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Abstract

It is well known that the number of particles should be scaled up to enable

industrial scale simulation. The calculations are more computationally intensive

when the motion of the surrounding fluid is considered. Besides the advances in

computer hardware and numerical algorithms, the coupling scheme also plays

an important role on the computational efficiency. In this study, a particulate

immersed boundary method (PIBM) for simulating the fluid-particle multiphase

flow was presented and assessed in both two- and three-dimensional applications.

The idea behind PIBM derives from the conventional momentum exchange-

based immersed boundary method (IBM) by treating each Lagrangian point as

a solid particle. This treatment enables LBM to be coupled with fine particles

residing within a particular grid cell. Compared with the conventional IBM,

dozens of times speedup in two-dimensional simulation and hundreds of times in

three-dimensional simulation can be expected under the same particle and mesh

number. Numerical simulations of particle sedimentation in Newtonian flows

were conducted based on a combined lattice Boltzmann method - particulate

immersed boundary method - discrete element method scheme, showing that
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the PIBM can capture the feature of particulate flows in fluid and is indeed a

promising scheme for the solution of the fluid-particle interaction problems.

Keywords: LBM, Particulate-IBM, DEM, Fluid-particle interaction

1. Introduction

Due to the stochastic nature of the solid particle behaviors, the fluid-particle

interaction problems are often too complex to be solved analytically or observed

by physical experiments. Therefore, they have to be analyzed by means of nu-

merical simulations. In our previous work [1], we have reported a numerical

study of particle sedimentation process by using a combined Lattice Boltzmann

Method [2], Immersed Boundary Method [3] and Discrete Element Method [4]

(LBM-IBM-DEM) scheme. The LBM-IBM-DEM scheme is attractive because

no artificial parameters are required in the calculation of both fluid-particle and

particle-particle interaction force. However, the computational cost of this cou-

pling scheme not only lies on the grid resolutions in LBM and the solid particle

number NP , but also highly depends on the number of the Lagrangian points

NLP distributed on the solid particle boundaries. Since NLP on each particle

should be large enough to ensure the accurate calculation of the fluid-particle

interaction force and torque, the actual point number considered in the nu-

merical interpolation is NP ×NLP which makes the main calculation effort in

the LBM-IBM-DEM modeling highly related to the IBM part. For the system

of two-dimensional 504 particles with each particle containing 57 Lagrangian

points [1], a calculating period of one month may be needed to simulate the

entire sedimentation process in a 2 cm × 2 cm cavity in a single CPU without

additional parallel accelerations such as the graphics processing unit (GPU) [5]

or Message Passing Interface (MPI) [6]. This computational efficiency is signifi-

cantly lower than other coupling schemes based on the Navier-Stokes equations

and DEM (NS-DEM) [7, 8, 9] when treating the same amount of solid particles.

The bottleneck of LBM-IBM-DEM scheme becomes dramatically serious in the

three-dimensional applications. The important feature of the coupled NS-DEM
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simulations is that one single fluid cell can contain several solid particles, and

the fluid-particle interaction force is calculated based on the local porosity in

the cell together with the superficial slip velocity between particle and fluid [10].

In the NS-DEM simulations, the details of particle geometry are not considered

when the size of the particles are significantly smaller than the system charac-

teristic scale. Alternatively, the LBM-DEM simulations tell a different story in

which each solid particle is constructed by dozens of lattice units (or more in

three-dimensional cases) and the hydrodynamics force acting on each particle

is the resultant of forces on the Lagrangian points and obtained by integrat-

ing around the circumference of the solid particle [11, 12, 13, 14]. Although

the latter coupling scheme seems to be more rational, it is highly limited by

the current computational capability as also argued by Zhu et al. [15] in their

review paper and thus simulations of industrial scale problems are not compu-

tationally affordable. Yu and Xu [16] stated that: “At this stage of development

the difficulty in particle-fluid flow modeling is mainly related to the solid phase

rather than the fluid phase.” A numerical method that can be widely accepted

in engineering application is the one with superior computational convenience.

