
                          Cartlidge, J., & Bullock, S. (2004). Combating coevolutionary
disengagement by reducing parasite virulence. Evolutionary Computation,
12(2), 193-222. 10.1162/106365604773955148

Link to published version (if available):
10.1162/106365604773955148

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29026694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1162/106365604773955148
http://research-information.bristol.ac.uk/en/publications/combating-coevolutionary-disengagement-by-reducing-parasite-virulence(2fad989b-194e-4e5c-9488-b50f03abfe4c).html
http://research-information.bristol.ac.uk/en/publications/combating-coevolutionary-disengagement-by-reducing-parasite-virulence(2fad989b-194e-4e5c-9488-b50f03abfe4c).html


Combating Coevolutionary Disengagement by
Reducing Parasite Virulence

John Cartlidge johnc@comp.leeds.ac.uk
Informatics Network, School of Computing, University of Leeds, LS2 9JT, UK

Seth Bullock seth@comp.leeds.ac.uk
Informatics Network, School of Computing, University of Leeds, LS2 9JT, UK

Abstract
While standard evolutionary algorithms employ a static, absolute fitness metric, co-
evolutionary algorithms assess individuals by their performance relative to popula-
tions of opponents that are themselves evolving. Although this arrangement offers
the possibility of avoiding long-standing difficulties such as premature convergence, it
suffers from its own unique problems, cycling, over-focusing and disengagement.

Here, we introduce a novel technique for dealing with the third and least explored of
these problems. Inspired by studies of natural host-parasite systems, we show that
disengagement can be avoided by selecting for individuals that exhibit reduced levels
of “virulence”, rather than maximum ability to defeat coevolutionary adversaries. Ex-
periments in both simple and complex domains are used to explain how this counter-
intuitive approach may be used to improve the success of coevolutionary algorithms.
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1 Introduction

Coevolutionary disengagement occurs when one advantaged population outperforms
another to the extent that conspecifics become indistinguishable from one another in
terms of fitness. At such times, coevolving populations become decoupled, and se-
lection acts indiscriminately causing the system to drift, often with deleterious results.
This paper will explore the hypotheses that:

1. in order to successfully apply competitive coevolutionary algorithms to complex
optimisation problems, it is necessary to ensure coevolutionary engagement, and
that

2. a simple, general-purpose means of maintaining engagement is to manipulate fit-
ness functions such that individuals in an advantaged population are selected to
achieve moderate, rather than maximum, success.

We demonstrate that this “reduced virulence” technique tends to minimise the
chance of coevolutionary disengagement by encouraging fitness diversity, and that as
a result it improves coevolutionary optimisation in both simple and complex domains.
Moreover, reducing virulence in this way is shown to influence the course of coevo-
lutionary optimisation in a manner that differs from that achieved through standard
diversity maintenance techniques such as competitive fitness sharing, or resource shar-
ing.

This paper is organised as follows. Section 2 introduces coevolutionary algorithms
and details the problem of disengagement. Section 3 introduces the reduced virulence
technique and demonstrates its application in the context of a simple counting ones
domain. Section 4 presents further results and analysis from the counting ones do-
main, including a comparison with an alternative method of maintaining engagement.
Section 5 compares the reduced virulence technique to resource sharing, a standard
method for maintaining population diversity, in the context of a simple matching game.
In section 6, the performance of the reduced virulence technique is assessed against a
more complex problem, coevolving minimum-length sorting networks. Finally, section
7 presents a brief discussion of the paper’s results and future work.

2 Coevolution

2.1 Background

Standard evolutionary computation, often in the form of a genetic algorithm (Holland,
1975), has been used in a number of practical applications (see, e.g., Goldberg, 1989;
Davis, 1991). Within a standard evolutionary framework, individuals receive a fitness
score determined by a static function. This absolute fitness is objective and does not vary
over time. However, effective absolute fitness measures are often difficult to define. To
achieve success, an absolute fitness function must differentiate individuals throughout
the evolutionary process and direct a population towards optimality. Choosing an ade-
quate fitness function for a particular optimisation problem can prove to be as difficult
as solving the optimisation problem itself.

Coevolutionary algorithms offer an alternative. Such algorithms determine the
fitness of an individual in relation to others. As such, fitness is not static. There is
no mapping between genotype and fitness that remains constant over time. Rather,
the fitness of a genotype varies depending upon the make-up of other individuals—
relative fitness. Measuring fitness in such a manner removes the necessity for defining
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an absolute function. As such, coevolutionary algorithms can be beneficial in domains
when a suitable (absolute) fitness measure is difficult to determine.

Cooperative coevolutionary algorithms are often utilised in situations where a prob-
lem can be naturally decomposed into sub-components. Individuals represent such
sub-components and are assessed in a series of collaborations with other individuals in
order to form complete solutions (for example, Potter & De Jong, 2000; Watson & Pol-
lack, 2000; Wiegand, Liles, & De Jong, 2001). Cooperative coevolutionary algorithms
have had success in a variety of domains, for example, manufacturing scheduling (Hus-
bands & Mill, 1991), function optimisation (Potter & De Jong, 1994), designing artificial
neural networks (Potter & De Jong, 1995) and room painting (Puppala, Sen, & Gordin,
1998).

Competitive coevolution either occurs within one population engaged in self-play,
or between multiple populations. Individuals represent complete solutions that are
gradually refined throughout an evolutionary run. Single population competitive co-
evolution has been successfully applied to the Iterated Prisoner’s Dilemma (Axelrod,
1984; Lindgren & Nordahl, 1994), pursuit and evasion (Reynolds, 1994), and to find-
ing robust game strategies in, for example, Tic-Tac-Toe (Angeline & Pollack, 1993),
backgammon (Pollack, Blair, & Land, 1996) and Texas Hold’em Poker (Noble & Watson,
2001).

In this paper, we are interested in competitive coevolution between two popu-
lations (the simplest and most commonly used N -population competitive algorithm)
with inter-population assessment, often described as predator-prey, or host-parasite
coevolution1. Such competitive coevolutionary algorithms have been successfully ap-
plied to discovering minimal-length sorting networks (Hillis, 1990; Juillé, 1995), finding
CA rules to solve the density classification task (Juillé & Pollack, 1998b, 1998a), design-
ing artificial neural networks for robot control (Floreano & Nolfi, 1997), pursuit and
evasion (Cliff & Miller, 1995), and the domains of 3-D Tic-Tac-Toe and Nim (Rosin &
Belew, 1997).

2.2 Problems with Competitive Coevolution

Competitive coevolutionary algorithms circumvent the problem of defining an abso-
lute fitness function by utilising relative fitness assessment—individuals receive a score
based upon their success against contemporary opponents. As relative fitness functions
vary through time it is possible for a coevolutionary system to evolve in an unantici-
pated manner. Although we have had names for the problems associated with compu-
tational coevolution for some time, it is only recently that there has been a concerted
effort to define them. In recent years there has been a drive to analyse the coevolu-
tionary problems arising from relative fitness assessment (e.g., Watson & Pollack, 2001;
Bucci & Pollack, 2002; Luke & Wiegand, 2002), however, this work is still in its infancy.

In general, coevolutionary systems are difficult to direct. Individuals may over-fit
their contemporary competitors, resulting in potentially brittle solutions that are un-
able to generalise (Watson & Pollack, 2001; Bucci & Pollack, 2002). Rather than enter a
progressive arms-race, competing populations may stabilise at sub-optimal equilibria,
or mediocre stable states (Angeline, 1994; Pollack et al., 1996; Juillé & Pollack, 1998a; Fi-
cici & Pollack, 1998a; Pollack & Blair, 1998; Bucci & Pollack, 2002) whereby populations
begin to collude—an example of this occurred in the trenches during World War I as
soldiers on both sides refrained from attempting to kill the enemy (Axelrod, 1984). As
individuals are only rewarded for out-performing their contemporary opponents, it is

1However, the approach explored here could be generalised to other coevolutionary frameworks.
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possible for earlier adaptations to be lost, potentially leading to cycling (Cliff & Miller,
1995; Rosin, 1997; Shapiro, 1998; Juillé & Pollack, 1998a; Ficici & Pollack, 1998a; Bucci &
Pollack, 2002). Finally, if one population outperforms the other to the extent that every
opponent is beaten, the gradient for selection disappears and the populations disengage
and drift (Watson & Pollack, 2001; Bucci & Pollack, 2002; Cartlidge & Bullock, 2002).
As drift during periods of disengagement is random rather than neutral, above average
populations are likely to degenerate (see section 6.4).

Although there are methods for counter-acting particular coevolutionary problems
(e.g., fitness sharing and the “hall of fame”, Rosin & Belew, 1997), few of these address
the problem of disengagement, the phenomenon that we are concerned with in this
paper. In the following section disengagement is introduced in more detail.

