
                          Okasha, S. (2011). Theory choice and social choice: Kuhn versus Arrow.
Mind, 120(477), 83 - 115. 10.1093/mind/fzr010

Link to published version (if available):
10.1093/mind/fzr010

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29026057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1093/mind/fzr010
http://research-information.bristol.ac.uk/en/publications/theory-choice-and-social-choice-kuhn-versus-arrow(0b35f642-40d7-404f-90ce-8c2354b5b8db).html
http://research-information.bristol.ac.uk/en/publications/theory-choice-and-social-choice-kuhn-versus-arrow(0b35f642-40d7-404f-90ce-8c2354b5b8db).html


 1 

Theory Choice and Social Choice: Kuhn versus Arrow 

SAMIR OKASHA 

 

Abstract 

Kuhn’s famous thesis that there is ‘no unique algorithm’ for choosing between rival 

scientific theories is analysed using the machinery of social choice theory. It is shown 

that the problem of theory choice as posed by Kuhn is formally identical to a standard 

social choice problem. This suggests that analogues of well-known results from the 

social choice literature, such as Arrow’s impossibility theorem, may apply to theory 

choice. If an analogue of Arrow’s theorem does hold for theory choice this would 

refute Kuhn’s thesis, but it would also pose a threat to the rationality of science, a 

threat that is if anything more worrying than that posed by Kuhn. Various possible 

‘escape routes’ from Arrow’s impossibility result are examined, in particular Amartya 

Sen’s idea of ‘enriching the informational basis’. It is shown that Sen’s idea can be 

applied to the problem of theory choice in science. This in turn sheds light on two 

well-known approaches to inductive inference in philosophy of science: Bayesianism 

and statistical model selection. 

 

1. Introduction 

In the Postscript to The Structure of Scientific Revolutions, Thomas Kuhn famously 

argued that there is ‘no neutral algorithm for theory choice’ in science. Kuhn allowed 

that scientists might have good reasons for choosing one theory over its rivals, citing 

‘accuracy, simplicity, fruitfulness and so on’ as examples of such reasons, but he 

insisted that they fall short of providing an algorithm (Kuhn 1969 p. 199). Even if two 

scientists agree on the features that a good theory should have, they will not 

necessarily be led to make the same choices, Kuhn argued, for they may weight the 

features differently. For example, the two scientists might agree that accuracy and 

simplicity are both important theoretical virtues, but disagree about their relative 

importance, and thus be led to choose different theories. Neither can be called 

irrational, Kuhn insisted, and neither was necessarily acting unscientifically.  

 The idea that there is no algorithm for theory choice met with a favourable 

response from Kuhn’s critics, even among those unsympathetic to other aspects of his 
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philosophy, and seems to be regarded as fairly uncontroversial.F

1
F In part, this is 

probably because Kuhn’s ‘no algorithm’ claim tallies well with the widely-held view 

that Carnap-style inductive logic is an impossible dream. Carnap’s aim was precisely 

to devise an algorithm for inductive reasoning—a rule that, given a set of hypotheses 

and a body of data as input, would tell us which hypothesis is best confirmed by the 

data. The perceived failure of Carnap’s project, which Kuhn himself alluded to in a 

later essayF

2
F, lent credence to his claim that there is no algorithm for theory choice. 

 My aim in this paper is to explore Kuhn’s ‘no algorithm’ thesis from a new 

angle, by drawing on some ideas from social choice theory, in particular Arrow’s 

famous impossibility theorem (Arrow 1951). Social choice theory studies the problem 

of how a society should choose between a set of ‘social alternatives’, given that the 

individuals in society may have different preferences over those alternatives. I show 

that the problem of theory choice, as described by Kuhn, is formally identically to a 

standard social choice problem. This raises an interesting possibility: using formal 

results from social choice theory, such as Arrow’s theorem, to assess Kuhn’s claim 

that there is no algorithm for theory choice. That is my primary goal in this paper; a 

secondary goal is to illustrate more generally how techniques from theoretical 

economics can be applied to problems in epistemology. 

 The structure of this paper is as follows. Section 2 examines and clarifies 

Kuhn’s ‘no algorithm’ argument and its philosophical consequences. Section 3 

introduces social choice theory and gives a non-technical exposition of Arrow’s 

theorem. Section 4 shows how the problem of theory choice can be cast in a social 

choice framework, and asks whether an analogue of Arrow’s theorem applies to 

theory choice. Section 5 examines possible ‘escape routes’ from Arrow’s theorem. 

Section 6 discusses the most promising escape route, namely Amartya Sen’s 

‘informational basis’ approach. Section 7 applies Sen’s approach to the problem of 

theory choice. Section 8 shows how the foregoing results shed light on two well-

known approaches to inductive inference in philosophy of science: Bayesianism, and 

statistical model selection. Section 9 draws together the pieces and concludes. 

 

 

                                                 
1 See for example the discussion in W. H. Newton-Smith 1981. 
2 In that essay Kuhn wrote ‘most philosophers of science would  I think, now regard the sort of 

algorithm which has traditionally been sought as a not quite attainable ideal’ (Kuhn 1977a, p. 328). 
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2. Kuhn’s ‘no algorithm’ argument: clarifications 

Kuhn developed his ‘no algorithm’ argument most thoroughly in a 1977 essay entitled 

‘Objectivity, Value Judgment and Theory Choice’. In that essay, he identifies five 

criteria that provide ‘the shared basis for theory choice’, namely accuracy, 

consistency, scope, simplicity, and fruitfulness (Kuhn 1977a, p. 321). These five, he 

says, are ‘the standard criteria for evaluating the adequacy of a theory’, widely agreed 

on by mainstream philosophers of science. Kuhn has no quarrel with the standard 

view that these criteria play a key role in scientific theory choice; indeed, he regards 

them as partially constitutive of what science is. However he argues, using examples 

from the history of science, that the criteria fail to uniquely determine theory choice, 

for two reasons. Firstly, the criteria are ambiguous—it may be unclear which of two 

theories is simpler, for example. In some respects Copernicus’ theory was simpler 

than Ptolemy’s, Kuhn says, but in others it was not. Secondly, there is the problem of 

how to appropriately weight the criteria, when they pull in different directions. How 

should simplicity be traded off against accuracy and scope, for example? Kuhn says 

that ‘no progress’ has been made towards solving this problem (Kuhn 1977a, p. 329).  