This paper aims at improving the computational efficiency of our previous LBM-

IBM-DEM scheme [1] and extending the coupling scheme to three-dimensional

cases. The idea of the traditional NS-DEM is borrowed here to treat each La-

grangian point directly as one solid particle, therefore, one single LBM grid is

allowed to contain several solid particles spatially.

The available works on LBM-DEM were reviewed in [1] where the calculation

of fluid-particle interaction force is regarded as the key point and it requires an

accurate description of the boundaries of the solid particles. In general, there

are two ways to do this, namely the Immersed Moving Boundary method (IMB)

proposed by Noble and Torczynski [17] and the IBM proposed by Peskin [3].

Here, we focus on the IB-LBM simulation. Feng and Michaelides firstly pro-

posed a penalty IB-LBM scheme [18] and then improved it via a direct forcing

scheme [19]. Instead, Niu et al. [20] proposed a simpler, parameter-free and more

efficient momentum exchange-based IB-LBM. The scheme of Niu et al. [20] has

3



been inherited by numerous researchers to study the Fluid-Structure Interaction

(FSI) problems [21, 22], thermal flows [23, 24] and particulate flows [25, 1] due

to its natural advantage. In this study, the fluid-particle interaction force is also

evaluated by the scheme of Niu et al. [20] without introducing any artificial pa-

rameters. Unlike the aforementioned treatments in which the Lagrangian points

were linked by stable solid bonds [25, 1] or flexible filaments [22], the constraints

between the Lagrangian points are thoroughly removed. By doing so, the free

floating of the Lagrangian points is allowed and the driving force on them is

simply based on the momentum exchange of the fluid particles. Hereby, the

new coupling scheme is called Particulate Immersed Boundary Method (PIBM)

to show the difference to Niu et al. [20]. It is worthwhile mentioning that Wang

et al. [26] carried out a coupled LBM-DEM simulation to study the gas-solid

fluidization in which the size of the particles is smaller than the lattice spacing,

and the Energy-Minimization Multi-Scale (EMMS) [27] drag model is adopted

to calculate the coupling force between solid and gas phase. However, Wang

et al. [26] only conducted two-dimensional simulations and the establishment of

an empirical formula containing the local porosity is still needed. In addition,

the EMMS has a lower computational performance than the direct momentum

exchange-based scheme as adopted in current study.

The rest of the paper is organized as follow. To make this paper self-

contained, the mathematics of the three-dimensional LBM, PIBM and DEM

were briefly introduced in Section 2. In Section 3, case studies of the parti-

cle sedimentation in Newtonian flow were presented with the numerical results

discussed. Finally, some conclusions were made in Section 4.

2. Governing equations

2.1. Lattice Boltzmann model with single-relaxation time collision

We consider the simulation of the incompressible Newtonian fluids where the

LBM-D3Q15 model [2] is adopted, and the spatial distribution of the velocities
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Figure 1: Schematic diagram of the D3Q15 model[28].

is shown in Figure 1. Following the same notation used by Wu and Shu[28],

those 15 lattice velocities are given by

eα =



















(0, 0, 0)c α = 0

(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c α = 1− 6

(±1,±1,±1)c α = 7− 14

(1)

where c is termed by the lattice speed. The formulation of the lattice Bhatnagar-

Gross-Krook model is

fα(r + eαδt, t+ δt) = fα(r, t)−
fα(r, t)− feq

α (r, t)

τ
+ Fbδt (2)

where fα(r, t) represents the fluid density distribution function, r = (x, y, z)

stands for the space position vector, t denotes time and τ denotes the non-

dimensional relaxation time, Fbδt denotes the fluid-solid interaction force term

which is given in the following section. The equilibrium density distribution

function, feq
α (r, t), can be written as

feq
α (r, t) = ρfωα[1 + 3(eα · u) + 9

2
(eα · u)2 − 3

2
| u |2] (3)

where the value of weights are: ω0 = 2/9, ωα = 1/9 for α = 1−6 and ωα = 1/72

for α = 7 − 14. u denotes the macro velocity at each lattice node which can
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be calculated by u = (
14
∑

α=0

fαeα)/ρf , and the macro fluid density is obtained by

ρf =
14
∑

α=0

fα.

