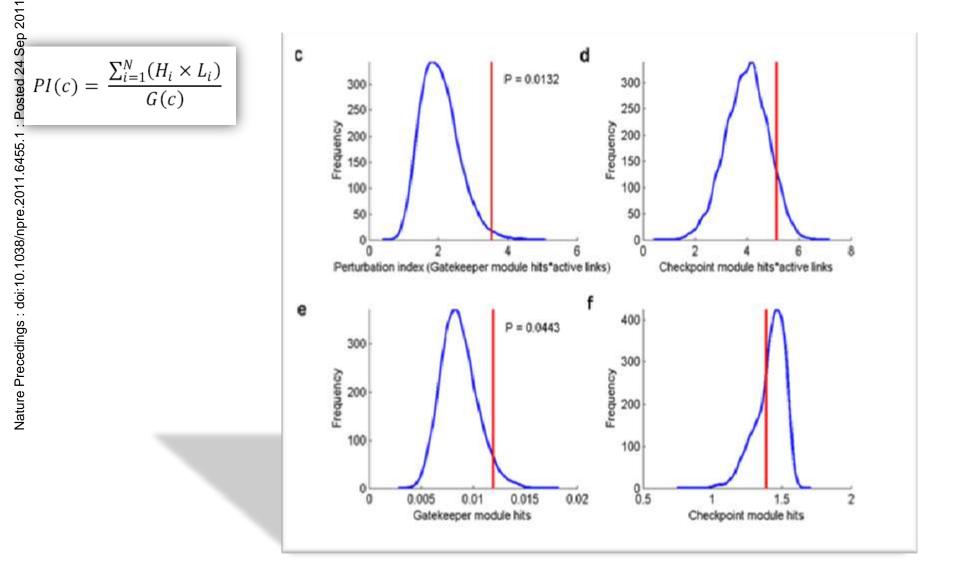
Hypothesis

 To disrupt/perturb cancer network, the key to success is to simultaneously perturbs the corresponding gatekeeper modules with the checkpoint modules (for better exploit the gene synergy)

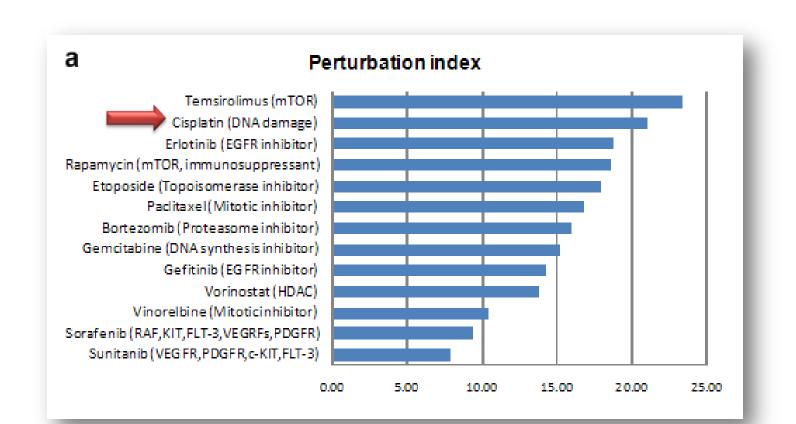
$$PI(c) = \frac{\sum_{i=1}^{N} (H_i \times L_i)}{G(c)}$$

- *H*i -- the number of hits by compound *c*
- *L*i -- the active links (i.e. links in which both source node and target node are matched by compound *c*)
- N -- the number of gatekeeper modules

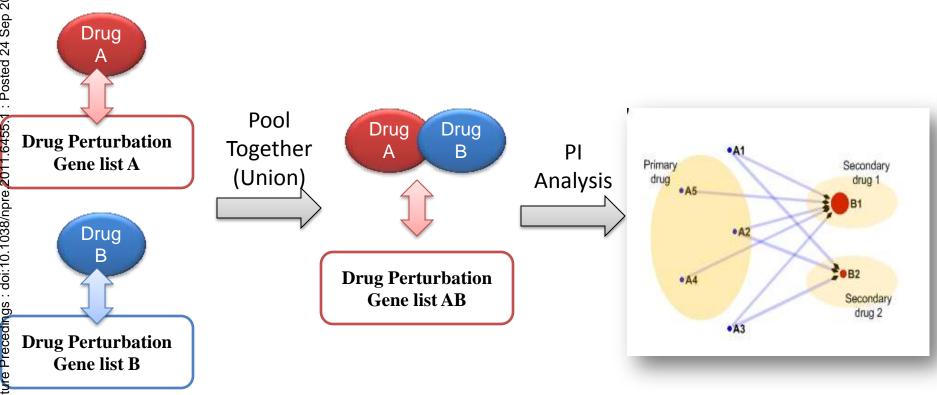
Benchmarking for pre-clinical drug prioritizing


• Why test?

