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The geometry of the solution set of

nonlinear optimal control problems

Hinke M. Osinga∗ and John Hauser†

November 28, 2005

Abstract

In an optimal control problem one seeks a time-varying input to a dy-
namical systems in order to stabilize a given target trajectory, such that a
particular cost function is minimized. That is, for any initial condition, one
tries to find a control that drives the point to this target trajectory in the
cheapest way. We consider the inverted pendulum on a moving cart as an
ideal example to investigate the solution structure of a nonlinear optimal
control problem. Since the dimension of the pendulum system is small, it is
possible to use illustrations that enhance the understanding of the geometry
of the solution set. We are interested in the value function, that is, the
optimal cost associated with each initial condition, as well as the control
input that achieves this optimum. We consider different representations of
the value function by including both globally and locally optimal solutions.
Via Pontryagin’s Maximum Principle, we can relate the optimal control in-
puts to trajectories on the smooth stable manifold of a Hamiltonian system.
By combining the results we can make some firm statments regarding the
existence and smoothness of the solution set.
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Figure 1: Sketch of the balanced planar pendulum on a moving cart.

1 Motivation

It is still an open question, in general, how to characterize the solution structure of
nonlinear optimal control problems. A simple illustration of why this is so hard can
be given with the problem of balancing an inverted (planar) pendulum on a moving
cart. The situation is sketched in Fig. 1, where the mass of the pendulum is m, the
mass of the cart M , the applied horizontal force u, and the offset angle from the
vertical up position is ϑ; the equations are given in (1) below. We assume that the
system is subject to a quadratic incremental cost function penalizing both the state
and control, which we wish to minimize. For certain intial conditions, it is not hard
to describe the optimal control action: if the pendulum is in a downswing only a
little bit off the vertical up position, we counteract this motion by moving the cart
under the center of gravity. Since the offset is small, that is, the penalty on the
state is small, and since this control action achieves its goal quickly, the total cost
will be optimal. However, if the pendulum is in the downswing quite far away from
the vertical up position, it will be cheaper to wait and watch the pendulum pass
the vertical down position. Only as it swings back, when the pendulum is in the
upswing, one “catches” it. Here, the cost increment of the longer duration of the
control action outweighs the size of the penalty incurred when counteracting the
downswing motion. Hence, somewhere in between there must be intial conditions
where the cost is the same whether we counteract the downswing, or whether
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we wait and control the upswing. However, this means that this simple optimal
control problem does not even have a uniquely defined minimizing control action
for arbitrary, and quite “normal” initial conditions! From a control theoretic point
of view this seems to indicate that there is no hope of getting smooth minizing
control functions, let alone proper feedback laws that depend smoothly on the
initial conditions. This paper shows that the situation is not so bad and that,
under mild assumptions, much of the regularity and smoothness is preserved.

The class of control problems for which our statements hold is introduced in
Section 2. We use the example of the inverted pendulum on a moving cart to
illustrate the nature of this class of problems. We wish to understand how the
optimal cost depends on the initial conditions, that is, whether the so-called value
function is continuous and what we can say about its smoothness.

There are two different approaches to optimal control problems, namely so-
called dynamic programming and variational methods; see Sontag [Sontag, 1998,
chapter 8]. We shall take a geometric point of view and discuss both methods in
the context of the inverted pendulum example. We generalize the results obtained
by Lukes [1969] who studied this problem locally in a neighborhood where the
optimal controls are unique.

This paper is organized as follows. In the next section we properly define the
problem of balancing the inverted pendulum on a moving cart and characterize
the class of problems for which our results hold. Section 3 gives a brief overview of
the results for so-called linear quadratic (LQ) optimal control problems. These are
the simplest optimal control problems and can be solved explicitly. The general
problem of nonlinear optimal control is then analyzed further. Section 4 explains
the dynamic programming methods and provides an overview of the theory in this
context. The same is then done for the variational approach in Section 5. Both
sections contain illustrations showing the geometric structure of the solutions for
the inverted pendulum. We compare the two methods in Section 6 and summarize
the results in Section 7.