It is this second problem—weighting—that will be the focus of our attention 

here, so the first problem—ambiguity—will be ignored. In any case, the first problem 

arguably collapses into the second. Consider Kuhn’s own example. He says that 

Copernicus’s theory was simpler than Ptolemy’s in that it invoked more parsimonious 

mathematics, but was no simpler in that the computational labour required to predict 

planetary positions was the same for both. If this is correct, then simplicity, in this 

example, needs to be sub-divided into two criteria: mathematical parsimony and 

computational ease, neither of which is ambiguous. Of course, this raises the question 

of how the two types of simplicity should be weighted, which is more important, etc. 

But that is just an instance of the second problem. It seems, therefore, that the 

ambiguity of Kuhn’s five criteria provides no principled reason to doubt the existence 

of an algorithm for theory choice. Disambiguation can always be carried out by sub-

dividing an ambiguous criterion, though this exacerbates the weighting problem. So 

the latter is more fundamental. 

 Suppose it is true that there is no algorithm for theory choice. What follows? 

The conclusion Kuhn drew is that value judgements play an inevitable role in theory 

choice, and thus that the ideal of ‘objectivity’, as that notion was understood by 

traditional philosophers of science, is unattainable. This does not mean that theory 
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choice is irrational, Kuhn stressed, or that ‘anything goes’, but rather that the 

traditional conception of rationality is too demanding. Two scientists, on the basis of 

the same empirical evidence, could arrive at different theories without either of them 

being irrational, Kuhn argues. So the ‘no algorithm’ argument does not undermine the 

rationality of science, he thinks, but rather forces us to a more realistic conception of 

what rational theory choice is like. Whether or not we accept this, Kuhn is surely right 

that the ‘no algorithm’ argument has important epistemological consequences. 

 Importantly, when Kuhn says there is no algorithm for theory choice, he 

means that there is no unique algorithm. His point is that given the five criteria—

simplicity, accuracy, fruitfulness etc.—which all parties agree form the shared basis 

for theory choice, there are many conceivable algorithms that one could construct, and 

no obvious way of choosing between them. (Thus Kuhn talks about ‘the algorithms of 

different individuals’ in a scientific community, while insisting that there is no such 

thing as ‘the algorithm of objective choice’ (Kuhn 1977a, p. 328).) So the problem is 

that there are too many algorithms for theory choice, each perfectly acceptable, and no 

way of singling out the ‘right’ one. This is why Kuhn sometimes expresses his thesis 

by saying there is no neutral algorithm for theory choice (Kuhn 1969, p. 199). 

 My point in stressing this is that there is another, quite different thing that 

might be meant by saying there is ‘no algorithm’ for theory choice. One might mean 

that there is no acceptable algorithm at all, not that there are too many. It might be the 

case that there is no way of constructing an algorithm, based on the five criteria, 

which meets minimal standards of acceptability. But this is not Kuhn’s claim. Rather, 

he thinks that there are many acceptable algorithms, each of which weights the five 

criteria differently, and each as rationally defensible as each other. 

 Another way to capture the distinction is this. Kuhn will presumably agree that 

there are certain minimal standards which any acceptable algorithm for theory choice 

must meet. For example, if theory T1 scores higher than T2 on each of his five criteria, 

then an algorithm that selects T2 over T1 is obviously unacceptable—no rational 

scientist could use it. So these minimal standards, whatever exactly they are, enable us 

to rule out some possible algorithms for theory choice. But on Kuhn’s view, many 

algorithms will still remain—and there is no way of narrowing down the choice to a 

single one. An alternative view, however, is that no algorithms at all will remain, 

after those that fail to meet the minimal standards have been discarded. These are 
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quite different views, and are mutually incompatible, though each might be expressed 

by saying that there is ‘no algorithm’ for theory choice.  

The distinction between these two views might be thought inconsequential, for 

both imply that there is no unique algorithm for theory choice, though for different 

reasons. And if Kuhn is right that the notion of rationality of traditional philosophy of 

science presumes the existence of a unique algorithm, then there is a threat to that 

notion in either case. This may be so; but it is still surely important to know why there 

is no unique algorithm for theory choice, if there isn’t. Is it because there are many 

acceptable algorithms and no good way of choosing between them, or because there 

are no acceptable algorithms? The epistemological consequences might be similar in 

either case, but the distinction is a real one and will play an important role in what 

follows. 

 The idea that theory choice is based on multiple criteria, which may pull in 

different directions, is not unique to Kuhn’s philosophy of science. Rather, it is 

common to diverse philosophical views on how scientific inference works. For 

example, proponents of ‘inference to the best explanation’ cite multiple factors, such 

as simplicity, unifying power, and scope, which enter into the assessment of how 

good a candidate explanation is (Thagard 1978, Lipton 1990). Bayesians argue that 

the choice between rival theories depends on how well they score on two different 

criteria—prior probability and likelihood—which can conflict (Howson and Urbach 

1992, Earman 1992).F

3
F Finally, proponents of ‘statistical model selection’ argue that 

the choice between rival hypotheses again depends on two factors—fit-with-the-data 

and simplicity—which typically do pull in different directions (Forster and Sober 

1994, Forster 2001). So the issues to be discussed below have a relevance that extends 

beyond an assessment of Kuhn’s ‘no algorithm’ thesis. 