2.3 Disengagement

Through the continuous feedback provided by relative fitness assessment, coevolv-
ing populations can be considered as a coupled dynamical system with each pop-
ulation evolving over a dynamic fitness landscape that continually fluctuates in re-
sponse to perturbations from the other (see discussion of NKC landscapes in Kauff-
man & Johnsen, 1991). It is this interactive dynamic that drives the selection pressure
between populations, continually eroding the adaptive advantage of each population
(the Red Queen Effect, van Valen, 1973) and potentially resulting in an evolutionary
arms race (Dawkins & Krebs, 1979). Disengagement occurs when a coevolutionary sys-
tem decouples—each population no longer perturbs the other, thus not only eliminating
feedback between the coevolving populations, but eradicating any means of relative
fitness assessment—resulting in evolutionary drift.

Often, coevolutionary systems are asymmetric—hosts and parasites may differ
genetically (in terms of encoding) or behaviourally (in terms of goal strategy). Such
asymmetry may result in an inherent advantage for one population. When coevolving
pursuers and evaders, for example, it is often much easier, at least initially, to be a suc-
cessful evader (Cliff & Miller, 1995). Given that disengagement results from one popu-
lation out-performing the other, it is intuitive that an inherent asymmetrical advantage
favouring a particular population will encourage coevolutionary disengagement.

Consider an asymmetrical host-parasite system in which parasites enjoy an in-
herent advantage. Let us assume that the system is nearing disengagement, with the
majority of parasites scoring maximally in the majority of competitions against hosts.
The few parasites that some hosts are able to beat—those that discriminate hosts—
will receive relatively low fitness and as such will have few progeny. In contrast, the
parasites able to beat all current opponents—and thus unable to discriminate among
hosts—receive high fitness, thus leaving many offspring. In such a situation, it is likely
that subsequent parasite generations will tend to comprise increasing numbers of indi-
viduals capable of beating all current opponents— i.e., there will be less discrimination
among hosts despite any genetic and phenotypic diversity. Eventually the popula-
tions will disengage, with every host achieving the same poor score, and every parasite
achieving the same high score. At this point, both populations will drift.

Although disengagement has entered the terminology of coevolutionary comput-
ing relatively recently (Bucci & Pollack, 2002; Cartlidge & Bullock, 2002), the phe-
nomenon has previously been recognised. Coevolutionary coupling, or engagement
has been described as maintaining a gradient for selection with which to discriminate
individuals (Watson & Pollack, 2001), coevolving an ideal training set with which to
supply feedback (Juillé & Pollack, 1998a, 1998b), maintaining learnability (Ficici & Pol-
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Figure 1: The phantom parasite function (left). Individuals that beat all real opponents
lose to the phantom parasite. Individuals that lose to at least one real opponent beat the
phantom parasite. The � function (right)—fitness of an IC is 0 if classified correctly, f
otherwise—produces a stabilising selection pressure favouring ICs that are neither too
easy, nor too hard, to classify (see equation 1).

lack, 1998b, 1998a) or providing pedagogical stepping stones (Rosin, 1997). The decou-
pling of coevolutionary populations is problematic and as such there have been several
attempts to produce a technique to circumvent it. Methods proposed to counter-act
disengagement are discussed below.

The phantom parasite (Rosin, 1997) inhibits the reproductive influence of unbeatable
individuals (figure 1, left). Used in conjunction with competitive fitness sharing (Rosin
& Belew, 1995), this anti-elitist innovation has no effect on individuals who achieve a
less than perfect score. However, any individual that scores perfectly automatically has
its score reduced slightly. This punishment is glossed in terms of interactions with an
“ideal” phantom parasite: ‘Hosts that lose to some current parasite defeat the phantom
parasite. Hosts that defeat all current parasites lose to the phantom parasite’ (Rosin,
1997). Effectively, the phantom parasite transforms the fitness function of parasites as
shown in figure 1, left. Individuals winning N � 1 contests receive an equivalent score
to those winning N contests. The aim is to discourage parasites from performing too
well, however, it remains in the best interests of an individual parasite to win as many
competitions as possible.

The friendly competitor (Ficici & Pollack, 1998a, 1998b) attempts to coerce a coevo-
lutionary arms-race through utilising a three population system. A parasite population
coevolves with two host populations, one friendly and one hostile. Parasites are re-
warded for being an easy challenge for friendly hosts whilst simultaneously being a
difficult challenge for hostile hosts. When coevolving sorting networks, for example,
a parasite list would be rewarded for simultaneously being unsorted by hostile host
networks and sorted by friendly host networks. In this way, parasites are punished
for becoming too difficult for all hosts. The friendly competitor is designed to main-
tain a selection gradient for hosts, however, it is a complicated technique that requires
the introduction of a third population and assumes that it is possible for parasites to
simultaneously be both competitive and cooperative. To enable versatility, a simpler
approach is required, such as that of the entropy measure, discussed below.

The entropy measure (Juillé & Pollack, 1998a, 1998b), later adapted as Pagie’s � func-
tion (Pagie & Hogeweg, 2000; Pagie & Mitchell, 2002), utilises domain-specific knowl-
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edge for the density classification task for cellular automata (CAs) to reduce disengage-
ment in that specific domain (figure 1, right). The aim of the density classification task
is to coevolve CA rules for classifying the density of an initial condition (IC)—a binary
string—as greater (or less) than 0:5 depending upon whether the IC contains more (or
less) than 50% 1s (see Mitchell, Crutchfield, & Hraber, 1994). Having an inherent advan-
tage, parasite initial conditions are known to become increasingly difficult to classify as
their density approaches 0.5. Thus, in order to encourage ICs to be challenging, without
becoming too difficult, engagement is maintained by utilising the � function, where�(IC) gives the fitness of an initial condition (Pagie & Mitchell, 2002).�(IC) = � 0 if lassi�ed orretlyjdensity(IC)� 12 j otherwise (1)

As parasite ICs are encouraged to be unclassifiable, it is likely that IC density will
approach 50%—the most difficult to classify. However, the � function counteracts this
by simultaneously rewarding ICs for deviating from 50% density. Thus, optimal ICs are
as easy as possible to classify whilst still being unclassifiable. The � function performs
well, but is domain-specific. Although Juillé and Pollack (1998a) state that they would
like to produce heuristics to make this technique domain-general, both the entropy
measure and the � function rely heavily upon domain-specific knowledge.

In summary, although disengagement is a recognised hindrance to coevolution,
few techniques have been proposed to counteract disengagement, and those that have
suffer from problems such as domain-specificity or lack of versatility. The only real
domain-general solution that has been proposed is the Phantom Parasite, however,
this has rarely been used. In the following section we introduce a novel technique for
combating coevolutionary disengagement that is domain general, simple to implement
and versatile.

3 Reduced Parasite Virulence

In this section we introduce a novel technique for combating disengagement, inspired
by the effects of parasite virulence upon the dynamics of naturally occurring host-
parasite systems.

3.1 Natural Virulence

Artificial coevolutionary systems are often described as analogous to natural predator-
prey or host-parasite systems. Adopting Janzen’s (1980) definitions, we can distin-
guish between true coevolutionary systems, which consist of two populations recip-
rocally adapting and counter-adapting to each other in a one-to-one relationship, and
diffuse coevolutionary systems, which consist of multiple populations, each involved
in a web of adaptations and counter-adaptations—a one-to-many relationship. In na-
ture, true coevolution is only rarely observed, typically in host-parasite systems, whilst
diffuse coevolution is frequently encountered in, for example, many predator-prey sit-
uations. Given that most coevolutionary algorithms employ only two populations, the
host-parasite analogy is probably closer —one population (the parasite) is typically
considered to pose problems for the other (the host) resulting in a series of adapta-
tions and counter-adaptations that may result in an escalating coevolutionary arms-
race (Dawkins & Krebs, 1979).

Coevolutionary algorithms typically differ from natural systems in the way that
they deal with parasite virulence (here defined as ‘parasite-mediated morbidity and
mortality in infected hosts’ Levin, 1996). In order to ensure survival long enough to
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Figure 2: Parasite fitness is a function of both parasite score, x, and virulence param-
eter, �, (see equation 2). For convenience, the labels Maximum, Moderate and Null
virulence have been used for � values 1:0, 0:75 and 0:5 respectively (left), however,
there exists a continuum of possible virulence curves, producing a surface in three di-
mensions (right).

reproduce, it is not always in the best interests of a natural parasite to be as virulent as
possible (Futuyma & Slatkin, 1983; Maynard Smith, 1989; Combes, 1991; Hood, 1997).
As a result, virulence varies dramatically between natural host-parasite systems (com-
pare, for instance, cholera and the common cold), and over time within a particular
system (e.g., the history of the myxoma virus in Australian rabbit populations, Fen-
ner & Ratcliffe, 1965). However, when parasites are used in artificial coevolution, they
are generally encoded to be maximally virulent—their fitness varies inversely with the
success of the hosts that they compete against.

The virulence of natural parasites strongly affects the coupling between host and
parasite populations. Extremely virulent parasites may ultimately push their hosts—
and consequently themselves—to extinction, resulting in a decoupling of the system.
As persistent high virulence can result in the disengagement of natural host-parasite
systems, we enquire as to whether reduced parasite virulence could reduce the ef-
fects of disengagement in artificial coevolutionary systems—might coevolutionary al-
gorithms benefit from treating parasites more naturally?