 Assess the potential application for prioritizing compounds for clinical trials, based on the information available in pre-clinical stage

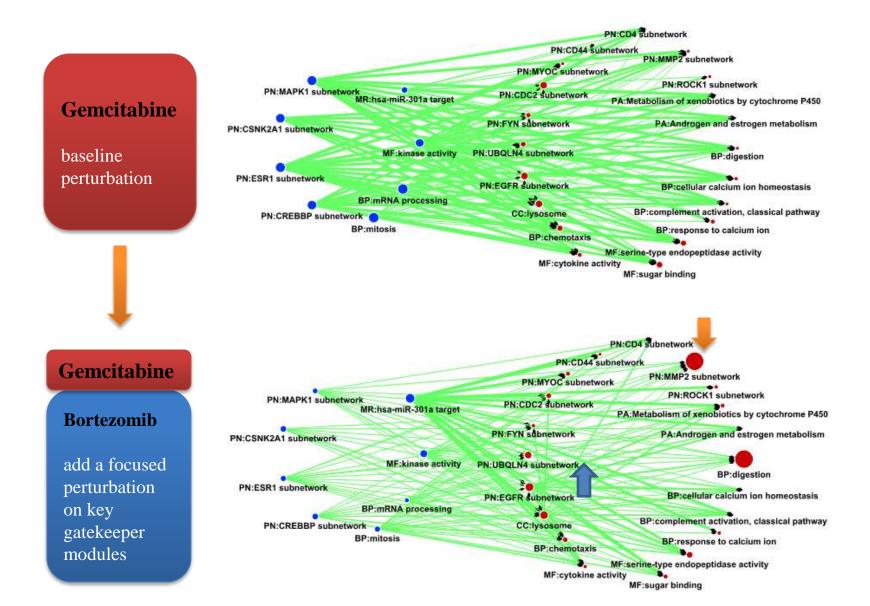

• 'Standard Agent Database'

- Originally created by Boyd [29] and ultimately finalized by the NCI
- Compounds which have been submitted to the FDA for review as a New Drug Application
- OR compounds that have reached a particular high stage of interest at the NCI
- Successful drug list FDA approved and routinely used drugs
- Candidate list the remainder
- Test what?
 - Whether we could statistically discriminate between these two compound lists using the perturbation index


Bootstrapping-based assessment of Perturbation Index on discriminating successful drugs from the candidate

Rank of drugs and agents in clinical development for lung cancer according to their Perturbation Index

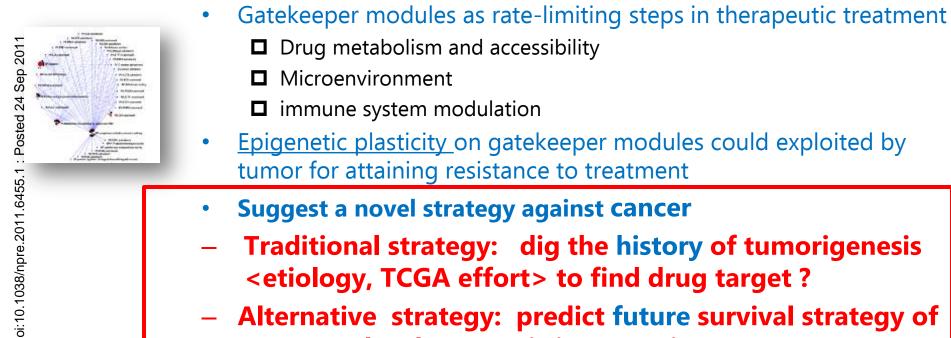
How to quantify synergistic effect of Drug **Combination?**