2 Problem formulation

The example of the inverted pendulum on a moving cart is quite simple, and it
helps to understand the nature of nonlinear optimal control problems in general,
as it shows what should be expected as typical in the nonlinear case. Moreover,
the dimensions are such that it is relatively easy to visualize the behavior. This
example was also used in [Hauser and Osinga, 2001], [Jadbabaie et al., 2001], and
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[Jadbabaie et al., 1999].
The pendulum is planar and the cart moves under an applied horizontal force

u, constituting the control, in a direction that lies in the plane of motion of the
pendulum; see also Fig. 1. The cart has mass M , the pendulum has mass m and the
center of mass lies at distance l from the pivot (half the length of the pendulum).
The position of the pendulum is measured relative to the position of the cart as the
offset angle ϑ from the vertical up position. The equations of motion can be derived
from first principles, where we assume that there is no friction. Furthermore, we
ignore the cart and only consider the equations associated with the pendulum.
Writing x1 = ϑ for the angle, and x2 = ϑ̇ for the angular velocity, the equations
are







ẋ1 = x2

ẋ2 =
g

l
sin(x1) −

1
2
mr x2

2 sin(2x1) −
mr

ml
cos(x1) u

4
3
− mr cos2(x1)

,
(1)

where mr = m
m+M

is the mass ratio. We take the plane R
2 as the state space of

this system, rather than the cylinder R/(2πZ) × R, and the origin corresponds
to the vertical up position of the pendulum. Throughout this paper, we use the
parameter values m = 2 kg, M = 8 kg, l = 0.5 m, and g = 9.8 m/s2.

As mentioned in the introduction, we assume that the control of (1) incurs a
cost penalizing both the state and the control. That is, given an initial condition
x0 and an appropriate control action u(·) that balances the pendulum, the total
cost is

J∞(x0, u(·)) =

∫

∞

0

q(xu(t), u(t)) dt,

where xu(t) is the flow of the vector field (1) using the control u(·), with x(0) = x0.
Here, q : R

n × R
m → R is the incremental cost, which for the inverted pendulum

is taken as a pure quadratic

q(x, u) = q1x
2
1 + q2x

2
2 + ru2, (2)

where q1 = 0.1, q2 = 0.05, and r = 0.01 throughout.
Given an initial condition x0 = (x1(0), x2(0)), the goal is to get the pendu-

lum in the vertical-up position, (x1, x2) = (0, 0), while minimizing J∞(x0, ·). For
convenience, we forget about the fact that the cart could be moving with large
speed as we achieve this goal. Note that there is a symmetry in this prob-
lem: if (x1(t), x2(t), u(t)) is a solution, then so is (−x1(t),−x2(t),−u(t)) and
J∞(x0, u(·)) = J∞(−x0,−u(·)).
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2.1 General problem formulation

The results in this paper hold for more general optimal control problems. For
example, system (1) is affine in u, but this is not a necessary condition. Also,
the incremental cost need not be a pure quadratic. In general, we formulate the
problem as follows. We wish to stabilize the origin of the system

ẋ = f(x(t), u(t)), (3)

where f : R
n × R

m → R
n is C2 and f(0, 0) = 0. We assume linear controllability

at the origin, that is, the augmented matrix [B A B A2 B . . . An B], formed by
the matrices A := Dxf(0, 0) and B := Duf(0, 0), has full rank.

The control action incurs an incremental cost q : R
n × R

m → R that fully
penalizes both state and control. We assume that the incremental cost function is
C2 and quadratically positive definite; that is, there exists cq > 0 such that

q(x, u) ≥ cq

(

||x ||2 + ||u ||2
)

.

The total cost to be optimized is then

J∞(x0, u(·)) =

∫

∞

0

q(xu(t), u(t)) dt,

as before, but xu(t) is now the solution of (3) with x(0) = x0.
There is only one further assumption that we make for the results in this

paper, namely that there exists a C1 map u∗ = u∗(x, p) which globally minimises
the pre-Hamiltonian

K(x, p, u) := q(x, u) + pT f(x, u), (4)

where p ∈ R
n and pT means the transpose of p. Note that this assumption holds

trivially for affine functions f as in (1) and quadratic q.
We are interested in the value function

V : x0 7→ inf
u(·)