3.2 Reducing Virulence

Canonically, parasites receive fitness proportional to their ability to defeat the hosts
they compete against. In order to reduce parasite virulence it is necessary to change
this relationship. Throughout this paper we use the term score to refer to the ability of
a parasite to defeat the hosts it is pitted against. Parasite scores are normalised with
respect to the maximum score achieved that generation such that the best current par-
asite always achieves a score of 1. We define parasite fitness as a function of score, x,
and virulence, � (0:5 � � � 1:0), such that:f(x; �) = 2x� � x2�2 (2)

Thus, a parasite achieves optimum fitness by winning a proportion of contests
equal to a fraction � of that achieved by the best parasite. By varying �, parasites can be
encouraged to be more, or less, virulent (see figure 2). Although there is a continuum of
possible curves, throughout this paper, we use only three values of �. These are labelled
as Maximum virulence (� = 1:0, the equivalent of canonical parasites) where parasites
are encouraged to beat as many hosts as possible, Moderate virulence (� = 0:75) where
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parasites are encouraged to achieve a win-rate three-quarters that of the highest scoring
current parasite, and Null virulence (� = 0:5), where the fittest parasites achieve half
the win-rate of their highest-scoring conspecifics. Notice that a value of lambda lower
than 0.5 would always encourage cooperation between parasites and hosts, as they
strive to achieve more host wins than losses.

It is important to emphasise at this point that drawing inspiration from natural
systems does not make our approach more theoretically motivated than others, nor
does it imply that biological systems necessarily optimise. However, we find it useful
to visualise coevolutionary coupling in terms of virulence. As an alternative analogy,
reducing virulence can be thought of as maintaining a gradient for selection, forcing
parasites to evolve in difficulty at the same speed as the hosts by directly addressing the
inherently asymmetrical advantage they possess. For example, in order to maximise
pupils’ learning, teachers must teach material that is neither too difficult nor too easy.
Rather, teaching material should be presented on a smooth, continuous gradient of
difficulty, consistent with the current academic requirements of pupils (e.g., Sklar &
Pollack, 2000).

3.3 Experiment in a Minimal Domain: Counting Ones

In order to introduce the concept of coevolutionary disengagement, Watson and Pol-
lack (2001) used a minimal substrate to highlight its effects in the easily understandable
Counting Ones domain. In this section we utilise an adaptation of the Counting Ones
domain to demonstrate the effect that reducing virulence has upon coevolutionary dis-
engagement when there exists an asymmetrical advantage favouring one population.

As described above, it is often the case that one side of a coevolutionary contest has
an (at least temporary) advantage over the other in terms of the ease with which suc-
cessful counter-adaptations are discovered. In complex coevolutionary systems, asym-
metrical advantage is free to both fluctuate in amplitude, and even shift between popu-
lations. However, in order to aid analysis, the asymmetry introduced into the Counting
Ones domain is fixed throughout each run. Although fixed asymmetry may not be rep-
resentative of coevolutionary asymmetry in general, it allows us greater control whilst
behaving in a manner similar (for our purpose, at least) to more realistic asymmetry.

Two reproductively isolated populations of size 25 are coevolved. Individuals in
each population consist of binary strings containing 100 bits, with each bit initialised to
0 in generation 0. The aim of the Counting Ones problem is to evolve strings containing
as many ones as possible. Of course, in this toy example, as observers we can assess
the absolute fitness or objective quality of each individual by counting its 1-alleles.
This allows us, as experimenters, a useful way of measuring progress. However, the
coevolutionary algorithm does not make use of this absolute measure, only having
access to the relative fitness measure described below.

Members of one population are selected to play a set of pair-wise contests against
a random sample of 5 opponents from the competing population. During each con-
test, the individual with the genotype containing the greatest number of 1-alleles re-
ceives a fitness point. Each opponent receives half a fitness point for contests resulting
in a draw. Individuals in both populations reproduce asexually with parents chosen
through tournament selection (tournament size 5; winner reproduces). Offspring have
a small probability of mutation, m. Unless specified otherwise, the probability of mu-
tation at each locus, m, was 0:03.

An asymmetry was introduced by varying mutation bias Bpar (0 � Bpar � 1)
in favor of one of the two coevolving populations, henceforth classified as the parasite

8 Evolutionary Computation Volume x, Number x



Combating Coevolutionary Disengagement

to
ta

l n
um

be
r 

of
 1

s
fit

ne
ss

re
la

tiv
e

Figure 3: Results of typical coevolutionary runs in the Counting Ones domain with
parasite mutation bias 0:75, using the same random seed to initialise each run. With
Maximum virulence parasites (left) there are two periods of disengagement. The sec-
ond period may be prevented by switching to Moderate virulence at generation 250
(center). Populations remain engaged throughout the entire run when Moderate viru-
lence is utilised from the beginning (right).

population. Given mutation at a particular parasite locus, the substitution of a 1 or 0
occurs with probability Bpar and 1�Bpar, respectively. In contrast, the coevolving host
population substitutes a 0 or 1 with equal likelihood whenever mutation occurs. We thus
see that if Bpar > 0:5, there is a bias in favour of evolving parasites with more ones—an
asymmetry that favours the parasite population.

Two parasite mutation bias values and two parasite virulence levels were tested
over a series of runs; Bpar = 0:75; 0:9 and � = 0:75; 1:0. Unless otherwise stated, the
value of � remained constant throughout each run.

3.4 Results

Figures 3 and 4 each display three typical runs, using a parasite mutation bias, Bpar, of0:75 and 0:9 respectively. When employing maximally virulent parasites (figure 3, left)
the populations have a tendency to disengage. This can be observed between genera-
tions 150� 175 and again between 250� 500. During these periods of disengagement
the populations drift back to their relative baseline performance, equal to the mutation
bias, Bpar = 0:75 and Bhost = 0:5. Only once the populations re-engage by chance is
there an improvement in absolute fitness. Repeating the run with the same random
seed, the second period of disengagement depicted in figure 3 is prevented if Moder-
ate virulence is introduced at generation 250 (figure 3, center). Notice that the left and
center graphs are identical until generation 250—the point at which parasite virulence
is changed to Moderate. In contrast to Maximum virulence, when Moderate parasites
are used from the start (figure 3, right), the populations remain engaged throughout
the entire run, achieving a continuously high level of performance.

With a parasite mutation bias of 0:9, the increased asymmetry exacerbates the ef-
fects of reducing virulence. Typical of all runs, figure 4, left, shows that a bias of 0:9 is
too great for the host population to remain engaged with maximally virulent parasites
after the initial 50 generations. However, runs employing Moderate virulence maintain
population engagement despite the underlying asymmetry (figure 4, right). It should
be noted, however, that whilst Moderate virulence helps to prevent disengagement
from occurring, it does not encourage populations to re-engage. Switching to Moder-
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Figure 4: Results of typical coevolutionary runs in the Counting Ones domain with
parasite mutation bias 0:9, using the same random seed to initialise each run. With
Maximum virulence parasites (left) the populations disengage within 50 generations
and fail to re-engage. Switching to Moderate virulence during disengagement (center)
has no effect. Utilising Moderate virulence from the beginning of a run (i.e., before the
occurrence of disengagement) enables the populations to remain engaged throughout
the run (right).

ate virulence during coevolutionary disengagement has no affect (figure 4, center; see
also section 4.3).

These results are sensitive to variation in both population size and the number of
opponents played by each individual. As either parameter increases, the probability of
disengagement decreases due to the increased frequency of meeting varied opponents.
However, there remains a chance of disengagement even when sample and population
sizes become very large—the phenomenon does not disappear. The results observed in
this section are qualitatively robust to mutation rate (m = [0:005; 0:05℄) and tournament
size (tourney = [2; 15℄).
3.5 Discussion

The results displayed in figures 3 and 4 clearly demonstrate that reducing parasite viru-
lence in asymmetric coevolution can reduce the effects of disengagement. In particular,
the greater the inherent asymmetry, the greater the effect reducing virulence has upon
results. The asymmetry imposed in this model gave the biased parasite population a
great advantage over the coevolving host population. Purely by stochastic effects one
would expect individuals from parasite populations to contain more ones than those
from host populations. This is observed in figures 3 and 4. The difference in the speed
with which the two populations initially move through the genotype space (resulting
from the different mutation biases) ensures that disengagement occurs rapidly, and
once it has occurred the same mutation biases tend to restrict each population to a dif-
ferent portion of the genotype space. Mutation bias pushes each population towards a
particular ratio of ones to zeros, i.e., 0:5 for hosts and, dependent upon mutation bias,0:75 or 0:9 for the parasites. As a result, both populations will remain disengaged until
the gap between them is, at least temporarily, bridged by the occurrence of a very large
number of mutation events, e.g., figure 3, left, generation 500.