The Perturbation Index of pair-wise combination of lung cancer agents

- Combination of Bortezomib-Gemcitabine supported by phase II clinical trial evidence
 - Notable survival benefits in lung cancer patients using a Bortezomib + gemcitabine/carboplatin combination as firstline treatment (phase II clinical trial reported)
 - Davies, A.M. et al. *J Thorac Oncol* 4, 87-92 (2009)
- Combination of Bortezomib-Paclitaxel supported by literatures
 - In an RNA interference (RNAi)-based synthetic lethal screen for seeking paclitaxel chemosensitizer genes in human NSCLC cell line, proteasome is the most enriched gene group
 - Whitehurst, A.W. et al. *Nature* 446, 815-819 (2007)

Bortezomib-Gemcitabine Combination


Discussion (1): As preclinical cancer modeling tool

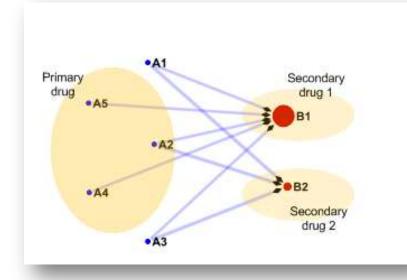
- Mirroring drug behavior on heterogeneous patients population
- Cost-effectiveness
- Easy to integrate drug action mechanisms/patterns

"For more than a decade, scientists in systems biology have promised that real breakthrough in genetic medicine will come when we stop mapping individual genes to phenotypes and instead start looking at interacting networks. Yet, not much has happened. The field is still struggling to define relevant networks and to interpret data in terms of those networks.

The paper by Xiong et al adds considerably to the progress of network-based genetic medicine. It is highly relevant, original and interesting."

Discussion (2) : novel strategy against cancer

- tumor under therapeutic interventions
- Systems biology modeling could provide prediction of the tumor survival strategy


The next generation therapeutic strategy

Etiology-based strategy

Prediction-based strategy

Discussion (3) : Traditional Chinese Medicine

Based on this method, we could interrogate different roles of the gene modules & their cooperation effects

- 君 King
- 臣 Minister
- 佐 Assistant
- 使 Ambassador

provide new perspective to understand principle of drug combination

provide approach for rational design of drug combination

Case Study II

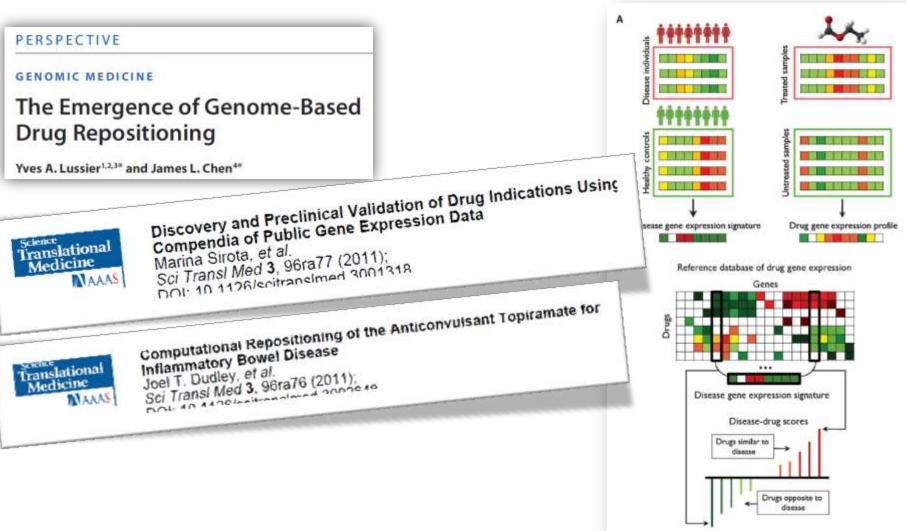
Dynamic remodeling of context-specific miRNAs regulation networks facilitate in silico cancer drug screening

Reference

- Lida Zhu, ..., <u>Jianghui Xiong</u>**. Dynamic remodeling of context-specific miRNAs regulation networks facilitate in silico cancer drug screening. Proceedings of 2011 IEEE International Conference on Systems Biology (ISB). 2011
- Xionghui Zhou, ..., Jianghui Xiong**. Context-Specific miRNA Regulation Network Predicts Cancer Prognosis. Proceedings of 2011 IEEE International Conference on Systems Biology (ISB). 2011

in silico drug screening

DRUG DISCOVERY IN THE TRADITIONAL WAY.



- Virtual drug screening is a computational technique used in drug discovery research.
- *In silico* is an expression used to mean "performed on computer or via computer simulation".
- In silico drug screening is thought to have the potential to speed the rate of discovery while reducing the need for expensive lab work and clinical trials.