2.2. Particulate immersed boundary method (PIBM)

Figure 2: Schematic diagram of the PIBM.

For the sake of clarity, the two-dimensional schematic diagram of the PIBM

is given in Figure 2 followed by three-dimensional equation systems. As shown,

the fluid is described using the Eulerian square lattices and the solid particles are

denoted by the Lagrangian points moving in the flow field. Instead of using sev-

eral Lagrangian points to construct one large solid particle [1], each Lagrangian

point is treated as one single solid particle in this study. The fluid density

distribution functions on the solid particles are evaluated using the numerical

extrapolation from the circumambient fluid points,

fα(Xl, t) = L · fα(r, t) (4)

where Xl(X,Y, Z) is the coordinates of the solid particles, L is the three-
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dimensional Lagrangian interpolated polynomials,

L =
∑

ijk





imax
∏

l=1,l!=i

X − xljk

xijk − xljk









jmax
∏

m=1,m!=j

Y − yimk

yijk − yimk









kmax
∏

n=1,n!=k

Z − zijn
zijk − zijn





(5)

where imax, jmax and kmax are the maximum numbers of the Eulerian points

used in the extrapolation as shown by blocks in Figure 2. With the movement

of the solid particle, fα(Xl, t) will be further affected by the particle velocity,

Up,

fβ(Xl, t+ δt) = fα(Xl, t)− 2ωαρf
eαUp

c2s
(6)

where the subscript β represents the opposite direction of α. Based on the

momentum exchange between fluid and particles, the force density, g(Xl, t), at

each solid particle can be calculated using fα and fβ ,

g(Xl, t) =
∑

β

eβ [fβ(Xl, t)− fα(Xl, t)] (7)

The effect on the flow fields from the solid boundary is the body force term

Fbδt in Equation 2, where Fb can be expressed by

Fb =

(

1− 1

2τ

)

ωα

(

3
eα − u

c2
+ 9

eα · u
c4

eα

)

F (r, t) (8)

and

F (r, t) =
∑

l

g(Xl, t)Dijk(rijk −Xl)Ap (9)

Ap is the cross-sectional area of the particle which is given as Ap = 0.25πd2p,

dp is the diameter of the particle. Dijk is used to restrict the feedback force to

only take effect on the neighbor of interface and is given by

Dijk(rijk −Xl) =
1

h3
δh

(

xijk −Xl

h

)

δh

(

yijk − Yl

h

)

δh

(

zijk − Zl

h

)

(10)
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with

δh(a) =







1
4
(1 + cos(πa

2
)), when | a |≤ 2

0, otherwise
(11)

where h is the mesh spacing. It should be stressed that by adding a body force

on the flow field, the macro moment flux also has to be modified by the force

ρfu =
14
∑

α=0

fαeα + 1
2
F (r, t)δt.

On the other hand, the fluid-solid interaction force exerted on the solid

particle can be obtained as the reaction force of g(Xl, t),

Ffpi = −g(Xl, t)Ap (12)

2.3. Modeling of the particle-particle interactions

The dynamic equations of the particle can be expressed as

m
d2r

dt2
= (1− ρf

ρp
)g + Ffpi (13)

I
d2θ

dt2
= τ (14)

where m and I are the mass and the moment of inertia of the particle, re-

spectively. r is the particle position and θ is the angular position. ρf and ρp

are the densities of the fluid and particle, respectively. g is the gravitational

acceleration and τ is the torque. Considered forces on the right hand side of

Equation 13 are the buoyant force and the fluid-particle interaction force Ffpi.