The first generation of parasite off-spring will on average contain many more ones
than that of the host population. However, under reduced virulence, any parasite that
beats all opponents is less fit than those parasites that lose a small percentage of con-
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tests. In this way, acceleration is decreased as the parasites resist their mutation bias.
Moderate virulence parasites appear to actively prevent disengagement. Using the con-
tinued selection pressure ensured through engagement, hosts evolve to a higher objec-
tive quality than would otherwise be possible. It should not be overlooked, however,
that Moderate parasites gain from this relationship too, as both populations evolve to
a greater standard than either would alone (figure 4, right). However, as parasite viru-
lence is decreased there is a tendency for coevolution to stagnate at a sub-optimal but
highly engaged fluid local optimum. In order to push populations to optimal solutions,
stronger selection pressure is required (see section 4.2, below).

3.6 Defining Disengagement

Full disengagement occurs when selection cannot distinguish between individuals ir-
respective of which sample of the current opponent population each individual plays.
When assessment is noisy, although individuals in disengaged populations will achieve
different scores, selection will not be able to distinguish between them on any system-
atic (i.e., non-random) grounds. In this situation, a coevolutionary algorithm has no
basis upon which to preferentially select certain genomes for reproduction. Coevolu-
tionary drift ensues, allowing deleterious mutations to accumulate in each population.
Typically, in the course of running a coevolutionary algorithm, episodes of full dis-
engagement will be difficult to distinguish from a much weaker kind of “contingent”
disengagement. In this case, although each member of a population achieves identi-
cal, or near-identical fitness scores, they could have achieved different scores had they
played alternative members of the current opponent population. We will use the term
disengagement to refer to the complete lack of selective discrimination that results.
The degree of disengagement, measured by how far (in terms of novel mutations) the
populations are away from re-coupling, allows us to determine the likelihood of a re-
engagement event.

Asymmetrical disengagement occurs when one population, P1, reaches the global op-
timum whilst the other, P2, drifts through sub-optimal space, resulting in asymmetric
selection pressure—whilst P2 drifts, sub-optimal mutants from P1 are selectively pun-
ished. An example of asymmetrical disengagement can be observed in the coevolution-
ary optimisation of sorting networks and test-lists. Once the sorting networks reach
optimality, the selection pressure upon test-lists disappears—as all lists are sortable,
each is equivalent. However, the sorting networks are under pressure to remain at
optimality as sub-optimal mutants may be punished by test-lists2.

As an alternative analogy, asymmetrical disengagement may be observed in the
coevolution of poker players. Players freely giving away information to opponents—
via either verbal or physical signals—are disadvantaged. As opponents gain from cor-
rectly interpreting the signals that they receive, the optimal strategy for a player is to
not signal at all. However, once a player stops signalling, all receiver strategies become
equally redundant—there is no benefit in attempting to read any cues. Asymmetri-
cal disengagement occurs when players reach the non-signalling optimum. Whilst re-
ceivers drift, any signaller deviation—i.e., starting to signal—may be punished.

2Asymmetrical disengagement may rapidly become full disengagement. In the case of the sorting net-
works, the drifting lists will likely become easier to sort in some absolute sense, reducing the pressure upon
networks to remain at optimality.
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Figure 5: The average of 50 runs (each 600 generations) of Counting Ones coevolution,
with mutation rate ranging between m = 0:005 (far left) and m = 0:050 (far right).

4 Reduced Virulence: Further Experiments in the Counting Ones Domain

In the previous section, we introduced a novel technique for maintaining engagement
before demonstrating its potential in the Counting Ones domain. In this section we pur-
sue further investigation in order to uncover exactly when reduced virulence is benefi-
cial, how the value of � should be chosen and how a reduction in virulence compares to
alternative engagement-maintenance algorithms. Throughout this section, unless oth-
erwise stated, we use a mutation bias for parasites Bpar = 0:75, and per locus mutation
rate m = 0:03. Once again, the sample size of opponents is 5 and the tournament size
for selection is 5 (winner always chosen to reproduce).

4.1 Comparison with Phantom Parasite

Of the engagement-maintenance techniques discussed in section 2.3, the only domain-
independent algorithm versatile enough to fit the two-population coevolutionary
model used for the Counting Ones domain is the Phantom Parasite (Rosin, 1997; fig-
ure 1, left). For this reason, we decided to compare reduced virulence with the Phan-
tom Parasite, observing the behaviour of both algorithms when subject to varying lev-
els of asymmetry and mutation. Maximum virulence (� = 1:0), Moderate virulence
(� = 0:75), Null virulence (� = 0:5) and the Phantom Parasite were each tested over
a series of 50 runs with parameter values Bpar = [0:5; 0:99℄ and m = [0:005; 0:050℄.
Figure 5 displays the mean number of disengaged generations occurring each run.

Each graph clearly demonstrates the relationship between asymmetry and disen-
gagement; irrespective of the engagement-maintenance technique, greater asymmetry
(parasite bias) produces more disengagement. In contrast, disengagement occurs less
frequently as virulence is reduced. Thus, reducing virulence is particularly beneficial
when asymmetry is high. As the mutation rate increases, the effects of asymmetry are
exacerbated. Given that the inherent asymmetrical advantage in favour of parasites is
a mutational bias, any increase in mutation rate directly increases asymmetry.

As we would expect, the Phantom Parasite performs better than canonical para-
sites (� = 1:0) across all levels of asymmetry and mutation. However, it can be observed
that the Phantom Parasite is sensitive to mutation rate—rather than exhibiting a mono-
tonic relationship between disengagement and mutation rate, disengagement increases
as m diverges from 0.020. The Phantom Parasite thus behaves less predictably than re-
duced virulence, perhaps due to the discontinuity in the gradient of the fitness curve
(see figure 1, left). In contrast, the Phantom Parasite is not as effective as Moderate or
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Null virulence in reducing disengagement when asymmetry is high. Again, this is as
we would expect. The Phantom Parasite is most like reduced virulence with � = N�1N
(thus sensitive to sample size N , here N = 5), with the exception that it is always best to
win all competitions. As such, the Phantom Parasite, here similar to � = 0:80, performs
better than Maximum but worse than Moderate and Null virulence.

Thus, in comparison with the Phantom Parasite, reduced virulence acts more pre-
dictably (is less sensitive to coevolutionary parameters), produces less disengagement
(assuming � has been chosen adequately) and is more flexible (i.e., � can be varied as
required).

4.2 Trade-off: Engagedness versus Optimality

The reduced virulence technique has been observed to limit the effects of disengage-
ment, however, the effect upon performance (in this case, the total number of 1-alleles
within the genome of the best host) has not been considered—as reducing virulence
directly interferes with the selection pressure upon parasites, it is likely that the perfor-
mance of the coevolutionary system will be affected in some way.

Figure 3 hints at an answer. When utilising Maximum virulence parasites (figure 3,
left), the system briefly reaches near optimal performance (generations 100-150) before
disengaging. However, when using Moderate virulence parasites (center and right),
maximum performance is sub-optimal, despite being much more stable. As Maximum
virulence parasites result in the strongest selection pressure upon hosts, we hypothesise
that—given that a coevolutionary system can maintain engagement for a sufficient pe-
riod of time—Maximum virulence will push a system to a greater level of performance
than that achieved by parasites with reduced virulence.

This hypothesis was tested by forcing populations to remain engaged throughout a
run. In a variant of the counting ones experiment, we assessed each member of a single
population against a random sample of opponents drawn from the same population.
In this way, to the extent that the population remains phenotypically diverse, it must
remain engaged with itself over evolutionary time.

For each virulence level, 30 runs were performed. After approximately 100 gen-
erations the coevolutionary system settled into an equilibrium at its highest level of
performance. With a 95% confidence limit, the equilibrium level of performance for
each virulence level was: Maximum 96� 2%, Moderate 89 � 2% and Null 75 � 2%. It
appears that, if engagement can be guaranteed, maximum performance increases with
virulence.

Thus, performance is maximised by setting virulence to be as great as possible,
without sacrificing engagement. The trade-off between engagement and performance
must be balanced by choosing the optimal level of virulence, �. However, once a system
has disengaged, it is not obvious which virulence level is optimal. This is discussed in
the following section.

4.3 Encouraging Re-engagement

The results in section 4.1 show that reducing virulence can limit the propensity for
asymmetric populations to disengage.

However, as yet we have gained no insight into the effects that parasite virulence
has upon populations that are already disengaged. Is it possible that certain virulence
functions increase population diversity and so encourage populations to re-engage? In
order to test this hypothesis, we experimented by forcing population disengagement
at the start of each run. This was achieved by initialising every individual in the host
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Figure 6: Random parasites with no heredity. Although most parasites are either “up-
per” or “lower” parasites, the likelihood is that some parasites will fall within the set
of strategies capable of discriminating between hosts. This produces a small selection
pressure encouraging the objective quality of the host population to fluctuate around
10% higher than that achieved by mutation bias alone.

population to a genotype consisting of zeros, whilst initialising individuals in the par-
asite population to have some integer, i > 0, number of ones in their genomes. In each
run, the number of generations until first engagement was recorded across a range of
values of i. Using the same initial conditions (i.e., same random seed), 30 runs were
performed using Maximum, Moderate and Null virulence parasites. Results demon-
strated absolutely no difference in the time to re-engagement—the time until popula-
tions first engage is independent of virulence: it is purely a stochastic process. The host
and parasite populations drift until an instance arises when at least one parasite does
not score maximally against at least one host. This is a re-engagement event.