 

3. Social choice theory and Arrow’s impossibility theorem 

Social choice theory deals with the problem of aggregating individuals’ preferences, 

over a set of alternatives, into a single ‘social preference’. For example, suppose a 

given society has four alternatives: building a school, a hospital, an airport, or a 

cinema, only one of which can be chosen. Each individual in society is assumed to 

have a weak preference order over the alternatives, that is, a ranking of the 

                                                 
3 The point being that P(H1/e) > P(H2/e) if and only if P(H1).P(e/H1) > P(H2).P(e/H2). See Sect. 8 

below. 
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alternatives from best to worst, with ties permitted. Formally, a weak preference order 

is a binary relation that is transitive, reflexive and complete. The preference order of 

the i
th

 individual will be denoted Ri, so ‘xRiy’ means that the i
th

 individual weakly 

prefers alternative x to alternative y, that is, she doesn’t strictly prefer y to x. From the 

weak preference relation Ri, we can define a corresponding relation of strict 

preference Pi, and of indifference Ii.F

4
 

 Suppose that for each of the n individuals in society, we know their preference 

order over the four alternatives. We can encode all this information in a single profile, 

denoted <R1,  , Rn>, which is simply a list, or vector, of preference orders, one for 

each individual. An example of a profile is contained in Table 1 below. Given this 

information, we would then like to be able to construct a single social preference 

order R, which ranks the four alternatives in terms of how good they are ‘for society 

as a whole’.F

5
F On any reasonable ethical view, the social preference order should 

depend somehow on the preference orders of the individuals in society, but how 

exactly? 

 

John  1. Cinema 2. School 3. Hospital 4. Airport  

Mary  1. Hospital 2. Cinema 3. Airport 4. School  

Jane  1. School 2. Airport 3. Hospital 4. Cinema  

Peter  1.Cinema 2. Airport 3. Hospital 4. School  

 Table 1:  A Profile of Preference Orders for Four Individuals 

 

 In his seminal 1951 work, Kenneth Arrow devised a novel way to study this 

problem. Arrow’s idea was to consider a function from profiles of individual 

preference orders to a social preference order, and then ask what conditions the 

function should satisfy. I will call such a function a ‘social choice rule’.F

6
F The rule 

takes as input a profile of preference orders, and yields as output a single social 

preference order. In other words, given the preferences of all the members of society 

over the alternatives, the rule tells us what the social preference order should be. A 

                                                 
4 Thus xPiy iff xRiy and it is not the case that yRix, while xIiy iff xRiy and yRix 
5 A social preference order is an object of the same sort as an individual preference order, i.e. a 

transitive, reflexive, complete binary relation over the alternatives. 
6 Arrow himself used the expression ‘social welfare function’, but this is often used in another sense 

today. 
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social choice rule is thus a kind of algorithm for making social choices, based on 

information about individuals’ preferences. 

 Arrow proposed four conditions that any reasonable social choice rule should 

satisfy: unrestricted domain (U), weak Pareto (P), independence of irrelevant 

alternatives (I), and non-dictatorship (N). He then proved, remarkably, that there 

exists no social choice rule that satisfies all four conditions, so long as there are at 

least three social alternatives. That is the content of his famous ‘impossibility 

theorem’. If we agree with Arrow that all four conditions are reasonable ones, his 

result spells bad news for the possibility of making coherent social decisions.  

 Condition U says that the domain of the social choice rule is the set of all 

possible profiles. This means that whatever the preferences of the individuals in 

society, the rule must output a social preference order, that is, there is no a priori 

restriction on the preferences that individuals are allowed to have. In many 

applications of Arrow’s framework, this condition is extremely natural. For example, 

if the ‘alternatives’ are candidates in an election, then condition U says that voters can 

rank the candidates however they like, and the rule must still output a social 

preference, that is, an election result. This is obviously reasonable. In other 

applications, restricting the domain of the social choice rule may make sense; for 

example, if the alternatives are different ways of dividing up society’s resources, then 

the assumption that individuals prefer more to less, ceteris paribus, suggests a natural 

domain restriction. But in general, condition U is well-motivated. 

 Condition P—weak Pareto—says that if all individuals in society strictly 

prefer alternative x to y, then society should also prefer x to y, that is, the social 

preference order must rank x above y. This seems indisputable: if everyone would 

rather have a cinema to a swimming-pool, then ‘cinema’ should obviously be higher 

than ‘swimming pool’ in the social ranking. This captures the intuitive idea that social 

choices must reflect what the members of society want; so if they all want the same 

thing, that is what should be chosen. 

 Condition N—non-dictatorship—says that there cannot be an individual who 

is such that whenever he or she strictly prefers alternative x to y, so does society. Such 

an individual would be a dictator—their preferences would automatically over-ride 

those of all other members of society. The existence of a dictator is clearly 

undesirable, as it conflicts with basic democratic ideals. So condition N seems 

unexceptionable. 
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 Condition I—independence of irrelevant alternatives—is at the crux of 

Arrow’s argument, and is slightly trickier than the others. It says that the social choice 

between alternatives x and y can only depend on individuals’ preferences between x 

and y—not on their preferences over other alternatives. More precisely, consider two 

profiles of individual preference orders <R1,  , Rn>  and <R1,  , Rn>, such that for 

every individual i, xRiy if and only if xRiy, that is, each individual’s preference for x 

over y is the same in the two profiles. Condition I then says that the social choice rule, 

when applied to both profiles, must yield the same social preference for x over y, that 

is, xRy if and only if xRy. Any differences between the two profiles are irrelevant to 

the social choice between x and y, according to condition I, since the two profiles are 

identical in the only respect that matters. 

 The intuitive force of condition I can be seen by considering an election in 

which voters must rank three candidates, Labour, Tory and Liberal, in order of 

preference. Various different ways of aggregating the individual preferences into a 

single social preference are conceivable. Condition I imposes a requirement on 

acceptable aggregation schemes—it says that the social preference between the 

Labour and Tory candidates, for example, can depend only on the individuals’ 

preferences between Labour and Tory. This is highly intuitive— in order to determine 

whether the Labour or Tory candidate is socially preferable, surely the individuals’ 

preferences involving the Liberal candidate should not matter? If you know of each 

individual whether they prefer the Labour to the Tory candidate (or are indifferent), 

then you know everything that is relevant to determining the social choice between 

these two candidates, according to condition I. 

Arrow wrote that his four conditions ‘taken together, express the doctrines of 

citizens’ sovereignty and rationality in a very general form’ (Arrow 1951, p. 31).  

Condition I is in fact somewhat controversial, as discussed below, but nonetheless, 

Arrow’s four conditions arguably represent quite reasonable constraints on a social 

choice rule. But remarkably, Arrow proved that all four cannot be simultaneously 

satisfied, so long as there are at least three alternatives; equivalently, any social choice 

rule that satisfies conditions U, I, and P must be a dictatorship of one individual.  