Drug repositioning

-- the application of known drugs and compounds to new

indications

Connectivity MAP (CMAP)

D The Broad Institute is a research collaboration of MIT, Harvard and its affiliated Hospitals, and the Whitehead Institute, created to bring the power of genomics to medicine.

The Connectivity Map: Using Gene-Expression Signatures to Connect

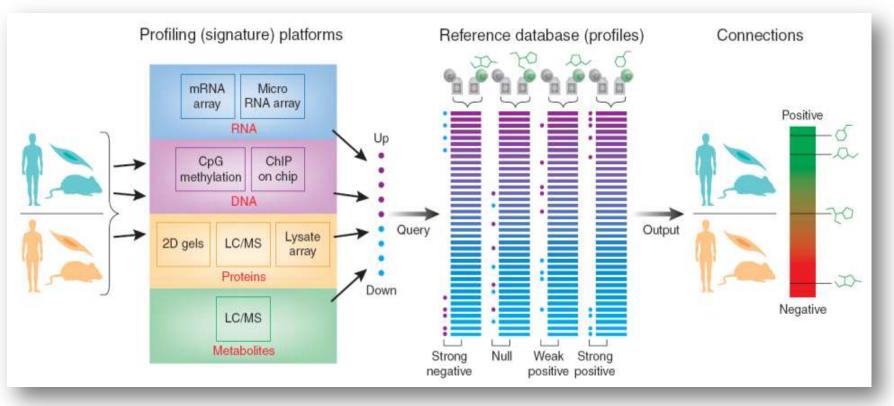
Small Molecules, Genes, and Disease Justin Lamb,^{3*} Emily D. Crawford,³⁺† David Peck,³ Joshua W. Modell,³ Irene C. Blet,² Matthew J. Wrobel,¹ Jim. Lenen,³ Jean-Philippe Brunet,¹ Aravind Subramanian,³ Kenneth N. Ross,³ Michael Reich,³ Haley Hieronymus,^{3,4} Guo Wei,^{1,4} Scott A. Armstrong,^{4,3} Stephen J. Haggarty,^{4,4} Paul A. Clemons,³ Ru Wei,³ Steven A. Carr,³ Eric S. Lander,^{3,4,4} Todd R. Golub^{5,4,6,5,7}

Stephen J, haggarty, Faul A, Llenions, Ru Wer, Steven A, Can, Eric S, Lander, ¹⁵ Todd R, Golub^{1,23,25} (Bolub) perturbation, and drug action, we have created the first installment of a reference collection of gene-expression perfiles from cuttured human culls treated with biacactive small molecules.

permanents, and using a theory was need to ensure the next end with Macanine to a remember condition, open-expression parties from cultured human cells treated with Macanine to a tensor the states together with pattern-matching software to mine these data. We demonstrate that this "Connectivity Map" resource can be used to find connections among small molecules sharing a mechanism of action, chemicals and physiological processes, and diseases and drugs. These results indicate the feasibility of the approach and suggest the value of a large-scale community. Connectivity Map project.

RESEARCH ARTICLES

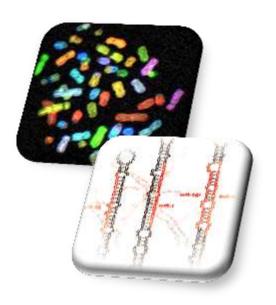
is truly generalizable, systematic, and hiologically relevant. However, as word potential pitfalle must be considered. Concervibly, a large number of parameters would need to be optimized for each perturbation, including out hype, concentration, and treatment duration. Equally, analytical mothods capable of detecting relevant signals in the data might not be generally applicable. If an generation of a useful Cannectivity Map would be impractical. However, here we demonstratethrough the recovery of known, and the discovery of new. Hological commention-met the Connectivity Map concept is indeed viable.


Creating a Hist-Generation Connectivity Map Perturbagens. We studied 164 distinst smallmolecule potturbagens, selected to represent a broad tange of activities, and including U.S. Food and Drug Administration (FDA) - sproved drugs and neodrug bioactive "sod" compounds. We included multiple compounds sharing molecular targets (e.g., histone descriptor inhibitors) to determine whother actor compounds would share a molecular signature. Similarly, we profiled

• mRNA-CMAP:

- Data source: human gene mRNA expression.
- Method: GSEA
- This project set out to create a reference collection of gene expression profiles from cultured human cells treated with bioactive small molecules, and can be used to *discover connections among small molecules sharing a mechanism of action, chemicals and physiological process*.