J∞(x0, u(·)), (5)

which relates the optimal cost with initial conditions x0. Obviously, this optimal
value function V is not defined for initial conditions x0 that cannot be driven to the
origin. Hence, the domain of V is that part of R

n which is stabilizable. Note that
V could be infinite. For the inverted pendulum, the domain of V is R

n, because
this system is completely stabilizable, and V is finite for all x0 ∈ R

n.
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It can be shown that the infimum in (5) for the general problem is, in fact, a
minimum, because the optimal cost is attained for all x in the domain of V . The
proof is similar to the proof in [Lee and Markus, 1967, Chapter 4] for Theorem 8
and uses direct methods of the calculus of variations; see [Buttazzo et al., 1998]
and [Dacorogna, 1989], and see also [Hauser and Osinga, 2001] for an outline of
the proof. The assumptions that we use may be weakened; see for example
[Hauser and Osinga, 2001] and [Cesari, 1983]. With the above assumptions the
arguments in Proposition 3.1 of [Bardi and Capuzzo-Dolcetta, 1997] can be used
to show that V is continuous on its domain.

3 The linear-quadratic problem

Let us first consider the linear-quadratic (LQ) problem; see also [Sontag, 1998].
Here, the state x ∈ R

n satisfies the linear equation

ẋ = Ax + Bu,

where (A, B) is controllable, and the incremental cost is written as

q(x, u) =
1

2

(

xT Qx + uTRu
)

,

with Q, R > 0. If one linearizes the general problem given in Section 2.1, then
A := Dxf(0, 0), B := Duf(0, 0), Q := D2

xq(0, 0) and R := D2
uq(0, 0).

The minimal cost for the LQ problem is then given by the optimal value func-
tion

VL(x) :=
1

2
xT Px, (6)

where P is the (unique) positive definite matrix that satisfies the algebraic Riccati
equation

PBR−1BT P − PA − AT P − Q = 0. (7)

The optimal control that achieves this cost is unique and defined in feedback form
by

u∗ = −R−1BT Px.

Hence, the LQ problem has a globally well-defined unique solution and the optimal
value function is smooth everywhere.
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In the example of the inverted pendulum, the linearized system is

ẋ =

[

0 1
g

l( 4

3
−mr)

0

]

x +

[

0
mr

ml( 4

3
−mr)

]

u,

with matrices

Q =

[

2q1 0
0 2q2

]

and R = [2r]

for the incremental cost fuction. The solution of the algebraic Riccati equation (7)
is then, approximately

P ≈

[

92.5409 22.2191
22.2191 5.3482

]

.

The level sets of the associated value function VL are ellipses with axes aligned
along the eigendirections. The ratio between the axes of each ellipse is determined
by the ratio of the eigenvalues of P . Since for the inverted pendulum this ratio is
of the order 104, the ellipses are extremely elongated.

A visualization of the level sets is shown in Figure 2 for the range [−1.5, 1.5]×
[−1.5, 1.5] in the (x1, x2)-plane. Low cost is blue, high cost is red, and the colors
change linearly with the square root of the value function. The level sets are only
shown up to VL = 10.89.

4 Dynamic programming:

the Hamilton-Jacobi-Bellman equation

When considering a nonlinear optimal control problem, one has to resort to numer-
ical techniques. As mentioned in the introduction, there are two main approaches
and the method of dynamic programming is the most straightforward to imple-
ment. The essence of dynamic programming is to treat the global problem as a
concatenation of local problems. One first finds the optimal control, and thus the
minimal cost, for initial conditions in a small neighborhood of the origin. In fact,
the solution of the LQ problem can be used as an approximation that is valid on a
small enough neighborhood. These local results are then used to find the minimal
cost on a larger neighborhood, which can be repeated to enlarge the neighborhood
further and further.
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0

3.32

−1.5 0 x1 1.5

0

x2

1.5

Figure 2: The value function of the linearized system for x1, x2 ∈ [−1.5, 1.5]. Each
point is colored in accordance with the color bar on the left indicating the associated
optimal cost. No cost has been assigned to initial conditions with minimal cost
higher than 10.89.

More precisely, suppose V is known on a neighborhood Ω of the origin. Then
we can enlarge the domain of V by considering all points x0 that can reach Ω after
a finite time T using a (locally) optimal control strategy. This is known as the
finite-horizon approach; see [Jadbabaie et al., 2001] and [Jadbabaie et al., 1999].
Just outside Ω the value function satisfies

V (x0) = J(T, x0) := min
u(·)

∫ T

0

q(xu(t), u(t)) dt + V (xu(T )).