Arrow could have expressed his impossibility result by saying that there is ‘no 

algorithm’ for social choice that meets certain reasonable conditions. This way of 
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expressing Arrow’s theorem immediately suggests a comparison with Kuhn’s views 

on theory choice, to which I now turn. 

 

4. Theory choice cast as a social choice problem 

The problem of theory choice, as formulated by Kuhn, hinges on the fact that there 

are multiple desiderata that we want our theories to satisfy—simplicity, accuracy, 

scope etc. A theory that scores well on one desideratum might score badly on another, 

hence the weighting problem that Kuhn discusses. This problem may seem quite 

different to the social choice problem as formulated by Arrow, but in fact the two 

share a common structure. The key to seeing this is to regard each criterion of theory 

choice as an ‘individual’, with their own ‘preference order’ over the alternative 

theories. This may sound odd, but can be easily explained. 

Take for example simplicity. Let us assume that simplicity can be defined 

reasonably precisely, enough to permit pair-wise comparisons between the theories 

that we wish to choose between.F

7
F Then, we can define a binary relation ‘is at least as 

simple as’, on the set of alternative theories, which will be a weak ordering, that is, 

reflexive, transitive, and complete. Let us do the same for accuracy, scope, and the 

other Kuhnian criteria. From a formal point of view, each criterion is then analogous 

to an individual in Arrow’s set-up. Just as each individual rank-orders the social 

alternatives, according to how much they like them, so each criterion rank-orders the 

alternative theories, according to how well they satisfy it. So each of Kuhn’s criteria 

corresponds to an individual in Arrow’s framework, and the alternative theories 

correspond to the social alternatives. 

 It might be objected that for some criteria of theory choice, the binary relation 

will not be complete. Take for example scope. Plausibly, one might take a theory’s 

‘scope’ to be its total set of logical consequences, and the relation ‘T1 has at least as 

much scope as T2’ to mean that T2’s consequence class is a subset of T1’s. But this 

relation, though reflexive and transitive, need not be complete, for the consequence 

classes of a pair of theories may be non-nested, that is, the theories may be non-

comparable for scope. Though this is a valid point, ‘scope’ is arguably the only one of 

Kuhn’s five criteria that it affects. (In the case of simplicity, for example, it is 

plausible that for any two theories, either one is simpler than the other or they are 

                                                 
7 This assumption is not unproblematic, but the problems it raises are orthogonal to those under 

discussion here. 
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equally simple, i.e. ‘is at least as simple as’ is complete.) So the completeness 

assumption can be justified as a reasonable idealization. After all the assumption that 

individuals’ preference relations are complete is also an idealization.F

8
 

 The next step is to consider a ‘theory choice rule’, defined by direct analogy 

with an Arrovian social choice rule. Given a profile of weak orders, one for each 

criterion of theory choice, a theory choice rule yields a single ordering of the 

alternative theories. So for example, suppose we have four alternative theories, and 

three criteria: simplicity, accuracy and scope. By assumption, we know how to rank-

order the theories by each criterion. We feed this information into the theory choice 

rule, which then outputs an ‘overall’ ranking of the theories, from best to worst. 

Formally, the theory choice rule is defined in exactly the same way as Arrow’s social 

choice rule. 

 Next, let us ask whether Arrow’s four conditions apply to the theory choice 

rule. Condition U (unrestricted domain) seems unexceptionable—however the 

theories are ranked by the various criteria, the rule must be able to yield an overall 

ranking. There should be no a priori restriction on the permissible rankings that are 

fed into the rule. Such a restriction might make sense if there is an intrinsic trade-off 

(or correlation) between two of the criteria. For example, if greater simplicity always 

involves a sacrifice of accuracy, then the simplicity rank-ordering will be the inverse 

of the accuracy rank-ordering. This will rule out some possible inputs to the rule, 

which implies a natural domain restriction. But unless we have specific reason to 

think such trade-offs must always obtain, condition U seems reasonable. 

  Condition P (weak Pareto) seems undeniable. If theory T1 does better than 

theory T2 by each of Kuhn’s criteria, that is, it is simpler and more accurate and more 

fruitful etc., then it must surely be preferred overall. This seems as obvious as its 

analogue for social choice. What about condition N (non-dictatorship)? It says that 

there is no one criterion such that if T1 is ranked above T2 by that criterion, then T1 is 

                                                 
8 There is in fact a technical trick to get around the problem. Suppose R is reflexive and transitive but 

incomplete. We can then extend R to a complete relation R*, by stipulating that for any two objects x 

and y that are not related by R, xI*y, i.e. neither xR*y nor yR*x. The relation R* will then be reflexive 

and complete, but non-transitive; however, it will be quasi-transitive (which means that P*, the 

corresponding strict preference relation, is transitive, but I* is not) (Sen 1969). Arrow’s theorem will 

then apply; for the theorem does not in fact require that the individual preference orders be fully 

transitive – quasi-transitivity is enough. (By contrast, the full transitivity of the social preference order 

is essential to the theorem.) 
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automatically above T2 in the overall ranking. This condition makes good sense, so 

long as we agree that all the criteria are relevant to theory choice. Violation of the 

condition would mean that one criterion, for example simplicity, was regarded as so 

important that a less simple theory would never be preferred to a more simple one, 

however highly it scored on the other criteria. 

 What about condition I (independence of irrelevant alternatives)? It says that 

the overall ranking of T1 and T2 should depend only on how the criteria rank T1 and 

T2, not on how they rank other theories. So for example, suppose we have three 

criteria, simplicity, accuracy and scope, and two theories. Suppose T1 is simpler than 

T2, T2 is more accurate than T1, and T1 has greater scope than T2. Condition I says 

that this is all the information that is relevant to the overall ranking of T1 versus T2; so 

if in this case the theory choice rule ranks T1 above T2 (for example), then it must 

rank T1 above T2 in every relevantly similar case, that is, every case where T1 is 

simpler than T2, T2 more accurate than T1, and T1 greater in scope than T2. As with 

the social choice rule, this condition has strong intuitive appeal, capturing the idea 

that rational theory choice shouldn’t depend on irrelevant factors.  