Connectivity MAP (CMAP)

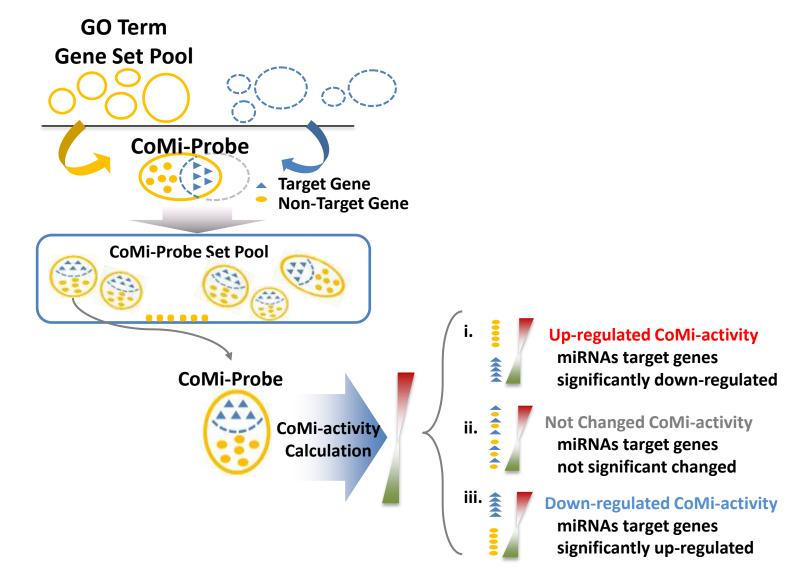


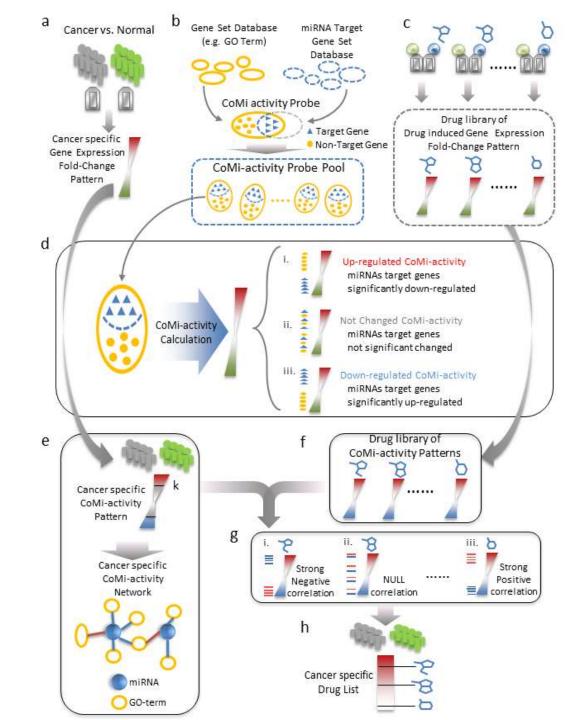
The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease .

Lamb et al. Science .29 September 2006: 1929-1935

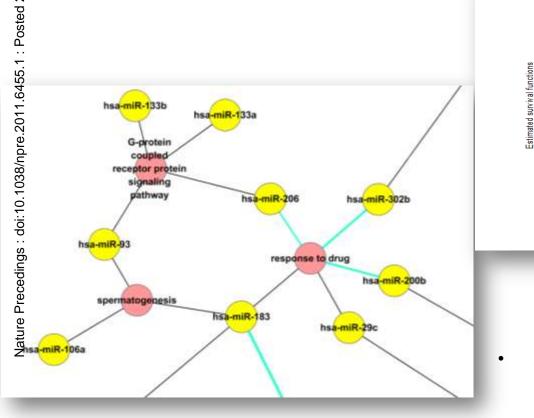
MicroRNAs (miRNAs)

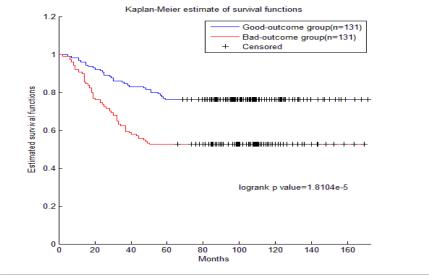
- MicroRNAs (miRNAs) play a key role in the regulation of the transcriptome.
- miRNAs have been identified as a key mediator in human disease and drug response.