Assuming differentiability of J(T, x0), we can formulate this as a partial differential
equation, the so-called Hamilton-Jacobi-Bellman (HJB) equation







∂

∂t
J(t, x) = −min

u(·)

[

q(x, u) +
∂

∂x
J(t, x) f(x(t), u(t))

]

,

J(T, x) = V (x).

(8)

We refer to [Sontag, 1998] as a general reference and [Hauser and Osinga, 2001]
for details on the proofs.
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x2

−10

10

x1−3π −π π 3π

0

3.32

Figure 3: The value function of the inverted pendulum for (x1, x2) ∈ [−11, 11] ×
[−11, 11] with minimal cost no higher than 10.89. Each point is colored in accord-
ance with the color bar on the left indicating the associated optimal cost. See also
the animation in the multimedia supplement [Osinga and Hauser, 2005].

Figure 3 shows how the value function V depends on the initial conditions; see
also the associated animation in [Osinga and Hauser, 2005]. Each initial condition
x0 ∈ [−11, 11] × [−11, 11] ⊂ R

2 is colored according to the value of V at x0. Blue
corresponds to low cost and red to high cost. The colors are assigned proportional
to the square root of the value function up to a maximum of 10.89. Initial condi-
tions with optimal costs higher than that are left blank. The picture clearly shows
how the blue lowest cost corresponds to initial conditions where the pendulum has
an offset but is on its way up. In contrast, if the pendulum is moving down, already
a small deviation leads to a dramatic increase of the cost. This figure should be
compared with the LQ solution of the linearized problem in Figure 2. Note that
Figure 2 displays only a small square compared to Figure 3.

The similarity of Figure 2 and the corresponding part of Figure 3 is not a
coincidence. Indeed, from a dynamical systems point of view, one would expect
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Figure 4: The graph of the value function V for the inverted pendulum. The
color coding is as in Figure 3. The view is along the negative V -axis; see also the
animation in the multimedia supplement [Osinga and Hauser, 2005].

that near the origin the value function of the nonlinear problem is tangent to
the value function of the associated linear problem, and that smoothness and
uniqueness of solutions to the linear problem carry over, at least locally, to the
nonlinear problem. Lukes already showed in 1969 that this is true [Lukes, 1969].

We get a better idea of how V depends on x = (x1, x2) by considering its graph
in R

3, which is depicted in Figure 4 with a view along the negative V -axis. This
figure shows that V is continuous, but lacks differentiability for certain values of x;
in particular, this can be seen in the associated animation in the multimedia sup-
plement [Osinga and Hauser, 2005]. In fact, we show in [Hauser and Osinga, 2001]
that, for our general class of systems, V is continuous and finite everywhere on its
domain.

Even though we cannot think of the graph of V as a manifold, there is more
to say about the local smoothness of this object. We computed V using the finite-
horizon technique in combination with finding the direction of “steepest descent”
to achieve local optimality. Effectively, successive enlargements of the domain on
which V is known are determined by taking second-order approximations of the
HJB equation (8) with infinitesimally small timestep T . These locally optimal
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(a) (b)

Figure 5: The (locally) optimal level sets of the multi-valued function asso-
ciated with V . The color coding is as in Figure 3. (a) Level sets up to
4.84; these are all both locally and globally optimal. (b) Level sets up to
6.8644; the onset of self-intersections. The animations in the multimedia supple-
ment [Osinga and Hauser, 2005] show these objects from different points of view.

solutions can be found directly from solving an algebraic Riccati equation. Our
technique not only gives the globally optimal solutions, but control strategies may
be chosen that are only locally optimal. We devised a continuation scheme fol-
lowing V , or rather a more complicated multi-valued function which includes the
suboptimal solutions.

The isoclines of this multi-valued object are connected closed curves for all
values of the cost. Figure 5 shows the first couple of isoclines. Initially, roughly
up to V = 6, each isocline consists only of globally optimal solutions. The level
sets are topological circles and the surface is topologically a paraboloid; see also
Figure 6(a). As we consider higher level sets the topological circles curl so much
that at some point an isocline reconnects with itself forming topologically a “triple
figure-8” shape (the fact that there is a double tangency is due to the symmetry
in the system). For even higher values the isoclines self-intersect. Only the outer
contours are globally optimal solutions and additional suboptimal solutions form
the closed connected self-intersecting curve. Figure 6 shows the deformation from
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(a) (b) (c)

Figure 6: Three isoclines of the multi-valued function associated with V . Isoclines
deform from a topological circle containing only globally optimal solutions at level
3.24 (a), via a “triple figure-8” shape approximately at 6.5536 (b), into a self-
intersecting set at level 6.8644 including locally optimal solutions as well.

a topological circle at level 3.24, through a (double) tangency approximately at
6.5536, into a self-intersecting isocline at 6.8644.