 If we agree that U, P, N and I are conditions on reasonable theory choice, then 

it is obvious that an Arrovian impossibility result applies. So long as there are at least 

three alternative theories, there exists no theory choice rule that satisfies all four 

conditions. This spells bad news for the possibility of making ‘rational’ theory 

choices.  

One might naturally express this impossibility result by saying that there can 

be ‘no algorithm’ for rational theory choice. This sounds similar to what Kuhn said, 

but recall the discussion of section 2. As we saw, Kuhn meant that there is no unique 

algorithm; he argued that the multiple criteria for theory choice could be combined 

into a decision rule in many ways, and there is no good way of choosing between 

them. So the problem according to Kuhn is that there are too many algorithms. But the 

Arrow impossibility result implies the opposite—there is no algorithm for theory 

choice that meets reasonable conditions. When Kuhn saw an embarrassment of riches, 

Arrow tells us that there is nothing at all. 

 Both Kuhn’s view and the Arrow-inspired view imply, obviously, that there is 

no single algorithm for theory choice, over three or more alternatives, which is 

rationally acceptable. This conclusion conflicts with the traditional ideal of rationality, 

associated with Carnap, according to which two rational agents with the same ‘total 
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evidence’ must end up in the same epistemic state. In the context of theory choice, the 

Carnapian ideal implies that if two scientists agree on what the relevant criteria are, 

and agree about how well each theory performs on each criterion, then they should 

agree on how to rank the theories. On Kuhn’s view, such agreement is unattainable—

the two scientists may weigh the criteria using different algorithms, and there is no 

saying which is rationally correct. On the Arrovian view, agreement is also 

unattainable, but for a very different reason, namely that no algorithm meets minimal 

standards of rationality. 

 Despite both implying that the traditional ideal of rationality cannot be met, 

the Kuhnian and Arrovian views are diametrically opposed. Moreover, it makes a big 

difference which is right. If Kuhn is right that the problem is too many algorithms, 

two options suggest themselves. First, we might seek further conditions that any 

acceptable algorithm must satisfy, to narrow down the pool. Second, we might try to 

liberalize the notion of rationality, and argue that two scientists could both count as 

rational despite employing different algorithms for theory choice.F

9
F But if the Arrovian 

view is right, then neither of these options holds any promise, and our epistemological 

predicament is correspondingly more serious. Put differently, Kuhn makes rational 

theory choice look difficult, at least if we cleave to a certain conception of rationality, 

but Arrow makes it look outright impossible. 

 

5. Possible escape routes 

Since the Arrow-style impossibility result threatens the rationality of theory choice, 

and thus of science, it would be nice if there were a way out. Various possibilities 

suggest themselves. One is simply that many real cases of theory choice are binary, 

that is, involve just two alternatives. It is striking that Kuhn’s own examples tend to 

be binary—geocentrism versus heliocentrism, oxygen versus phlogiston, relativity 

versus classical mechanics. And of course Arrow’s impossibility result only holds if 

there are three or more alternatives. With just two alternatives to choose between, 

                                                 
9 This idea was common in the post-Kuhn literature; see for example McMullin 1993. It is suggested 

by certain remarks of Kuhn himself, in the Postscript to Structure of Scientific Revolutions, where he 

says that his aim is not to show the irrationality of science, but rather to arrive at a more realistic view 

of what scientific rationality involves. 
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numerous algorithms become possible that satisfy conditions U, P, I and N.F

10
F Does 

this reconcile Kuhn with Arrow? 

 I think the answer is ‘no’, though it is certainly interesting that the distinction 

between binary and non-binary choice becomes significant, once theory  

choice is formulated in the social choice framework. (By contrast, on most standard 

philosophical approaches to theory choice, such as Bayesianism, it is of no particular 

relevance whether the choice is binary or not.) Not all theory choice in science is 

binary, even if the large-scale paradigm shifts that Kuhn is interested in typically are. 

More mundane cases are often not. Think for example of climate change science, 

where researchers compare the merits of numerous models of climate change, not just 

two. More generally, in many branches of science a typical problem might involve 

choosing between three candidate explanations of an observed correlation between 

two variables x and y: (i) x causes y; (ii) y causes x; (iii) x and y are joint effects of a 

common cause. Or consider statistical estimation, where a researcher might want to 

estimate the value of a real-valued parameter in the unit interval; the alternatives that 

must be chosen between are uncountably many. So focusing exclusively on binary 

choice, as a way of trying to avoid the Arrovian predicament, is at odds with scientific 

practice. 

 Another possibility for reconciling Arrow with Kuhn is simply to reject one or 

more of Arrow’s conditions. Kuhn was sceptical (in some moods) about the existence 

of ‘trans-paradigmatic’ criteria of rationality, which are universally binding on 

scientists across all eras; perhaps he would argue that an acceptable algorithm for 

rational theory choice need not respect Arrow’s conditions? This option does not 

seem especially plausible, given the intuitiveness of those conditions, but one possible 

argument against condition N (non-dictatorship) is worth briefly discussing. 

 In the context of theory choice, condition N says that no criterion can be a 

dictator, that is, can be such that whenever x ranks above y by that criterion, then x 

ranks above y overall. However, a strong empiricist might well hold that the criterion 

of ‘fit-with-the-data’ should be a dictator. Empiricists in philosophy of science have 

long argued that criteria such as simplicity are of lesser importance than fit-with-the-

data, and should only be invoked, if at all, where the data cannot decide between two 

                                                 
10 For example, ‘majority rule’, which says that alternative x is preferred to y just if it is ranked higher 

by more individuals (or criteria) is one such algorithm. With three or more alternatives, majority rule 

may lead the social preference to be intransitive, so does not even meet the definition of a social choice 

rule. 
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theories. Similarly, in a discussion of Kuhn’s five criteria of theory choice, McMullin 

1993 argued that ‘accuracy’ held a special role, for it is an end in itself while the 

others are only valuable in so far as they are reliable indicators of accuracy. So from 

an empiricist perspective, not all of Kuhn’s criteria are equal. 