When the particles collide directly with other particles or the walls, the DEM [4]

is employed to calculate the collision force. In this study, the particles and walls

are directly specified by material properties in the simulation such as density,

Young’s modulus and friction coefficient. When the collisions take place, the

theory of Hertz [29] is used for modeling the force-displacement relationship

while the theory of Mindlin and Deresiewicz [30] is employed for the tangen-

tial force-displacement calculations. For two particles of radius Ri , Young’s

modulus Ei and Poisson’s ratios νi (i = 1, 2), the normal force-displacement

relationship reads
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Solid phase Fluid phase

Density (kg ·m−3) 1010 Density (kg ·m−3) 1000

Young’s Module (GPa) 68.95 Viscosity (kg ·m−1 · s−1) 1.0e-3

Poisson ratio (N ·m−1) 0.33 Lattice length (m) 0.0001

Friction coefficient (−) 0.33 Gravity acceleration (m · s−2) 9.8

Table 1: Properties of the particles and fluid.

Fn =
4

3
E∗R∗1/2δ3/2n (15)

where the equivalent Young’s modulus and radius can be calculated by 1/E∗ =

(1− ν21 )/E1 + (1 − ν22)/E2 and 1/R∗ = 1/R1 + 1/R2, respectively.

The incremental tangential force arising from an incremental tangential dis-

placement depends on the loading history as well as the normal force and is

given by

∆T = 8G∗raθk∆δt + (−1)kµ∆Fn(1 − θk) (16)

where 1/G∗ = (1− ν21 )/G1 + (1 − ν22 )/G2, ra =
√
δnR∗ is radius of the contact

area. ∆δt is the relative tangential incremental surface displacement, µ is the

coefficient of friction, the value of k and θk changes with the loading history.

3. Results and discussions

As stated in previous section, comparing with the conventional IBM, sev-

eral essential simplifications have been made in the PIBM including removing

the constraints between the Lagrangian particles and omitting the calculation

of hydrodynamics torque. A natural question is that can the PIBM still suc-

cess in the complex fluid-particle interaction problems with frequent momen-

tum transfer? For the sake of demonstrating the capability of the PIBM, two-
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and three-dimensional simulations of particle sedimentation in Newtonian liq-

uid in a cavity were carried out. This configuration is interesting because the

Rayleigh-Taylor instability phenomenon may take place on the interface of the

agglomerating particles and the fluid. In two-dimensional case [1], the fluid in

the lower half of the cavity is found to insert into the upper half and this forms

a fluid pocket of mushroom shape in the particle phase interior. Then, the rel-

ative smooth interface between the two phase is disturbed and the fluid pocket

is teared to small ones. These fluid pockets have the appearance of irregular

shape and travel at both vertical and horizontal speed until all the particles fall

down on the cavity bottom. In this study, the two-dimensional results by PIBM

were directly given due to the fact that the collision rule of the D2Q9 model is

very similar to D3Q15 [2] and the two-dimensional code has been tested in [1].

In the rest of this section, the accuracy of the PIBM was firstly examined by

simulating the falling process of a single particle in Newtonian flow and the re-

sults were compared with the analytical solutions based on the Stokes’ law. By

means of the comparison, the parameters were also calibrated and adopted in

the following multi-particle simulations. Then, the two- and three-dimensional

results were presented in Section 3.2 and 3.3, respectively. The physical proper-

ties of the particles and the surrounding fluid are given in Table 1. It should be

mentioned that the lattice spacing length, h, is 0.0001m in all the simulations.

3.1. Falling of a single particle

Falling of the single particle in a cuboid cavity was firstly investigated. The

length and width of the cuboid cavity are 0.001m and the height is 0.005m. The

initial position of the particle is at (0.0005m, 0.0005m, 0.0049m). Four kinds of

particles with different diameters are considered, namely dp = 0.25 × 10−4m,

0.5× 10−4m, 0.75× 10−4m and 10−4m or h/dp = 4, 2, 4/3 and 1, respectively.