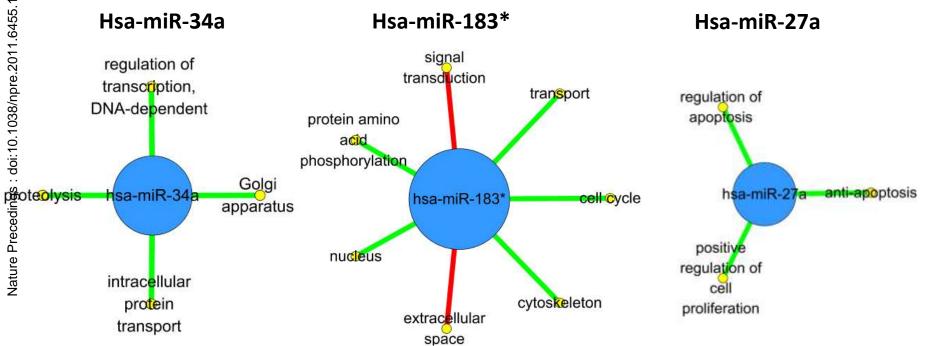

However, in methodology,

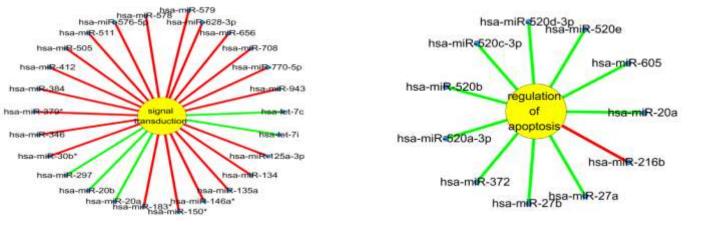

even if miRNA expression can be precisely detected, the information regarding miRNAs action on a particular part of the transcriptome is still lacking...

We proposed to

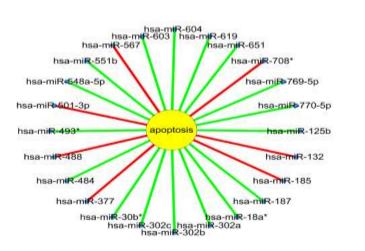

- Reveal the global network of miRNAs action on specific part of the transcriptome
- Use this network to understand drug Mechanism of Action (MOA)
- Demo its application on drug screening (drug positioning)

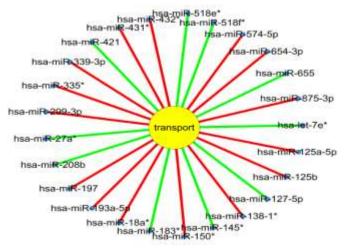

Context-specific miRNA activity (CoMi activity)


Previously we demode its application on cancer prognosis prediction

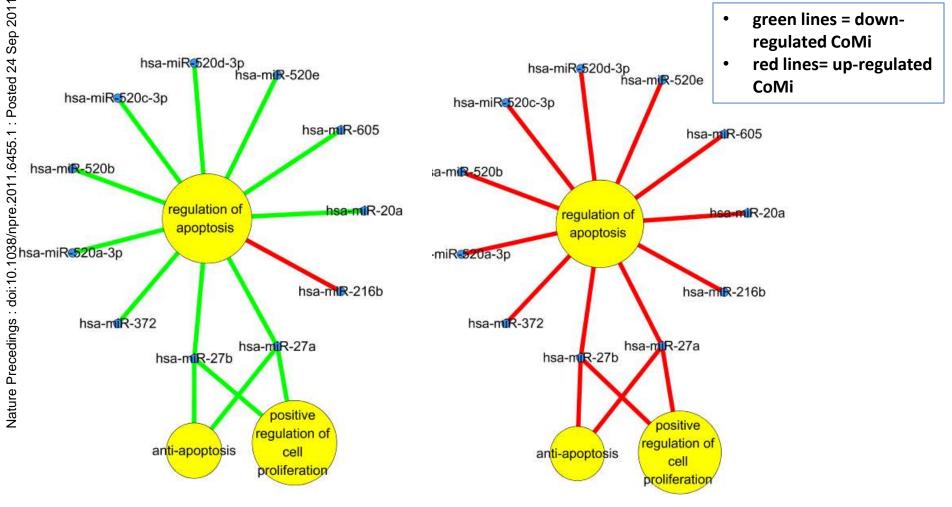

Xionghui Zhou, ..., Jianghui Xiong**. Context-**Specific miRNA Regulation Network Predicts** Cancer Prognosis. Proceedings of 2011 IEEE International Conference on Systems Biology (ISB). 2011