 Importantly, dictatorship of ‘accuracy’ (or ‘fit-with-the-data’) need not mean 

that the other criteria play no role at all in theory choice. For recall the definition of a 

dictator: a criterion (or individual) whose strict preference for x over y always leads x 

to be ranked higher than y overall. By contrast, a strong dictator is a criterion (or 

individual) whose preference for x over y, strict or weak, always becomes the overall 

preference. A strong dictatorship of ‘fit with the data’ would be an extreme form of 

empiricism—that refused to invoke extra-empirical criteria of theory choice even to 

break ties between pairs of theories that fit the data equally well. But an ordinary (not 

strong) dictatorship of ‘fit with the data’ could use criteria such as simplicity to break 

ties, that is, to settle cases where the dictator is indifferent. This is known as a ‘serial’ 

or ‘lexicographic’ dictatorship, and represents a more moderate form of empiricism.  

 Accepting a serial dictatorship of ‘fit with the data’ is in principle a way out of 

the impossibility result, since this theory choice rule does satisfy conditions I, P, and 

U. However, even if one accepts the underlying empiricist motivation, there are two 

problems with this solution. Firstly, to make it work, a complete lexicographic 

hierarchy of all the criteria of theory choice must be established, that is, a 

specification of the order in which they should be applied, to break ties. If there are 

only two criteria, for example fit-with-the-data and simplicity, then this is not a 

problem, but if there are more than two, there is a problem. For it is quite unclear how 

the hierarchy should be generated. Should simplicity or scope be invoked first, when 

fit-with-the-data cannot separate a pair of theories? Secondly and more importantly, a 

dictatorship of ‘fit with the data’, even serial, seems unattractive when we take 

account of the fact that our data invariably contain ‘noise’. If our data were noise-free, 

always preferring a theory that fitted the data better would make sense. But with noisy 

data, perfect fit is not always desirable, as emphasised in the model-selection 

literature (Forster and Sober 1994). This ‘problem of over-fitting’, as it is known, 

constitutes a strong reason not to relax condition N in the manner mooted above, even 

if we are empiricists. 
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 Finally, two further possible escape routes, well-known among social choice 

theorists, are worth briefly noting, though neither holds much promise.F

11
F

 
The first is to 

modify the goal. Instead of trying to rank-order the alternatives, as in Arrow’s 

formulation of the problem, suppose we instead try to pick the best. More precisely, 

we seek a ‘choice function’ which tells us, for any subset of the alternatives, which is 

(or are) the best. (In the scientific case this has some plausibility, as the problem of 

theory choice is often formulated as the problem of which theory to ‘accept’.) This is 

a weaker goal than Arrow’s, since a social preference relation entails the existence of 

a choice function but not vice-versa, thus holding some promise of an escape from the 

impossibility result. However, it turns out that if the choice function is required to 

satisfy certain quite reasonable properties, then analogues of Arrow’s impossibility 

result re-emerge (Austen-Smith and Banks 1999). This escape route is thus thought 

unpromising by most social choice theorists, and seems equally unpromising as 

applied to theory choice. 

  The second option is domain restriction, i.e. dropping condition U. It is well-

known that with a restricted domain, there may exist social choice rules that satisfy 

conditions P, I, and N. For certain applications of the social choice apparatus, 

‘natural’ domain restrictions suggest themselves, though not for others. As noted in 

section 4, in the theory choice case, a natural domain restriction would apply if two of 

the criteria of theory choice exhibit an intrinsic trade-off (or correlation), for example, 

if a gain in simplicity always means a loss of accuracy. Then, certain profiles would 

be impossible, and could be legitimately excluded from the domain of the theory 

choice rule. However, that such trade-offs always exist does not seem very plausible; 

and anyway there is no guarantee that the resulting domain restriction would be of the 

right sort to alleviate the Arrovian impossibility.  

 

6. Sen’s ‘informational basis’ approach 

I turn now to what is arguably the most attractive ‘escape route’ from Arrow, namely 

Amartya Sen’s idea of using an ‘enriched informational basis’ (Sen 1970, 1977, 

                                                 
11 A third possible escape route is to relax condition I, a move defended by some authors, e.g.  

Fleurbaey and Maniquet (2008), in the context of choosing allocations for an economy. However it 

seems unlikely that the rationale for relaxing I, in such contexts, transposes to the context of theory 

choice discussed here. 
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1986).F

12
F Sen observes that the information Arrow uses as input to his social choice 

rule, namely a profile of individual preference orders, is quite meagre. This is for two 

reasons. Firstly, preference orders are ‘purely ordinal’—they contain no information 

about intensity of preference. If an individual prefers x to y to z, this tells us nothing 

about whether their preference for x over y is greater or less than their preference for y 

over z. Secondly, preference orders do not permit interpersonal comparisons. From a 

profile of individual preference orders, statements such as ‘in alternative x, individual 

1 is better off than individual 2’ cannot be deduced. 

 To remedy these problems, Sen suggests that we start not with a profile of 

preference orders, but rather of utility functions, one for each individual in society. An 

individual’s utility function assigns a real number to each alternative, which reflects 

how much utility that alternative would bring them. Let ui denote the utility function 

of the i
th

 individual; let <u1, , un> denote a profile of utility functions. An 

individual’s utility function is required to represent their preference order, in the 

sense that xRiy iff ui(x) ≥ ui(y), for all alternatives x and y.
 
(Recall that ‘xRiy’ means 

that individual i weakly prefers x to y.) Note that if ui represents Ri, then any 

increasing transformation of ui will also represent Ri. Thus there is a many-one 

relation between utility functions and the preference orders that they represent. 

 Next, Sen introduces the concept of a social welfare functional (SWFL). This 

is a function that takes as input a profile of utility functions, and yields as output a 

social ranking of the alternatives. A SWFL is analogous to an Arrovian social choice 

rule, in that both yield the same output; however, the former takes a profile of utility 

functions, rather than preference orders, as input. Potentially, this allows more 

information to be taken into account. 

 Analogues of Arrow’s four conditions can now be imposed on the SWFL. The 

analogue of U says that the domain of the SWFL is the set of all possible profiles of 

utility functions, that is, individuals can have whatever utility functions they please. 