The largest diameter is equal to one LBM grid spacing length. The longitudinal

coordinates and velocities of different particles during the falling process are

shown in Figure 3. The particles at rest begin to deposit under the effect of

the gravitational force. After a period of acceleration, the particles fall with a
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(a) (b)

Figure 3: (a) longitudinal coordinates and (b) longitudinal velocities of the particle under

different h/dp.

constant settling velocity until they approaches to the bottom. The magnitude

of the settling velocity increases with the particle size. Finally, the particles

stay at the bottom of the cavity with zero longitudinal velocity. Figure 4 shows

several typical snapshots of the falling process of the 1 × 10−4m particle with

contour plots for vf , clear influence of the particle motion on the flow structure

can be observed. For dilute suspensions, the settling velocity of a single particle

in a viscous fluid flow can be evaluated by the Stokes’ law which is given by

Vs =
(ρp − ρf )d

2
pg

18µ
(17)

where µ is the dynamic viscosity of the fluid. Quantitative comparison between

the results based on the Stokes’ law and the numerical ones are presented in

Table 2. As shown, the settling velocities predicted by numerical simulation

agree well with the Stokes’ law. However, it is found that the particle may

oscillate around the center line during the falling process and the fluctuation

on the velocity increases with the particle size especially closing to the cavity

bottom. Feng et al. [31] also reported this unsteadiness phenomenon using

coupled Direct Numerical Simulation and DEM (DNS-DEM). In the following

subsections of this study, h/dp = 4 and 2 were chosen based on the similar

criterion as adopted in the NS-DEM simulations [32]. Our numerical simulations

show that this ratio works well in the multi-particle cases in general, however,
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(a) (b)

(c) (d)

Figure 4: Instantaneous height of the 0.0001m particle with contour plots for v at time (a)

t = 22.5s, (b) t = 45.0s, (c) t = 67.5s, (d) t = 90.0s.

further numerical and experimental validations may be needed to fully assess

its effect on the particle behaviors.

h/dp Based on Stokes’ law Numerical results τ Physical timestep

(m/s) (m/s) (s)

4 −3.40× 10−6 −3.41× 10−6 0.65 0.0005

2 −1.36× 10−5 −1.37× 10−5 0.72 0.0007

4/3 −3.06× 10−5 −3.07× 10−5 0.79 0.0010

1 −5.44× 10−5 −5.52× 10−5 0.85 0.0012

Table 2: The settling velocities at different particle size.

3.2. Sedimentation of two-dimensional particles in Newtonian flows

Two-dimensional simulations of the particle sedimentation in a square cavity

have been conducted using various numerical methods [33, 18, 19, 1]. Here we
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(a) (b)

(c) (d)

Figure 5: Instantaneous particle distribution with the fluid velocities at time (a) t = 0.0s, (b)

t = 2.5s, (c) t = 5.0s, (d) t = 10.0s.

consider a 0.01m × 0.01m cavity with 5000 two-dimensional particles. The

properties of the particles and the surrounding fluid are given in Table 1. The

diameter of the particles are 0.25 × 10−4m or h/dp = 4. The relaxation time

is τ = 0.65, it leads to a physical timestep of 0.0005s. Initially, the 5000

particles are randomly generated in the upper three-fifths domain and then

deposit under the effect of the gravitational force. Figure 5 displays the changing

process of the interface line from straight to curve. As expected, the fluid at

the lower half of the cavity is swallowed into the the agglomerating particles

forming a open hole of mushroom shape. The open hole is shattered to pieces

when the particles fall down as shown in Figure 6. Generally speaking, the
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(a) (b)

(c) (d)

Figure 6: Instantaneous particle distribution with the fluid velocities at time (a) t = 20.0s,

(b) t = 25.0s, (c) t = 50.0s, (d) t = 100.0s.

patterns observed in this simulation are very close to the results provided in

the former references [33, 18, 19, 1]. However, compared with the results of

large particles that calculated using conventional momentum exchange-based

immersed boundary method [1], the whole sedimentation process takes much

longer time due to the low settling velocity.

3.3. Sedimentation of three-dimensional particles in Newtonian flows

3.3.1. The sedimentation process

In this subsection, a three-dimensional 0.0015m×0.00015m×0.0015m cubic

cavity is considered. The diameter of the particles is 0.5× 10−4m or h/dp = 2.
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Figure 7: Positions of the 8125 particles at time t = 0.0s.

The relaxation time is τ = 0.72 which leads to a physical timestep of 0.0007s.