The points of self-intersection form two smooth curves that act as ridges along
which the value function V is not differentiable. Locally, away from these ridges,
the value function is differentiable and even in a neighborhood of a ridge, we can
think of the value function as switching between two differentiable functions. Ex-
cept for those two curves, V is differentiable everywhere. Further along, for higher
values of V , level sets reconnect and subsequently self-intersect again, creating
more intersection points. Certainly in the area we explored (including filling up
the holes around the hanging down solution ±π), these additional intersection
points are always of a suboptimal nature and do not affect the differentiability of
V . We have yet to understand how and where the curves of intersection points
end as the holes around ±π close.

The complete suboptimal solution set up to level 10.89 is shown in Figure 7.
When viewed along the negative V -axis, the graph of this multi-valued function
is identical to that in Figure 4. Each self-intersecting level set still has only 4
intersections, but as an object things look much more complicated. Nevertheless,
from a geometrical point of view, one can imagine that this object must be smooth
when lifted into some higher-dimensional space. This will be explained in more
detail in the next section.
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Figure 7: The suboptimal level sets of the multi-valued function associated with V
up to 10.89. The color coding is as in Figure 3. When viewed along the negative V -
axis this object is the same as in Figure 4; see also the animation in the multimedia
supplement [Osinga and Hauser, 2005].

5 Variational methods:

Pontryagin’s Minimum Principle

The second approach to solving optimal control problems is via the use of Lagrange
multipliers. Pontryagin’s Minimum Principle is, in effect, a clever interpretation of
the Euler-Lagrange equation in variational calculus; see [Pontryagin et al., 1962],
[Sussmann and Willems, 1997] and [Sussmann, 1998]. Namely, we seek to minim-
ize the functional

∫

∞

0

q(x(t), u(t)) dt

over pairs (x(t), u(t)) that satisfy ẋ = f(x, u). The main idea is to introduce a
time-dependent Lagrange multiplier p = p(t) and consider the pre-Hamiltonian (4)

K(x, p, u) = q(x, u) + pT f(x, u).

Recall that we assumed the existence of a C1 map u∗ = u∗(x, p) that globally
minimizes K(x, p, u). At this critical point u = u∗ we obtain the Hamiltonian

H(x, p) := K(x, p, u∗(x, p)) = q(x, u∗(x, p)) + pT f(x, u∗(x, p)) (9)
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that is related to the original problem and the associated Euler-Lagrange equation
via a Legendre transformation; see [Sontag, 1998], [Sussmann and Willems, 1997]
and [Sussmann, 1998]. Pontryagin’s Minimum Principle says that if the pair
(x0, u

∗(·)) is optimal, then the optimal trajectory pair (xu∗(·), u∗(·)) corresponds
to a trajectory (x∗(·), p∗(·)) via u∗(t) = u∗(x∗(t), p∗(t)) along which H(x, p) is
constant. Hence, (x∗(·), p∗(·)) is a solution to the Hamiltonian system











ẋ =
∂

∂p
H(x, p) = f(x, u∗),

ṗ = −
∂

∂x
H(x, p).

Furthermore, (x∗(·), p∗(·)) lies on the stable manifold W s(0, 0) of the origin, since
(x∗(t), p∗(t)) → (0, 0) as t → ∞; see [Van der Schaft, 2000, chapter 8].

Van der Schaft [2000] showed that the origin of this Hamiltonian system is a
saddle with no eigenvalues on the imaginary axis. The stable eigenspace Es(0, 0)
is spanned by

Es(0, 0) = span

[

In

2P

]

,

where P is the solution of the algebraic Riccati equation (7). For the linearized
problem, this means that the value function VL is implicitly present in the Hamilto-
nian system as the Lagrangian of the stable manifold, that is, trajectories on the
stable manifold satisfy

H(x, p) = H
(

x,∇V T
L (x)

)

= 0.