The analogue of P says that if everyone gets more utility in alternative x than in y, 

then x is socially preferred to y. The analogue of N says that there can be no 

individual such that whenever they get more utility from x than y, then x is socially 

preferred to y. The analogue of I, known as ‘independence of irrelevant utilities’, says 

that the social preference between x and y must depend only on individuals’ utilities in 

                                                 
12 Sen’s approach has been further developed by numerous workers; for good overviews see Gaertner 

2006, Roemer 1997, and Bossert and Weymark 2004. 
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x and y. These conditions on the SWFL will be denoted U′, P′, I′ and N′; they are 

motivated by arguments similar to those that motivate the Arrovian originals.   

One might think that an analogue of Arrow’s impossibility result will now 

apply, that is, that no SWFL can satisfy conditions U′, P′, I′ and N′. However, this is 

not correct. Arrow’s impossibility result can be derived in Sen’s framework, but it 

requires an additional condition, capturing the fact that Arrow uses purely ordinal, 

non-interpersonally comparable information. To see how this informational 

assumption can be captured, consider a profile of utility functions <u1,  , un>. Now 

suppose each of the n individuals applies an increasing transformation to their utility 

function, yielding a new profile <v1,  , vn>. (Different individuals may apply 

different transformations.) On Arrow’s assumption, the two profiles contain exactly 

the same information – since the transformed utility functions represent the very same 

preferences. So Arrow will argue that the SWFL should yield the same social ranking 

when applied to the two profiles. This condition is called ‘invariance with respect to 

ordinal, non-comparable information’ or ONC. Arrow’s theorem can now be stated in 

Sen’s framework: for three or more social alternatives, no SWFL can satisfy 

conditions ONC, U′, P′, I′ and N′. 

If the ONC condition is imposed on the SWFL, this implies that interpersonal 

comparison of utility is deemed impossible (or meaningless). To see why, suppose 

that in profile <u1,  , un>, individual 1 gets more utility than individual 2 in a given 

alternative x, that is, u1(x) > u2(x). But this inequality is not necessarily preserved, if 

the individuals apply different positive transformations to their utility functions. So in 

the transformed profile <v1,  , vn>, it need not be true that v1(x) > v2(x). Therefore, if 

the two profiles are treated as informationally equivalent, as the ONC condition 

demands, it follows that interpersonal comparisons cannot be made.  

The natural next step is to ask what happens if the ONC condition is relaxed. 

There are two ways it can be relaxed: (i) drop the assumption that utility is purely 

ordinal; (ii) permit interpersonal comparisons. To effect (i), we restrict the 

transformations that can be applied to a given utility function; to effect (ii), we cease 

to allow individuals to choose their own transformations independently of others.
 
Let 

us take (i) first. Instead of ordinal utility, we might hold that utility is measured on a 

cardinal scale, so only positive linear transformations, of the form vi = aui + b, a>0, 
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are held to preserve information.F

13
F In effect, this means that an individual’s utility 

function contains information about the intensity of their preferences, so utility 

differences become meaningful. Alternatively, we might hold that utility is measured 

on a ratio scale, so only transformations of the form vi = aui, a>0, are held to preserve 

information. This means that the utility scale has a natural zero point, so utility ratios 

become meaningful.F

14
F Finally, we might hold that utility is measured on an absolute 

scale, that is, only the identity transformation preserves information. This means that 

actual utility numbers are meaningful.  

 Once a scale for utility has been chosen—ordinal, cardinal, ratio or absolute—

a decision about interpersonal comparability is necessary. If utility is non-

comparable, then each individual can apply a transformation (from the permissible 

class) independently of others. If utility is fully comparable, then each individual must 

apply the same transformation. Depending on the utility scale, a form of partial 

comparability may also be possible. With cardinal utility, if utility is unit comparable, 

then individuals’ positive linear transformations must all have the same slope, but can 

have different intercepts. 

 Numerous alternatives to Arrow’s ONC condition are now possible. They 

include: cardinal-scale utility with no comparability (CNC); cardinal-scale utility with 

full comparability (CFC); ratio-scale utility with full comparability (RFC); ratio-

scale utility with no comparability (RNC); and absolute-scale utility with full 

comparability (AFC). In effect, each of these conditions partitions the set of all 

profiles of utility functions into equivalence classes of ‘informationally equivalent’ 

profiles, and requires that the SWFL yield the same social ranking for all the profiles 

in a given equivalence class. ONC is the strongest condition—for the classes of 

profiles that it treats as informationally equivalent are very large, and thus the 

restriction on the SWFL considerable. By contrast, AFC is the weakest condition—it 

places each profile into a singleton class of its own, which implies no restriction on 

the SWFL. This illustrates a general moral: the richer the informational basis, that is, 

the finer the partition of the profiles into equivalence classes, the weaker the resulting 

condition on the SWFL. 

 Sen now asks: what happens if we retain the four Arrovian conditions U′, P′, 

I′ and N′, but replace ONC with a weaker condition? Can the impossibility result be 

                                                 
13 Temperature in celsius or farenheit is measured on a cardinal, or interval, scale. 
14 Length in centimetres is an example of a quantity measured on a ratio scale. 
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avoided? The answer is that impossibility can be avoided, but only if some 

interpersonal comparison is allowed. Replacing ONC with CNC, that is, moving from 

ordinal to cardinal utility, is no help on its own. The same is true of moving to ratio-

scaled utility (RNC). However, if ONC is replaced with CFC, RFC, or AFC, then 

Arrovian impossibility is avoided. There do exist social welfare functionals that 

satisfy Arrow’s four conditions, plus one of these alternatives to ONC.  

 (The case of ratio-scale non-comparability (RNC) merits further discussion, 

for a reason that will become clear. Although replacing ONC with RNC does not 

avoid Arrovian impossibility, it does do if all utilities are required to be non-negative 

(Tsui and Weymark 1997). If all utilities are non-negative, there do exist social 

welfare functionals that satisfy RNC and Arrow’s four conditions. Also, note that 

RNC, despite its name, does permit a limited sort of interpersonal utility 

comparison.F

15
F With RNC, percentage increases in utility can be meaningfully 

compared, that is, statements such as ‘in moving from alternative x to y, individual 1’s 

percentage gain is greater than individual 2’s’, are meaningful (Fishburn 1987). It is 

easy to verify that the truth-value of this statement will be unaltered, if the two 

individuals apply different ratio-scale transforms to their utility functions.) 