Initially, 8125 particles are positioned in the upper three-fifths domain as shown

in Figure 7, the solid fraction is 0.15, total volume occupied by the particle

assembly is 1.9 × 10−9m3, total volume of the particles is 5.3 × 10−10m3 and

thus the local porosity is 0.719. There are vertically 13 layers of particles, in

each layer there are 625 particles forming a 25×25 matrix. In each direction, the

particles are uniformly distributed. The gap between the horizontal neighboring

particles and between the closest particles and the side wall is about 0.00001m.

The gap between the vertical neighboring particles and between the highest

particles and the top wall is about 0.000018m. The no-slip boundary is adopted

on the six boundaries of the cavity, namely the fluid nearby the wall will have

zero velocity.

In the initial stages of sedimentation, an overall falling of the particle ag-

glomeration can be observed as shown in Figure 8 (a) and (b). Due to the fact

that the initial porosity is low, the whole body at this stage can be regarded as

a plug flow creeping in a channel. The distance between the highest particles

and the top wall increases gradually and the particle distribution close to the

walls does not change significantly. However, instead of settling uniformly, the
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(a) (b)

(c) (d)

Figure 8: Positions of the 8125 particles at time (a) t = 2.5s, (b) t = 5.0s, (c) t = 7.5s, (d)

t = 10.0s.

difference of particle velocity inside and at the bottom of the body shows up

shortly. This is because the particles close to the side walls are hindered by

the stagnated fluid. Consequently, the particles in the center region move faster

and pour down to suck the fluid to fill up the forming gap. The hump grows

fast until it reaches the cavity bottom. It can be seen that the changing his-

tories of the fluid-particle interface are different in two- and three-dimensional

simulations. In the two-dimensional case, the updraft of the fluid takes place

mainly in the center. However, the three-dimensional particle-constructed pes-

tle is too strong to break as shown in Figure 8 (b) and the fluid is pushed away
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to take a devious route (explained later in Figure 10). This observation is in

line with the three-dimensional results reported by Robinson et al. [34] using

Smoothed Particle Hydrodynamics (SPH)-DEM simulation. The discrepancy

between two- and three-dimensional results is obviously due to the drawback of

the two-dimensional assumption.

(a) (b)

(c) (d)

Figure 9: Particle deposition velocity along the x−direction at time (a) t = 2.5s, (b) t = 5.0s,

(c) t = 7.5s, (d) t = 10.0s.

The following three-dimensional deposition processes show nearly opposite

trend comparing with the two-dimensional case as shown in Figure 8 (c) and

(d). In the two-dimensional case, a fluid hole is formed in the lower half of the

cavity which is hugged by two particle arms, this typical phenomenon has been
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reported in several studies [33, 18, 19, 1]. However, in the three-dimensional

case, it is more like a fluid hoop surrounding the particle pestle. The head

of the pestle spreads out when it impacts on the bottom. The behavior is

not difficult to understand because the successive falling particles keep moving

downward and thus pushing on the head. At this time, the underriding of the

particles becomes the dominating force in the system and most of the particles

distribute in this center region.

Since the particle deposition velocities are very important for the efficiency of

the final deposition and may lead to a non-uniform distribution on the bottom.

Figure 9 displays the distributions of particle velocity along the x−direction be-

fore 10.0s where large discrepancy can be observed. It is shown that most of the

velocities have negative signs and the larger deposition velocities concentrate in

the center region. This finding is in line with the particle distribution patterns.

Moreover, the magnitude of the deposition velocity increases with time until the

particles impact on the bottom. It is also clearly seen that the majority of the

velocities in the regions close to the side walls are positive due to the fact that

the sucked fluid pushes the high particles up when the center particles sink down.