Locally, we can immediately see that a Lagrangian V exists for the nonlinear prob-
lem as well. Namely, we know from the Stable Manifold Theorem that W s(0, 0)
is tangent to Es(0, 0); see [Palis and de Melo, 1982]. Van der Schaft uses this to
generalize the existence, uniqueness, and smoothness results to the nonlinear case.
His results hold for the local stable manifold W s

loc(0, 0), which is Lagrangian and
associated with a sufficiently small neighborhood of the origin in the original state
space of the problem.

The result can be interpreted as follows. For a given initial condition x = x0,
one obtains the optimal control and associated optimal cost by finding p := p0 such
that the point (x0, p0) lies on W s(0, 0). Locally near the origin, where W s(0, 0)
can be viewed as the graph of a function x 7→ p = ∇V T (x), the choice for p0 is
unique. When W s(0, 0) starts to fold back over itself with respect to the x-space,
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there are more than one possible choice for p0. However, for most choices, the
associated optimal cost is only locally optimal and the associated solution is not
the required globally minimal solution. In [Hauser and Osinga, 2001] it is shown
that the projection of W s(0, 0) onto the x-space entirely covers the stabilizable
domain for nonlinear control problems of the class described in Section 2.1. This
means that all initial conditions x = x0 that can be driven to the origin have at
least one associated value p0 for p such that (x0, p0) ∈ W s(0, 0).

For the example of the balanced pendulum we obtain a four-dimensional asso-
ciated Hamiltonian system. Since the (original) vector field is affine in the control
u, we can explicitly write down u∗(x, p) that minimizes the pre-Hamiltionian:

u∗

([

x1

x2

]

,

[

p1

p2

])

= −
1

r1

[

0
mr

m l
cos(x1)

4
3
− mr cos2(x1)

] [

p1

p2

]

.

The Hamiltonian now follows immediately from Eq. (9).
Computing a two-dimensional global invariant manifold such as W s(0, 0) is

a serious challenge; see [Krauskopf et al., 2005] for an overview of recently de-
veloped techniques. We computed (a first part of) W s(0, 0) with the algorithm
described in [Krauskopf and Osinga, 2003]. In these computations, we focus solely
on the dynamical system defined by the Hamiltonian (9), and ignore the associ-
ated optimal control problem, including the value of the cost involved in (locally)
optimally controlling the system. The algorithm computes geodesic level sets of
points that lie at the same geodesic distance to the origin. This means that
the manifold is growing uniformly in all (geodesic) radial directions; we refer to
[Krauskopf and Osinga, 2003] for more details. Projections of W s(0, 0) are shown
in Figure 8. The alternating dark and light blue bands indicate the location of
the computed geodesic level sets. Animations of how the manifold is grown can
be found in the multimedia supplement [Osinga and Hauser, 2005].

Figure 8(a) shows the vertical projection of W s(0, 0) onto the (x1, x2)-plane
such that it can be compared with Figure 3. For convenience Figure 3 is reproduced
here as Figure 8(b). Note that W s(0, 0) is an unbounded manifold, even though
it seems to be bounded in some of the x1- and x2-directions in a neighborhood
of the origin. In this neighborhood, the manifold stretches mainly in the p1- and
p2-directions. A better impression of the manifold is given in Figures 8(c)-(d),
where the manifold is projected onto a three-dimensional space; Figure 8(c) shows
the projection {p2 = 0} and Figure 8(d) the projection {p1 = 0}. In each figure
the manifold is only rotated away slightly from its position in Figure 8(a). A sense
of depth is also given by considering the rings near the origin, which are almost
perfect circles in R

4 because the manifold is very flat initially. The distortion of
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(a) (b)

(c) (d)

Figure 8: The stable manifold W s(0) associated with the Hamiltonian (9) (panel
a) is directly related to the value function V (panel b) as can be seen in the projec-
tion onto the (x1, x2)-plane. This manifold lives in a four-dimensional space and
three-dimensional projections are shown as rotations in (x1, x2, p1)-space (panel c)
and (x1, x2, p2)-space (panel d); see also the animation in the multimedia supple-
ment [Osinga and Hauser, 2005].
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these circles in Figures 8(c)-(d) is due to the viewpoint of the projections. The
animations in the multimedia supplement [Osinga and Hauser, 2005] give a better
idea of what W s(0, 0) looks like in four-dimensional space.