Although the time to first engagement is independent of parasite virulence, the
behaviour of the system henceforth most certainly is not. Imagine a situation where
every parasite but one scores maximally and every host but one scores minimally. With
a Moderate or Null virulence scheme the non-maximal scoring parasite would be re-
warded with greater reproductive success. The same would be true of the non-minimal
scoring host. Effectively, the populations would be drawn together and engagement
would be encouraged. With a Maximum virulence scheme, however, the situation
would be very different. Rather than be rewarded with progeny, the non-maximum
scoring parasite would be unlikely to have any progeny at all whilst every other para-
site would produce marginally more offspring than before. Effectively, we would see
the populations bounce apart—disengagement is likely to re-occur the very next gener-
ation.

4.4 Random Parasites: Canonical Evolution

In this section, we consider how coevolution compares to canonical evolution in the
Counting Ones domain. Canonical evolution is implemented by evolving a population
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of solutions (hosts) against non-hereditary test-problems (parasites), randomly selected
at the beginning of each generation with a uniform distribution of densities (total num-
ber of 1s in the genome).

Figure 6 displays the output of one typical run. As can be seen, the host popula-
tion fluctuates in performance around 60% 1-alleles—10% higher than the population
would tend to by mutation alone—implying random parasites are exerting some selec-
tion pressure. Let us consider those parasites that fall above the host population—the
upper parasites. By definition, each competition between a host and upper parasite will
result in victory for the parasite. Conversely, consider those parasites falling below the
host population—the lower parasites. In this case the reverse will be true. Each compe-
tition will result in a win for the host. Thus, how strong or weak a host is in relation to
other hosts cannot be discerned on the basis of competitions with either upper or lower
parasites. The host population is disengaged from the upper and lower parasites.

It is likely, however, that some parasites will engage with the host population—
discriminating parasites. These individuals are able to discern, to some degree, the
relative strength of hosts, thus producing systematic selection pressure. However, due
to the relatively tight distribution of hosts—in terms of possible distributions, the host
population is relatively converged—only a small proportion of parasites are able to
discriminate. As such, Random non-hereditary parasites exert a constant, but relatively
weak, selection pressure—the system has a small degree of engagement.

The impetus behind coevolving test-problems with solutions derives from the de-
sire to automatically sample tests at the required difficulty, reducing the necessary num-
ber of tests and resulting in computational efficiency. The effectiveness of coevolution
in improving performance can be observed by comparing figure 3, right, and figure 6—
coevolving hosts fluctuate around 30% higher than those evolving with random para-
sites.

However, the occurrence of disengagement drastically changes this relationship.
Disengaged populations experience no selection pressure and thus drift to their respec-
tive base-line levels of performance. Fluctuating at around 50% 1-alleles, disengaged
hosts perform worse than hosts assessed through standard evolution. However waste-
ful random parasite populations are in terms of discriminatory ability per parasite, the
small but continuous selection pressure they exert is better than long periods with no
selection pressure at all. Although coevolution may have the ability to outperform stan-
dard evolution in certain domains, long episodes of disengagement can easily reverse
this advantage.

4.5 Conclusions from the Counting Ones Domain

Several conclusions can be drawn from the experiments in the Counting Ones domain,
however, we cannot assume that these are true in general. Firstly, there exists a trade-
off between reducing virulence to encourage engagement and increasing virulence to
improve performance. Secondly, disengagement can reduce the performance of coevo-
lutionary algorithms to below that of standard evolution, even if the domain is particu-
larly suited to a coevolutionary approach. Once disengagement has occurred, the level
of virulence is irrelevant—re-engagement occurs stochastically. Nevertheless, reducing
virulence increases the likelihood of prolonging re-engagement once it occurs. Finally,
reduced virulence outperforms its closest competitor, the Phantom Parasite.
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5 Reduced Virulence versus Diversity Maintenance

Disengagement occurs when intra-population fitness diversity reduces to zero. Mod-
erating virulence counter-acts disengagement by selecting for reproduction parasites
that are occasionally beaten. This preserves a selection gradient for hosts which, in
turn, maintains relative fitness diversity in both populations.

A tendency towards reduced population diversity (and the associated problem of
premature convergence) has long been a major concern of the evolutionary computa-
tion research community. As such, a suite of diversity maintenance techniques have
been proposed, including e.g., deterministic crowding (De Jong, 1975), explicit fitness
sharing (Goldberg & Richardson, 1987), competitive fitness sharing (Rosin, 1997; Rosin
& Belew, 1997), resource sharing (Juillé & Pollack, 1998b), and spatial embedding (e.g.,
Hillis, 1990). These approaches are attempts to maintain genetic diversity on the as-
sumption that a loss of diversity can be harmful to optimisation as it may restrict search
to local optima.

Resource (or competitive fitness) sharing maintains genetic diversity in a popu-
lation by encouraging niching—individuals are rewarded for being able to solve tests
that few others can. This idea has been extended to coevolutionary scenarios where
opponents are treated as a commodity or resource. Rather than gain a fitness point for
each victory against an opponent (simple fitness), one fitness point is shared among
the competitors that beat a particular individual. Thus, individuals are rewarded less
for how many opponents they beat and more for who they beat, rewarding phenotypic
diversity and maintaining genetic diversity.

Since disengagement is associated with a loss of diversity, could it be prevented by
simple diversity maintenance approaches? Perhaps reducing virulence is only prevent-
ing disengagement by mimicking these existing techniques? If so, it is largely superflu-
ous. In the next study we contrast reduced virulence with resource sharing in order to
explore whether they are effectively the same or different in some fundamental sense.

5.1 The Matching Game

In order to compare the influence of parasite (and host) resource sharing with that of
reduced parasite virulence, we need to choose an appropriate and simple problem do-
main. Here we develop a simple matching game, in which hosts are rewarded for
matching parasites, but parasites are punished. Games with this type of dynamic of-
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ten suffer from coevolutionary cycling, as hosts chase parasites through the strategy
space. Although desirable generalist strategies exist, populations are easily diverted
from them as they exploit the temporary idiosyncrasies of their opponents. Resource
sharing is one way of discouraging this type of short-termist behaviour. By maintain-
ing a diverse strategy-base in each population, the value of exploiting idiosyncrasies
is reduced, encouraging generalists. Unfortunately, an alternative mediocre stable sce-
nario is possible in which populations “speciate” such that they exhibit a number of
different sub-optimal strategies that together form a stable combination. In this sense,
the game is similar to any number of scenarios in which a generalist strategy is de-
sirable (from the perspective of the optimiser), but difficult to evolve in practise—e.g.,
scissors-paper-stone, immune systems, etc.

Two distinct populations of size 50 are coevolved—hosts and parasites. Individu-
als in each population consist of binary strings containing 100 bits, initialised randomly
in generation 0. Each generation, members of the host population are selected to play
a set of pair-wise contests against a random sample of 10 opponents from the para-
site population. The aim for hosts is to match as many parasite alleles as possible.
Antagonistically, parasites aim to mis-match host alleles. Both populations breed asex-
ually, with each individual having a small probability of unbiased mutation per locus,m = 0:03. Tournament selection was used (tournament size 5) with the winner of each
tournament always chosen to reproduce.

Not all loci are involved in this matching game. For parasites with many 1-alleles,
the matching game tends to involve only those loci at which the parasite possesses 1-
alleles. For parasites with many 0-alleles, the game tends to involve only those loci at
which the parasite possesses 0-alleles. Whether 1-allele loci or 0-allele loci are involved
is determined probabilistically. The probability, p, of a game involving matching 1-
alleles increases with the total number of 1-alleles, x, such thatp = 12�1 + tanh�x� 507 ��

(3)

Once the game has been decided, a host wins by matching alleles in at least T = 30
loci, else the parasite wins (see figure 7).

Having several antagonistic points of attraction, the Matching Game domain is
designed to exhibit interesting coevolutionary dynamics. Mutation bias attracts both
populations towards genotypes containing 50% 1-alleles and 50% 0-alleles. However,
given a host plays a parasite at the 1-allele (0-allele) half of the matching game, it is ad-
vantageous for the host to have as many 1s (or 0s) as possible. Thus, the host population
is attracted towards homogeneous genotypes (all 1s or all 0s). The direction of attrac-
tion for hosts (towards either 100% 1- or 0-alleles) depends upon the frequency with
which the parasite population plays either the 1-allele or 0-allele halves of the game.
This occurs with increasing frequency the further parasite genotypes vary from 50%
1s. Thus, parasites are also attracted away from 50% 1s, but in the opposite direction
to hosts. Parasites deviating too far from 50% 1s, however, become too predictable. In
general, the most difficult parasites to match are those having approximately 50% 1s.