This interesting FSI phenomenon can be clearly observed in Figure 10 where

the instantaneous fluid velocity corresponding to Figure 9 is given. It is shown

that the initial stagnant fluid is disturbed by the particle motion and follows the

trend of the solid particles. Two vortexes (hoop in three-dimensional geometry)

are formed in the lower corners of the cavity and the fluid velocity near the side

wall is upward. The vortexes are strong when the particle deposition velocities

are large. As shown in Figure 9 (c) and (d), the particle deposition velocities

begin to decrease after the particles reach the bottom, meanwhile the number

of particles with positive velocities increases. These particles are risen by the

vortexes and against the falling particles as shown in Figure 8 (d) highlighted by

green ellipse. An overall distribution of the particle deposition velocities is given

in Figure 11 in terms of mean values. Here, the whole bottom domain is divided

by 30× 30 squares and then the particles are mapped into the square that the

particle center lies. The square holds the deposition velocity that mapped in
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(a) (b)

(c) (d)

Figure 10: Instantaneous fluid velocity distribution on the mid-length slice at time (a) t = 2.5s,

(b) t = 5.0s, (c) t = 7.5s, (d) t = 10.0s.

it. If more than one particle is mapped into the same square, the arithmetic

mean value will be employed. As shown, the mean velocities present a generally

symmetrical distribution. The particles near the corners deposit significantly

slower than the center as results of the fluid viscosity. The highly symmetrical

distribution is broken when the particle contact with the bottom. However, a

constant symmetrical distribution may not be expected due to the stochastic
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(a) (b)

(c) (d)

Figure 11: Overall distribution of the particle deposition velocity at time (a) t = 2.5s, (b)

t = 5.0s, (c) t = 7.5s, (d) t = 10.0s.

nature of the solid particles. From t = 10.0s, the collisions between the particles

and particles/walls become the dominating force in the lower half of the cavity.

The pestle slumps like an inverted cone and fills the cavity bottom.

Figure 12 (a) and (b) display the later stages of the depositing process. In

Figure 12 (a), the initially orderly arranged particles are totally disorganized

and settle on the cavity bottom length by length.

3.3.2. Effect of the initial porosity

It has been well known that the porosity can play an important role in the

sedimentation of multi particles. Here, different numbers of particles were posi-
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Figure 12: (a) Positions of the 8125 particles at time t = 50.0s and (b) the final distribution.

Particle number Initial porosity Solid fraction Initial distribution

8125 0.719 0.15 25× 25× 13

5200 0.813 0.10 20× 20× 13

2925 0.888 0.056 15× 15× 13

Table 3: The settling velocities at different particle size.

tioned in the same region as previous subsection. In other words, the particles

would deposit with different initial porosity. The physical properties of the fluid

and particles can be found in Table 2. The minimum particle height was mon-

itored to characterize the sedimentation efficiency. The parameters relevant to

these simulations are listed in Table. 3.

Figure 13 shows the minimum particle height versus time with different

initial porosity. It can be seen that the sedimentation efficiency increases with

the decrease of the initial porosity even identical particles were used, this finding

is consistent with the analytical results from Robinson et al. [34]. Moreover,

a significant deceleration of settling velocity can be observed when the lowest

particles approach to the cavity bottom, this phenomenon has also been reported

in [19] and [1] .
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Figure 13: Minimum particle height versus time at different initial porosity.

3.3.3. Effect of the particle number on the total computational cost

Figure 14: Particle number versus the computational time in one time step.

At last, for the sake of examining the effect of the particle number (the

number of the Lagrangian point in conventional IBM) on the total computa-

tional cost, several simulations were carried out with different particle number.

As shown in Figure 14, the total computational cost increases almost linearly

with the particle number and the slope is even larger when the particle number

increases from 6000 to 8000. It is worthwhile mentioning that Figure 14 was

obtained when there are no particle collisions in the system. We also tested the

computing time of each part of the solver in above 8125 particle simulation at

22



time t = 30.0s, we found that the calculation of the fluid-particle interaction

force spends about 84.4% of total simulation time in one time step and the total

particle collision number is 6610. Therefore, we come to a conclusion that the

total computational cost can be significantly reduced by decreasing the number

of the Lagrangian point. Comparing with the conventional LBM-IBM-DEM [1],

dozens of times (divided by NLP ) speedup can be expected in two-dimensional

simulation and hundreds of times in three-dimensional simulation under the

same particle and mesh number. However, it is worthwhile mentioning that this

conclusion is reached only from a computational efficiency point of view. For a

certain problem with large range of sizes of particles, a hybrid IBM-PIBM may

be needed to achieve high performance calculation which will be discussed in

next subsection.