6 Singularities of the value function

While the approach using dynamic programming directly leads to the value func-
tion V , this function is intrinsically present in the Hamiltonian formulation. As
mentioned in the previous section, the local stable manifold W s

loc(0, 0) is Lag-
rangian and can be viewed as the graph of a function x 7→ p = ∇V T (x). We can
extend the definition of V outside this neighborhood of the origin if we allow V to
be a multi-valued function. That is, by including suboptimal solutions V is defined
everywhere on W s(0, 0). Moreover, as a function of (x, p), the value function V
is C1 everywhere, because the cost function q(x, u) is C2 and the (sub)optimal
solutions follow a C2 path along W s(0, 0).

Effectively, we lift the graph (x, V (x)) into a higher-dimensional space such
that it becomes a smooth manifold. That is, we enlarge the domain such that
the multi-valued function x 7→ V (x) becomes a well-defined single-valued function
(x, p) 7→ V (x, p) that is equal to (sub)optimal values of the total cost for all points
(x, p) ∈ W s(0, 0). Since W s(0, 0) is as smooth as the vector field, this subset of
V (x, p) forms a C1 manifold.

After the transformation into (x, p)-space all level sets of V are smooth topo-
logical circles, not only the ones up to V = 6 where V is a well-defined function.
It is not easy to visualize this, since the transformed level sets should be viewed
in R

4. However, an impression is given in Figure 9. Figures 9(a) and (b) show the
level sets for V = 3.24 and V = 6.8644 in R

2 as in Figures 6(a) and (c). Their
transformations into R

4 are shown in Figure 9(c) together with W s(0, 0). The
chosen view point involves all four directions in R

4 and the self-intersections of the
level set V = 6.8644 in this lift are now due to projection. Note that the level sets
are computed using dynamic programming combined with continuation techniques
to pick up the suboptimal solutions. The stable manifold W s(0, 0) is computed
using the algorithm of [Krauskopf and Osinga, 2003]. Neither method preserves
the symplectic structure that ensures the Hamiltonian (9) remains constant (at
zero). This slight numerical discrepancy is the likely reason why the level sets do
not lie exactly on the surface of W s(0, 0). However, the numerical approximation
of W s(0, 0) does show well that the value function is smooth in this Hamiltonian
setting.
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(a) (b)

(c)

Figure 9: Two (locally) optimal level sets of the multi-valued function V , one for
V = 3.24 (a) and one for V = 6.8644 (b) in R

2 and their transformations into
(x, p)-space together with the stable manifold W s(0, 0) (c).
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7 Summary of results

Dynamic programming is often viewed as the approach leading to an optimal con-
trol strategy in feedback form. In order to obtain such solutions, many restrictions
need to be imposed on the system and the theory only provides sufficient condi-
tions for optimality of solutions. On the other hand, variational methods provide
solutions from which the optimal control strategy is not easily extracted. This
theory needs far fewer restrictions and necessary conditions are obtained.

Using Pontryagin’s Minimum Principle, we reformulated the optimal control
problem into the problem of finding the stable manifold of the origin in a Hamilto-
nian system. The necessary conditions that lead to the stable manifold W s(0, 0) of
the Hamiltonian system are sufficient to show global existence of the value function
V on the stabilizable domain. Note that global existence of V is often imposed as
a condition; see for example [Van der Schaft, 2000]. The existence of V , however,
directly follows from the fact that W s(0, 0), when projected onto the x-space, cov-
ers the stabilizable domain; compare with [Day, 1998] where global existence of V
is shown by imposing the condition that the projection of W s(0, 0) onto the state
space covers the stabilizable domain.

The solutions of the variational method also lead to an optimal control strategy
in feedback form via the transformation back to the control setting. All extremal
solution pairs (x0, u

∗(·)) directly transform to trajectories on W s(0, 0) and we have
the following diagram:

Hamiltonian
formulation

(x, p)-space

Dynamic
programming

(x, u)-space

lift

6

unique - smooth W s(0, 0)

?

project

non-unique- feedback (x, t) 7→ u∗

As illustrated with the simple example of balancing a pendulum on a moving cart,
the two approaches go hand-in-hand for the general class of systems introduced in
Section 2.1.
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