This matching game resembles the density classification task for 1-D cellular au-
tomata, for which Juillé and Pollack (1998a, 1998b) and Pagie and Hogeweg (2000)
utilised a method of virulence reduction—the � function (refer to section 2.3). The den-
sity classification task for cellular automata is difficult—no rule set exists which can
correctly classify all ICs (Land & Belew, 1995)—as such, consistently coevolving two
populations towards continuous improvement is problematic (Paredis, 1997). Whilst

Evolutionary Computation Volume x, Number x 17



J. Cartlidge and S. Bullock

generations generations

D
is

eq
ui

lib
ri

um
D

is
eq

ui
lib

ri
um

L
in

ka
ge

 
L

in
ka

ge
 

in
 g

en
ot

yp
e

N
um

be
r 

of
 1

s
in

 g
en

ot
yp

e
N

um
be

r 
of

 1
s

Without Resource Sharing With Resource Sharing

(λ
=1

.0
)

M
ax

im
um

 V
ir

ul
en

ce
(λ

=0
.5

)
N

ul
l V

ir
ul

en
ce

Figure 8: Typical coevolution in the Matching Game domain. Maximum virulence
without resource sharing produces cycling as hosts repeatedly alternate strategy (top-
left). Maximum virulence with resource sharing leads to mediocre stability with half
the host population focusing upon each strategy (top-right). Null virulence without
resource sharing encourages hosts to become generalists, capable of either strategy
(bottom-left). Null virulence with resource sharing initially pushes hosts into two spe-
cialist niches, before funnelling the population into generalists (bottom-right).

coevolving CA rules, Juillé and Pollack found it necessary to “reduce the virulence” of
ICs in order to stop disengagement, despite the use of resource sharing. Here we tease
apart the contribution of two domain-general approaches to improving coevolutionary
optimisation, resource sharing and reduced parasite virulence.

Two � values were tested over a series of runs; � = 1:0 (Maximum) and � = 0:5
(Null). The value of � remained constant throughout each run. Runs were performed
under four conditions: Maximum virulence without resource sharing (i.e., standard co-
evolution); Maximum virulence with resource sharing; Null virulence without resource
sharing; both Null virulence and resource sharing. Under each condition, the degree
of niching or genotypic diversity within each population was calculated using a linkage
disequilibrium measure (e.g., Barton & Gale, 1993) particularly sensitive to the effects of
resource sharing.

5.2 Results

Figure 8 displays four typical graphs from the Matching Game domain, resulting from
the four test conditions. Both resource sharing and reduced parasite virulence have
clear effects on coevolutionary dynamics.

Under condition one—Maximum virulence with no resource sharing, i.e., typical
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coevolutionary optimisation (figure 8, top-left)—the system exhibits cycling. After the
initial generations, hosts may begin to recruit more 1-alleles in order to defeat parasites
playing the 1-allele half of the game. However, as parasites counter-adapt, by recruiting
more 0-alleles, they increase the likelihood of playing the 0-allele half of the game.
In response, hosts appear with a greater proportion of 0s, with the entire population
eventually switching strategy, in order to concentrate on winning the 0-allele half of the
game. Subsequently, parasites again regain the upper-hand by recruiting 1-alleles, and
so on. Under these conditions, the Matching Game is inherently easier for the parasite
population. Hosts find it difficult to be successful generalists—incapable of matching
parasites along both dimensions—and are encouraged to become brittle specialists. As a
result, maximally virulent parasites win the majority of competitions and occasionally
win all competitions, resulting in disengagement (indicated by crosses).

Under condition two—Maximum virulence with resource sharing (figure 8, top-
right)—the system reaches mediocre stability. At the beginning of the run, hosts im-
mediately niche into two groups, each specialising on one half of the matching game.
In order to be as unpredictable as possible, parasites tend towards 50% 1s—any devia-
tion from this distribution will be punished by one of the specialist host niches. At this
mediocre equilibrium the host population as a whole achieves roughly 50% victories
over parasites, but each individual host is extremely vulnerable to parasites playing
the opposite half of the game. In contrast, parasites tend to become maximally unpre-
dictable and play either half of the matching game with roughly equal probability.

Under condition three—Null virulence (� = 0:5) without resource sharing (figure
8, bottom-left)—the system stabilises with generalist hosts. After the initial genera-
tions, the host population settles into generalist strategies, capable of matching some
parasites whichever allele is triggered. Moderate virulence ensures that parasites are
rewarded when occasionally matched, thus allowing hosts to succeed without hav-
ing to concentrate on winning one half of the matching game. It should be noticed
that reducing virulence does not result in host-parasite collusion, which would tend
to result in homogeneous parasites—the simplest to match. Rather, parasites remain
challenging and unpredictable. Any deviation from 50% 1s is quickly punished by the
generalist hosts. As such, both hosts and parasites engage in competition in the most
difficult regions of space. This is equivalent to discovering the “play random” strat-
egy in scissors-paper-stone, or a generalist immune system capable of defeating a wide
range of intruders.

Under condition four—Null virulence (� = 0:5) with resource sharing (figure
8, bottom-right)—the system initially achieves mediocre stability, before encouraging
hosts to become generalists, strongly engaged with parasites. Early in the run, resource
sharing encourages the host population into two niches, each concentrating on one half
of the matching game. In this way, the system reaches mediocre stability with hosts and
parasites sharing victories. However, unlike condition two, mediocre stability does not
persist. Recall that Null virulence encourages parasites to achieve a win-rate half that
of the highest scoring parasite. This scheme lures parasites away from the mediocre
equilibrium at which they achieve a 50% win-rate. As parasites become more easily
matched, they reduce the pressure upon hosts to concentrate on one half of the match-
ing game. In this way hosts are steered towards a more generalist strategy of 50% 1s.
Hosts engage parasites in a difficult region of space, unattainable without a reduction
in parasite virulence.

Results clearly demonstrate that imposing reduced virulence on parasites alters
coevolutionary dynamics in a fundamentally different way to that achieved by resource
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sharing. Whilst resource sharing encourages within-population genetic (and phenotypic)
diversity, observable as niching in the host population, reduced virulence encourages
diversity in relative fitness (i.e., a between-population phenomenon).

5.3 Caring versus Sharing

Resource sharing encourages a population to diversify into separate niches, thus
reducing the likelihood of over-focusing. In this way, coevolutionary cycling may
also be avoided. However, niching may produce mediocre stability—or sub-optimal
equilibrium—whereby niches share success. In contrast, reducing virulence does not
encourage intra-population diversity and rather encourages engagement—the extent
to which coevolving populations interact.

Resource sharing adds a second layer of coupling between conspecifics. In addi-
tion to the standard competition that conspecifics experience—striving to beat more
opponents than each other—they are forced to share their success with one another.
This encourages individuals to beat different opponents—i.e., to be different from one
another. Niching results from this additional intra-population coupling.

In contrast, reducing parasite virulence increases inter-population coupling—it en-
sures that individuals in one population care about the success of individuals in the
other. In particular, through attempting to achieve moderate success, parasites care
about the variation in relative fitness achieved by their opponents—they are selected
to cause a range of scores in their opponents. However, this is not achieved through
niching, or genetic diversity per se. Rather, it is a direct consequence of the moderation
that maintains engagement.

It is true that increased genetic diversity has some relationship with coevolution-
ary engagement. If genetic diversity reduces to zero, populations will disengage (in-
dividuals will achieve equivalent scores). However, the converse is not true. Genetic
diversity does not ensure engagement. Both populations may feature a diverse array of
phenotypes, yet still suffer disengagement if each and every phenotype in one popula-
tion defeats each and every phenotype in the other. Indeed, periods of disengagement
often increase genetic diversity through random drift without necessarily increasing
engagement. While this coevolutionary coupling (engagedness) is affected by genetic
diversity (and noise, sampling error, etc.), it is not determined by it.

These considerations ensure that reducing virulence and resource sharing are com-
plementary, rather than exclusive, tools. It is not necessary to choose one over another.
Indeed, the greatest success may result from using diversity and engagement mainte-
nance techniques in conjunction (Juillé & Pollack, 1998a, 1998b).

6 Application in a Complex Domain

Throughout our investigations in the simple Counting Ones and Matching domains,
evidence has been gathered to support the hypothesis that reducing parasite viru-
lence can encourage coevolutionary engagement. However, it is not obvious that these
results generalise to other, more complex, domains. In order to address this issue,
reduced parasite virulence is applied to the coevolution of minimal length sorting
networks—a domain that has historically attracted interest from the coevolutionary
computing community. The aim is to design the shortest fixed network of comparisons
that can sort, into numerical order, any input list containing a specific number of ele-
ments. Comparisons exist in the form if a > b then swap, else do nothing.
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6.1 List Sorting Algorithms

Hillis’ (1990) seminal work proved by example how artificial coevolution can be ap-
plied to optimization problems. Hillis chose to design minimum comparison sorting
networks, a domain with a long and competitive history that has resulted in the cur-
rent record of sixty comparisons to sort sixteen elements, achieved by hand in 1960 by M.
W. Green (Knuth, 1973). Initially, using randomly generated inputs as test sets, Hillis
evolved the sorting networks on a static fitness landscape, resulting in a minimal net-
work of 64 comparisons. He found that two factors were preventing the evolution of
shorter networks. Firstly, the classical problem of local maxima made it difficult for the
system to progress once a reasonable solution had been found. Secondly, the test pro-
cess proved inefficient—after a few generations most of the inputs were fully sorted
by the vast majority of networks. To compensate for these problems, Hillis allowed
the test cases to coevolve with the sorting networks, giving them complimentary fit-
ness functions and thus producing an artificial host-parasite system. This allowed the
lists to evolve towards punishing the weaknesses of suboptimal networks, whilst dra-
matically reducing the number of redundant tests—those too easy to sort. Using this
method, Hillis discovered a 61-comparison network, a much better solution than pre-
viously evolved and only one comparison longer than the best known solution.