Overall, the main findings of the two- and three-dimensional simulations are

summarized as follows: The patterns observed in the two-dimensional simulation

are close to the results provided in former references [33, 18, 19, 1]. However,

the three-dimensional results show large discrepancy with the two-dimensional

results which is most probably due to the two-dimensional assumption. Imaging

a case in a enclosed container like a fluidization bed, the fluid is unpenetrable

into a two-dimensional well-packed particle bed without breaking the compact

structure, whereas penetration into a three-dimensional bed is somehow possible

because the geometry is much more polyporous and complex.

3.3.4. Hybrid IBM-PIBM modeling

It is common to encounter a system containing various sizes of particles. A

multiscale analysis is preferred when the size range is large. If all the particles

are treated using the conventional IBM, the number of grids required to con-

struct the finest particle would make the whole simulation too expensive. On

the contrary, if all the coupling work is carried out based on the PIBM, the

grid required to embody the largest particle would be too coarse to accurately

reflect the fluid flow. A more frequently encountered requirement is to build the

complex boundaries or irregular elements using IBM. In other words, a hybrid
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(c) (d)

Figure 15: Positions of the 8125 particles with obstacles at time (a) t = 2.5.0s, (b) t = 5.0s,

(c) t = 7.5s, (d) t = 10.0s.

IBM-PIBM method is needed. Using a simply sample as shown in Figure 12,

the advantage of this mixed approach can be seen where five stationary obsta-

cles are fixed below the particles (four large particles and one cube consisting

of 27 small particles). The four large particles are established using the con-

ventional IBM while the rest, including the 27 particle for the cube, are treated

using PIBM. The criterion to choose different methods is the ratio between the

particle size and the lattice spacing. In general, the grid size can be specified

at 10 times the particle sizes in the Eulerian-Eulerian model [35] and about 5

times in the Eulerian-Lagrangian model based on NS-DEM [32]. However, the

24



results from current study indicate that the ratio can be 2 in LBM-PIBM-DEM

though the optimal ratio is still in question.

4. Concluding remarks

A PIBM for simulating the particulate flow in fluid was presented. Compared

with the conventional momentum exchange-based IBM, no artificial parameters

are introduced and the implementation is simpler. The PIBM is more suitable

for simulating the motion of a large number of particles in fluid, particularly in

the three-dimensional cases where particle collisions dominate. Dozens of times

speedup can be expected in two-dimensional simulation and hundreds of times

in three-dimensional simulation under the same particle and mesh number.

Numerical simulations were carried out based on the LBM-PIBM-DEM

scheme, our result of falling of single particle reveals that the settling veloc-

ity predicted by numerical simulation agrees well with the Stokes’ law. Further

multi-particle simulation results confirm that the LBM-PIBM-DEM scheme can

capture the feature of the particulate flows in fluid and is a promising strategy

for the solution of the particle-fluid interaction problems. By comparing two-

and three-dimensional results, essential discrepancy was found due to the draw-

back of the two-dimensional assumption. Therefore, it can be concluded that

the two-dimensional simulations may be good as a first and cheaper approach,

the three-dimensional simulations are necessary for an accurate description of

the particle behaviors as well as the flow patterns. From our three-dimensional

results by PIBM, the sedimentation efficiency of particle is found to increase

with the decrease of initial porosity.

Due to the fact that the calculation of the fluid-particle interaction force in

the PIBM is simply based on the momentum conservation of the fluid particle,

the LBM-PIBM-DEM scheme can be easily connected with other CFD solvers

or Lagrangian particle tracking method where the conventional IBM works, e.g.

with the direct numerical simulation [31]. However, during the simulations,

we found that numerical instability may occur when the particle velocity is
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high, which seems to be a general weakness of the IBM family methods. For

the sake of achieving validate results, the PIBM users are recommended to

conduct a simplified case to compare with the analytical solutions/experimental

observation to tune the LBM relaxation time, τ , before using it in the multi-

particle simulations. This practice is competent and has been widely used in

LBM-DEM [19, 36] and other simulations based on DEM [37, 38].
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