CoMi activity network (Breast cancer) could highlight key onco-miRNAs and tumor supressor miRNAs


known onco-miRNAs (hsa-miR-183*, has-miR-27a), tumor suppressor miRNAs (hsa-miR-34a)


CoMi activity network (Breast cancer) highlighted key pathways in cancer

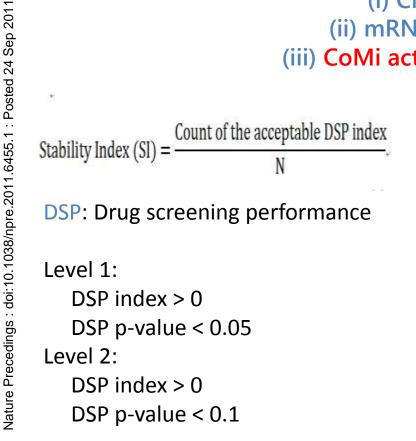
GO: Signal transduction

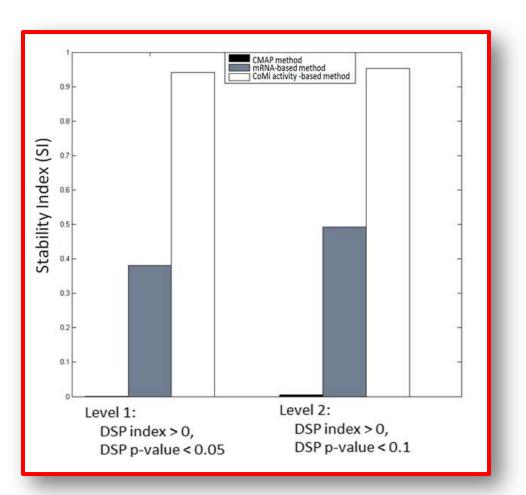

GO: regulation of apoptosis

GO: Apoptosis

CoMi network provide a promising way to understand the Mechanism of action of Paclitaxel on breast cancer

Dys-regulated network in Breast cancer


Paclitaxel can counteract the network (green lines \rightarrow red lines)


Performance benchmarking as drug screening (drug repositioning) method

- Standard Agent Database:
 - 17 drugs mapping with CMAP, 103 Instances.
- Breast cancer treatment:
 - Paclitaxel
 - Tamoxifen
 - Mitoxantrone
 - Vinblastine sulfate
 - 19 Instances of treatment. 19/103;4/17
- We tests which method could ranked the treatment drugs on the top of the drug ranked list.

CoMi –based method has the best stability index as drug screening system

(i) CMAP method(ii) mRNA-based method(iii) CoMi activity –based method

Comparison between drug list CoMi activity-based method vs. CMAP method

Drug li	Drug list of CoMi activity-based method			Drug list of CMAP method		
Rank	Drug	KS Score	Rank	Drug	KS Score	
1	mercaptopurine	0.9417	1	decitabine	0.6893	
2	mitoxantrone	0.6214	2	lomustine	0.4587	
3	vinblastine	0.5825	3	tamoxifen	<i>0.4397</i>	
4	daunorubicin	0.5073	4	procarbazine	0.4369	
5	doxorubicin	0.4563	5	chlorambucil	0.4223	
6	lomustine	0.4029	6	mitoxantrone	0.3883	
7	tamoxifen	0.3329	7	paclitaxel	0.3576	
8	paclitaxel	0.2427	8	etoposide	0.2646	
	azacitidine	-0.2524		daunorubicin	-0.3811	
	methotrexate	-0.2755		tetrandrine	-0.4393	
	etoposide	-0.3107		methotrexate	-0.4660	
	hycanthone	-0.3131		vinblastine	-0.4919	
	tetrandrine	-0.3204		hycanthone	-0.4951	
	chlorambucil	-0.3981		doxorubicin	-0.5146	
	procarbazine	-0.5696		azacitidine	-0.5728	
	decitabine	-0.8835		mercaptopurine	-0.9417	

- Our method successfully boost all positive drugs within the top 8
- Traditional CMAP method made a wrong prediction

Summary for CoMi method

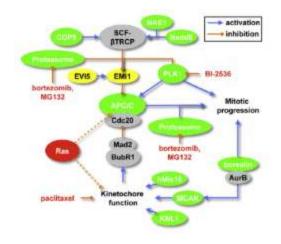
- CoMi network provide a promising way to understand the Mechanism of action of drugs
- As a drug screening/drug repositioning method, CoMi method strikingly outperformed the traditional CMAP method

What's next?