In order to encourage population genetic diversity Hillis utilised spatial embed-
ding. By evolving individuals upon a toroidal grid and allowing only local interactions,
spatial embedding supports the formation of multiple niches within each population.
As such, spatial embedding can be considered as an alternative approach to other nich-
ing techniques such as resource sharing or fitness sharing (Pagie & Hogeweg, 2000).
In conjunction with spatial embedding, Hillis used a very weak selection pressure—in
each generation the bottom 50% of individuals were culled, leaving the top half to breed
at random. Thus, to ensure maximum chance of reproduction, an individual need only
be ranked among the top half of the population. Such weak selection upon parasites
may encourage engagement in a similar fashion to reduced virulence. In combination,
spatial embedding and culling may have had a profound affect upon Hillis’ results.

Throughout the last decade, Hillis has inspired much research in the domain of
coevolving sorting networks (e.g., Juillé, 1995; Olsson, 1996; Rosin, 1997). Most impres-
sively, Juillé’s Evolving Non-Determinism (END) model improved upon a 25-year-old
record by discovering a minimal comparison network of length 45 for list inputs of 13
elements.

6.2 Setup

For historical reasons3 we have chosen to coevolve sorting networks for 13-element
input lists. Rather than attempt an assault on the minimal length record, however, we
aim to record the difference in performance that varying parasite virulence induces.

Our model is loosely based upon Hillis’ original scheme, however, as Hillis was
primarily interested in optimisation, several changes are implemented. Hillis utilised
very large populations (of the order of 106 individuals), sexual recombination, and
seeded initial populations with the butterfly4 (Rosin, 1997). As our primary aim is not to
find an optimal network, our model can be simplified by removing sexual recombina-
tion, reducing population sizes and initialising individuals at random (i.e., no butterfly
seeding). In order to test the effect of spatial embedding, runs are performed under
two conditions; with spatial embedding and without spatial embedding. Under both

3The shortest network currently known for this problem was discovered using a coevolutionary algo-
rithm (Juillé, 1995).
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conditions, hosts and parasites evolve on a toroidal grid, with exactly one host and one
parasite occupying each location and playing each other.

With Spatial Embedding For each grid location, g, a tournament is played between in-
dividuals in the Von Neumann neighbourhood (i.e., center square and 4 nearest neigh-
bours; North, East, South, West). The highest scoring host and parasite leave (perhaps
mutated) progeny in the center square, g, the following generation.

Without Spatial Embedding For each grid location, a host and a parasite are chosen
from two tournaments of 5 individuals each, randomly selected from across the grid—
highest scoring individual always chosen—each leave (perhaps mutated) progeny atg.

Host networks consist of 45 pairs of integers, with each pair representing list ele-
ments to be compared and, if necessary, swapped. Host mutation occurs at each loci
with probability 0.02, producing a random integer in the range 1 to 13. Parasites each
contain 40 unsorted 13-element lists. In order to preserve lists as permutations of the
integers 1 to 13, parasite mutation consists of swapping two elements of the list—this
occurs at each loci with probability 0.02. Both parasite and host population sizes are
identical, with each host attempting to sort exactly one parasite—that which shares the
same grid location. Without spatial embedding, therefore, parasites and hosts are es-
sentially paired at random each generation, however, with spatial embedding, specific
host and parasite lineages are more likely to meet repeatedly over multiple generations.
Both hosts and parasites are asexual.

A host is rewarded with fitness proportional to the number of parasite lists that
are completely sorted. Reciprocally, parasites are rewarded for possessing lists that
remain unsorted. Maximum, Moderate and Null virulence and the Phantom parasite
were each tested. In conjunction, Random parasites with no heredity were also tested
so as to compare the coevolutionary results of each virulence scheme against what is
effectively standard evolution. In order to collect accurate statistics, 30 runs were carried
out for each condition with population sizes ranging from 25 to 225. An advantage of
this problem domain is that an absolute, objective fitness measure of hosts is possible—
networks are given every possible input to sort5 with the percentage of correctly sorted
lists determining an absolute fitness performance. A host network that can sort 100%
of all possible inputs is an optimal network.

Under each condition, performance is compared by calculating the mean of the
absolute performance of the best individual discovered each run. It should be noted
that the coevolutionary system has no knowledge of this absolute fitness performance,
it is merely a way to record comparable results.

6.3 Results

Figure 9 displays the results of coevolving sorting networks both with and without
spatial embedding, under the 5 conditions labelled, Maximum, Moderate, Null, Phan-
tom and Random. Each graph shows the mean (over 30 runs) of the current best-so-far
network performance.

4The first 32 exchanges (the butterfly) in Green’s 60-comparison network are known to sort the vast ma-
jority of inputs. As such, Hillis seeded every initial individual with the butterfly in order to encourage
optimisation.

5The set of input lists can be calculated efficiently by using the zero-one principle: ‘a network can sort
every input list if and only if it can sort every binary input list’ (Knuth, 1973).
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Figure 9: Coevolution of minimal length sorting networks. As population size in-
creases, the number of generations graphed is reduced in order to depict approximately
equivalent lengths of units of computational time.

Without spatial embedding (figure 9, top), the Moderate and Null conditions sig-
nificantly outperform Maximum, Phantom and Random conditions, particularly when
population size is small. However, this performance difference reduces as popula-
tion size is increased, suggesting that—since disengagement becomes progressively
less likely as population sizes increase–reducing virulence improves performance by
diminishing the effects of disengagement (rather than for some other reason).

Maximum does not perform significantly better than Random until population
size reaches 100. Considering the weak selective pressure induced by Random par-
asites this is a poor result, again suggesting that Maximum virulence produces long
periods of disengagement. Indeed, upon scrutinising individual runs (not shown), this
can be observed.

When spatial embedding is implemented (figure 9, bottom), Moderate and Null
conditions significantly outperform Maximum, Phantom and Random conditions
across all population sizes. Once again, this can be understood in terms of dis-
engagement. Spatial embedding exacerbates the asymmetrical advantage favouring
parasites—as host and parasite lineages repeatedly meet over many generations, par-
asites are able to specialise against specific host weaknesses (over-fitting or over-
focusing). As spatial embedding allows only geographically local interactions, this ef-
fect is largely independent of population size. Whilst the Maximum condition ensures
that it is very difficult for hosts to engage, Moderate and Null encourage engagement
by stopping parasites from over-fitting host idiosyncrasies, thus resulting in improved
performance.

These results are suggestive, but are certainly not conclusive. Evolving minimum-
comparison sorting networks is a complex problem domain, making it difficult to anal-
yse. However, we would expect the list-sorting problem to exhibit the kind of asymme-
try that led to disengagement in the counting-ones problem. Being a challenging set of
lists is much easier, at least at the outset of coevolution, than being an accomplished list
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sorter. Could this asymmetry account for the relatively slow progress made by conven-
tional coevolution? If this type of initial asymmetry is a feature of many coevolutionary
optimization problems, reducing parasite virulence in some way could turn out to be
an approach with wide application.

6.4 Discussion: Neutrality

Throughout the paper we have described how coevolutionary disengagement results
in periods of evolutionary drift. Recently, within the evolutionary computation com-
munity, there has been some interest in the role of neutral drift in the behaviour of
evolutionary algorithms (Barnett, 1998). It has been suggested that neutral drift might
alleviate problems of premature convergence, and that proper appreciation of such drift
necessitates a radical reappraisal of our picture of how evolutionary algorithms work
(Barnett, 1998; Shipman, Shackleton, Ebner, & Watson, 2000; Smith, Husbands, Layzell,
& O’Shea, 2002). How does the drift that results from coevolutionary disengagement
relate to that experienced by populations percolating across “neutral networks”?

Within the evolutionary computation community, search-space neutrality has been
defined as the property of adjacent points in a search space exhibiting equivalent fitness
scores. A neutral network is a set of such points, where each member of the set neigh-
bours at least one other member. Clearly, these notions of “adjacency” and “neighbour-
hood” must be understood in terms of a search algorithm’s genetic operators—often
this will be a complicated matter. Moreover, the idea of “equivalent fitness” that lies at
the heart of the neutrality concept is perhaps not as straightforward as it might appear
(see, e.g., Bullock, 2002).

