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1. Background

2. Model

3. Model

4. Results
Each place cell, i, has a Gaussian place field with center location 
and scale

During each theta cycle, the animal compares its current position 
(x) to its goal position (g) and selects a step direction,     .

1. The different spatial scales are    
potentiated in sequence from small to 
large as the theta oscillation 
propagates through the network.

2. Once a place cell is identified 
whose place field overlaps both x and 
g, it becomes active.

3. Each edge in the tree has a weight          that is proportional to the 
distance between the place field centers of parent and child. The path 
down the tree that minimizes the sum of the weights gives the "active set" 
of place fields which will be used to determine     .  

Determining the step direction
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Navigating around obstacles

We model place cell 
activity within each 
iteration as binary:

To choose the step direction, we note that the "active set" 
of place cells are among those which are likely to fire in 
the next iteration if a step towards the goal is taken. 
Therefore, 

For independent place cells with Gaussian place 
fields,

Inhibiting place cells whose fields overlap obstacles prevents them 
from entering the "active set" and biases the animal's path to 
avoid obstacles. Note that this information is available to the 
hippocampal formation in the form of "border cells" [4].

To prevent the animal from getting stuck in front of an obstacle, 
we include firing rate adaptation of the place cells.

Blue dot: goal
Red triangles: path so far
Green circles: 1 sigma 
contours of place fields in 
"active set"

Question: is this multiscale dynamics useful for navigation? 
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Recordings of place cells at multiple points along 
the dorso-ventral axis of the hippocampus reveal 
a systematic increase in the spatial scale of the 
place fields [1],[2].

Hippocampal place cells fire at specific phases 
within a "theta" oscillation of ~10 Hz which has 
been linked to navigation behavior.

The theta oscillation has been shown to 
propagate as a travelling wave from dorsal to 
ventral hippocampus [3].

Thus, within every theta period, the spatial 
representation at a given theta phase cycles from 
fine- to coarse-grained.
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To extract a prediction from the model, we asked whether there is 
an optimal distribution of place cells across scales.

We assume that place field centers are randomly, uniformly 
distributed over the environment. For each scale,   , we want the 
number of place cells         to assign to that scale, subject to a 
constraint on the total number of place cells, N:

Demanding that the distribution         be scale-invariant (invariant 
under a uniform rescaling of all place field sizes and of the size of 
the environment) requires a power law:

This scale-invariance approximation therefore reduces the 
problem to a single parameter, k.

Simulations suggest that the algorithm only produces successful 
navigation for -2 < k < 0, and that the shortest paths are 
generated for k = -1.
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