 Network models library is the infrastructure of Network pharmacology efforts

There are huge innovative opportunities on establishing diverse network, we set out to compile a comprehensive Network models library

Diverse types of node

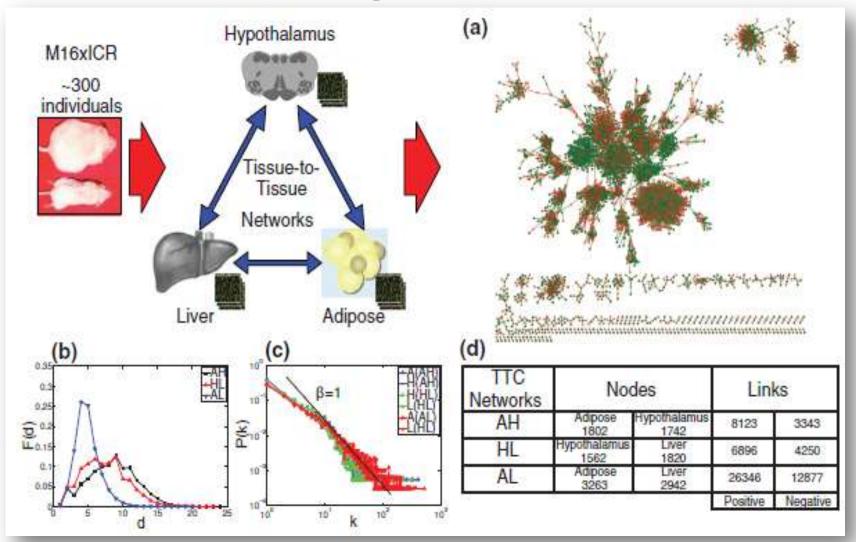

- Gene
- Gene modules
- microRNAs
- Long non-coding RNAs ...

Diverse types of edge (interaction)

- Physical interaction
- Genetic interaction
- Co-expression
- Bayesian ...

Various metric for target identification

- Connectivity (hub)
- Bridging centrality
- Hierarchy...



Network models library?

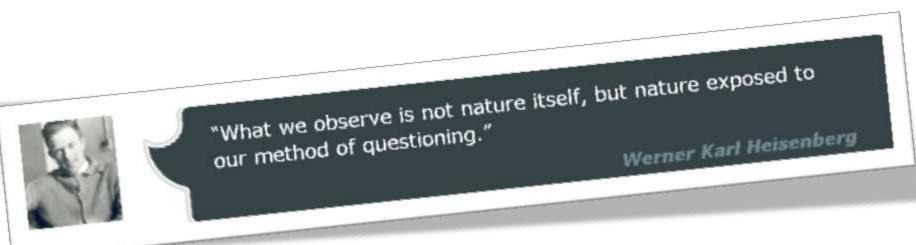
- For genetic interaction
 - Different phenotype define different type of networks
 - Different experimental methods
 - Different context (cell lines, tissue source..)
- Not all biologists are computational biologists, we need pre-defined network models
- "The library of Network Models"
 - Annotate
 - Benchmark/validate
 - Updating
 - Integrating

Inter-organ network

Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease

Radu Dobrin^{*}, Jun Zhu^{*}, Cliona Molony^{*}, Carmen Argman^{*}, Mark L Parrish^{*}, Sonia Carlson^{*}, Mark F Allan^{*§}, Daniel Pomp^{**} and Eric E Schadt^{**}

Acknowledgement


- Fengji Liang (Electrical and Computer Engineering)
 - NGS
 - Long ncRNAs

Lida Zhu (Computer Science)

- Drug screening/drug repositioning
- miRNAs network
- Xionghui Zhou (Computer Science)
 - microRNAs regulation network

Wenyan Qiao (Biology)

Drug – miRNAs association

"我们所观测到的不是自然本身,而是自然根据 我们探索它的方法的展现" ——维尔纳·海森堡 ("测不准原理",量子力学,1932年诺贝尔物理学奖)

@ Jianghui Xiong 熊江辉 Laserxiong AT gmail.com