For certain real-world search spaces, such as the RNA folding map, it has been
demonstrated that the neutrality present is of a potentially useful kind (Huynen,
Stadler, & Fontana, 1996; Huynen, 1996; Fontana & Schuster, 1998a, 1998b). Neutral-
ity in this case stems from the fact that many RNA sequences (genotypes) fold into
the same secondary structure (phenotypes). This redundancy ensures that some mu-
tations may alter a genotype without altering the associated phenotype. It just so hap-
pens that neutral networks percolate the RNA space, ensuring that a large proportion
of possible phenotypes (RNA secondary structures) are accessible from an arbitrary
genotype via drift. Furthermore, RNA neutral networks enjoy a property of constant
innovation in that, over many generations, a neutral walk across such a network will
tend to encounter novel phenotypes at a constant rate comparable to that which would
be achieved by a random walk in the search space. These properties would seem to
ameliorate RNA evolution. Could similar properties be exploited by evolutionary op-
timization algorithms?

Notice that in this canonical example of neutral drift, the notion of “equivalent fit-
ness” is understood in terms of “equivalent phenotype”. Two adjacent RNA strands
that fold into the same structure are clearly part of a neutral network—they code for
phenotypes that are practically identical. However, since different phenotypes may
nevertheless achieve the same fitness score, it is quite possible that a single neutral net-
work may include many different phenotypes that are “selectively neutral” with respect
to one another. Although this complication is acknowledged within the neutrality lit-
erature, it is not given much attention.

In evolutionary (rather than coevolutionary) systems, if two phenotypes achieve
the same fitness score, one has reasonable grounds for classifying them as “equiva-
lent” in some important and enduring sense—selection (ignoring noise and sampling
error) will never discriminate between them. However, in a coevolutionary scenario,
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the fact that two phenotypes achieve equivalent fitness is less compelling—since fitness
intrinsically depends upon opponents faced, it is entirely possible that they may never
achieve equivalent fitness again.

In fact, where fitness is calculated relative to performance against a coevolving
population, the notion of neutral drift requires a significant overhaul. No longer can
one consider neutral networks to be a (fixed) property of a fitness landscape. Rather,
neutrality is now a relational property predicated on the current makeup of both pop-
ulations. Neutral networks are transient phenomena, merely reflecting the subjective
(and hence temporary) equivalences that may exist between the current conspecifics
with respect to their current coevolutionary opponents. As a result, whereas neutral drift
in an evolutionary system is likely to preserve the quality of evolved solutions by re-
stricting genotypic change such that phenotypes are equivalent in some “objective”
sense (e.g., they code for the very same physical structures), the same drift in a coevo-
lutionary system is not necessarily so constrained. In particular, the drift caused by
coevolutionary disengagement may involve genotypic changes that correspond to rad-
ical phenotypic change, just so long as these phenotypic changes are “undetected” or
“invisible” to the individuals that happen to make up the contemporary coevolutionary
partner population.

In many cases, given that a disengaged population will often be more likely to gen-
erate more disengaged offspring than offspring that re-engage with their coevolution-
ary partner population, this type of disengaged drift may resemble random movement
through the local genetic neighbourhood of the disengaged population. Given that, in
the period prior to disengagement, a population contains reasonably high-quality indi-
viduals, far from preserving phenotypic quality, this type of disengaged drift is likely
to be deleterious.

The exact character of any evolutionary drift is likely to be influenced by the na-
ture of the genetic encodings and genetic operators employed (Bullock, 1999, 2001).
Since these encodings and operators may be different for each population involved
in a coevolutionary algorithm there is no guarantee that disengaged drift will readily
lead to re-engagement. It is possible that encoding/operator biases ensure that drifting
populations tend to remain within portions of genotype space that effectively maintain
disengagement (as was observed, for example, in the Counting Ones game, section 3.4).
In general the issues briefly raised in this section suggest that our appreciation of neu-
trality and drift and how these phenomena apply to coevolutionary systems deserves
more careful consideration.

7 Future Work & Conclusions

Moderate parasite virulence has been implemented throughout this paper with fixed
parameter value �. However, it is likely that varying � over the course of a run will
be necessary in order to drive the system to achieve higher levels of performance (see
discussion, section 4.2). While virulence must remain low enough to maintain engage-
ment, it must simultaneously be high enough to encourage progress through imposing
strong enough selective pressure. As the system moves through genotype space, the
best “compromise” value for � is likely to vary.

For example, in more realistic domains than those employed here, problem asym-
metry will not tend to be constant over the course of evolution. Initially one population
may enjoy an advantage over the other in terms of the ease with which successful mu-
tant counter-adaptations can be generated. Subsequently, this asymmetry may wax and
wane, or even reverse—a population of near-optimal sorting algorithms may enjoy this
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type of advantage over their parasite competitors. Under these conditions, in order to
maintain an ideal balance between engagement and selective pressure, � values may
need to be constantly varied for each population.

The obvious way to address these concerns is to produce an algorithm that dy-
namically adapts virulence levels in response to the current state of the coevolutionary
system. Whilst a fully autonomous dynamically-adapting virulence algorithm may be
difficult to achieve, initial work on a manually-guided virulence algorithm is under-
way (Bullock, Cartlidge, & Thompson, 2002). This computational-steering approach
allows human controllers to vary the value(s) of � as required during the course of a
run. Hopefully, this educational tool will further improve our understanding of en-
gagement and its relationship with virulence.

The problem domains explored in this paper were chosen primarily for their
simplicity and the resulting ease of analysis. However, the No Free Lunch theorem
(Wolpert & Macready, 1995) tells us that we should expect the technique presented
here to work effectively only on a particular subset of problems. Which problems are
good candidates for the approach?

Firstly, the reduced virulence technique is likely to be of use in problems where a
reasonable (but not necessarily optimal) solution is required under strong constraints of
limited time or computational resources (e.g., dynamic load allocation across a telecom-
munications network) since reducing parasite virulence can accelerate rapid initial
progress towards high-quality solutions despite small population sizes.

Secondly, where the character of the problem is constantly changing and demands
constant evolutionary change in the solution population (such as maintaining a strong
immune response in a changing environment) reducing virulence is likely to improve
performance by encouraging and maintaining engagement.

Finally, for problem spaces where small genetic changes often give rise to quali-
tative changes at the phenotype level and consequent discontinuous jumps in fitness
(e.g., chess strategy) the reduced virulence technique may improve performance by
promoting re-engagement when it occurs rather than actively resisting it in the manner
of traditional coevolution.

Potentially, coevolutionary algorithms are very valuable and versatile tools, yet
there remain an ensemble of problems restricting their successful application. It is our
hope that through the introduction of the reduced virulence technique, this paper has
contributed to moving coevolutionary computation closer to realising its potential.
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evolving learners?. In Eiben, A. E., Bäck, T., Schoenauer, M., & Schwefel, H.-P. (Eds.), Par-
allel Problem Solving from Nature – PPSN V, Vol. 1498 of Lecture Notes in Computer Science,
pp. 540–549 Berlin. Springer.

Shipman, R., Shackleton, M., Ebner, M., & Watson, R. (2000). Neutral search spaces for artifi-
cial evolution: A lesson from life. In Bedau, M. A., McCaskill, J. S., Packard, N. H., &
Rasmussen, S. (Eds.), Artificial Life VII, pp. 162–169. MIT Press, Cambridge, MA.

Sklar, E., & Pollack, J. (2000). An evolutionary approach to guiding students in an educational
game. In Meyer, J.-A., Berthoz, A., Floreano, D., Roitblat, H. L., & Wilson, S. W. (Eds.),
From Animals to Animats 6: Proceedings of the Sixth International Conference on Simulation of
Adaptive Behavior, pp. 529–538. MIT Press.

Smith, T. M. C., Husbands, P., Layzell, P., & O’Shea, M. (2002). Fitness landscapes and evolvabil-
ity. Evolutionary Computation, 10(1), 1–34.

Spencer, L., Goodman, E. D., Wu, A., Langdon, W., H., Gen, M., Sen, S., Dorigo, M., Pezeshk,
S., Garzon, M. H., & Burke, E. (Eds.). (2001). GECCO 2001: Proceedings of the Genetic and
Evolutionary Computation Conference. Morgan Kaufmann.

van Valen, L. (1973). A new evolutionary law. Evolutionary Theory, 1, 1–30.

Watson, R. A., & Pollack, J. B. (2000). Symbiotic combination as an alternative to sexual recom-
bination in genetic algorithms. In Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton,
E., Merelo, J. J., & Schwefel, H. (Eds.), Parallel Problem Solving from Nature 2000, PPSN VI.
Springer-Verlag.

Watson, R. A., & Pollack, J. B. (2001). Coevolutionary dynamics in a minimal substrate. In Spencer
et al. (2001), pp. 702–709.

Wiegand, R. P., Liles, W. C., & De Jong, K. A. (2001). An empirical analysis of collaboration
methods in cooperative coevolutionary algorithms. In Spencer et al. (2001), pp. 1235–1245.

Wolpert, D. H., & Macready, W. G. (1995). No free lunch theorems for search. Tech. rep. SFI-TR-
95-02-010, santa fe institute.

30 Evolutionary Computation Volume x, Number x