 Sen’s analysis raises two issues. First, how can interpersonal comparisons of 

utility be made? Second, once such comparisons are allowed, how large is the class of 

SWFLs that satisfy the Arrow conditions? Can further conditions be found that 

narrow down the permissible SWFLs to a single one? There is an extensive literature 

on both these points, but space does not permit them to be explored here.F

16
F For the 

moment, the point to note is just this. Sen’s work demonstrates clearly that Arrow’s 

impossibility result is in large part a consequence of the impoverished information he 

feeds into his social choice rule. Enriching the informational basis, while retaining 

Arrow’s four conditions—now understood as conditions on the social welfare 

functional, rather than the social choice rule—is sufficient to avoid the 

impossibility.F

17
F In short, given enough information, reasonable social choices can be 

made. 

                                                 
15 For this reason, some authors prefer the label RSM (ratio-scale measurability) for what I am calling 

RNC. 
16 On the first issue see the papers in Elster and Roemer 1991; on the latter, see Gaertner 2006, Roemer 

1997 or Bossert and Weymark 2004. 
17 In a way, Sen’s approach involves a rejection of Arrow’s condition I (independence of irrelevant 

alternatives). For Arrow’s condition I is equivalent to the conjunction of ONC and condition I′ 



 20 

7. Theory choice: the informational basis  

Let us return to theory choice and apply the morals of the previous section. Recall that 

we defined a theory choice rule, by direct analogy with Arrow’s social choice rule, as 

a function that takes as input a profile of weak orders, one for each criterion of theory 

choice, and outputs an ‘overall ranking’ of the alternative theories. Just as Sen 

replaced Arrow’s social choice rule with a social welfare functional, so we need to 

replace our theory choice rule with a ‘theory choice functional’. So instead of starting 

with a profile of ‘preference orders’, one for each criterion of theory choice, we start 

with a profile of ‘utility functions’, that is, real-valued representations of those orders. 

In principle, this allows an enrichment of the informational basis.F

18
 

 The natural next question is: which profiles should be treated as 

informationally equivalent, that is, which invariance condition should be imposed on 

the theory choice functional? To address this question, we need to consider both 

measurement scales and ‘inter-criterion’ comparability. Let us take them in turn. For 

some criteria of theory choice, an ordinal scale might be appropriate. Kuhn’s criterion 

of ‘fruitfulness’ is an example. Conceivably, one could order a set of theories by how 

fruitful they are, but it is hard to believe that differences in fruitfulness can be 

compared; a statement such as ‘the difference in fruitfulness between T1 and T2 

exceeds the difference between T2 and T3’ hardly seems meaningful. If this is right, 

then the real-valued ‘utility’ function that represents the fruitfulness preference order 

is merely ordinal—any increasing transformation can be applied to it without loss of 

information. 

 However for other criteria of theory choice, we can go beyond ordinal 

measurement, at least in certain contexts. Take for example fit-with-the-data (or 

‘accuracy’), and suppose that the context is linear regression analysis. The usual 

measure of how well a hypothesis fits the data in linear regression is its ‘sum of 

squares’ (SOS) score.F

19
F The appropriate type of measurement scale for SOS scores 

depends on the dependent variable in the regression model. If for example that 

variable is length, which is a ratio-scale measurable quantity, then the SOS scores will 

                                                                                                                                            
(independence of irrelevant utilities). Retaining I′ while rejecting ONC thus abandons the letter of 

Arrow’s original independence condition, while retaining its spirit. 
18 This application of Sen’s framework to the problem of theory choice illustrates a point made by 

Kelsey 1987, namely that the functions used in an SWFL need not necessarily be interpreted as utility 

functions. 
19 The SOS of a hypothesis is the sum of the squared distance of each data point from the hypothesis’s 

prediction. 
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also be ratio-scale measurable. Therefore, the real-valued ‘utility’ function that 

represents the ‘fit-with-the-data’ preference order will be ratio-scaled, thus 

multiplication by a positive constant is the only information-preserving 

transformation. Statements such as ‘T1 fits the data three times as well as T2’ will be 

meaningful. 

To take another example of how we can often go beyond ordinal information, 

consider simplicity. In certain contexts, such as statistical model selection, the 

simplicity of a hypothesis is taken to be the number of free parameters it contains. 

Thus for example, the hypothesis ‘y = ax + b’ is simpler than ‘y = ax
2
 + bx + c’ 

because the former contains two free parameters, the latter three. So in this case, 

simplicity is measured on an absolute scale—the actual numbers are meaningful, so 

only the identity transformation preserves information. Similarly, in a Bayesian 

context, a prior probability distribution over a set of hypotheses is a case of absolute 

measurability—the actual numbers assigned are meaningful. So in both these cases, 

we have much more than ordinal information.   

 This suggests that the question of what measurement scales are appropriate, 

for criteria of theory choice, does not have a simple answer. Different scales may be 

appropriate for different criteria, and may depend on the inferential techniques that we 

are using. It may be that for the ‘large scale’ theory choices that Kuhn was interested 

in, ordinal comparisons are all that can be achieved. But it seems clear that in other, 

more humdrum cases, particularly where the problem may be formulated statistically, 

we may have much more than ordinal information at our disposal.  

Finally, note that the situation for theory choice is more complicated than for 

social choice. In social choice, one normally assumes a single type of measurement 

scale for all utility functions. It would make little sense to suggest that individual 1’s 

utility function was ordinal, individual 2’s cardinal. But the analogous situation for 

theory choice makes good sense. It might well be that fruitfulness, for example, is 

merely ordinal but that fit-with-the-data is ratio-scale measurable. 

 What about inter-criterion comparisons, the analogue of interpersonal 

comparisons? One might think that such comparisons are unlikely. Take for example 

the statement: ‘the difference in simplicity between T1 and T2 exceeds the difference 

in accuracy between T3 and T4’. It is hard to see what the basis for such a judgement 

might be. It is harder still to see how comparisons of levels, rather than differences, 

could be made—this would permit statements such as ‘the accuracy of T1 is less than 



 22 

the simplicity of T2’, which sound even odder. Since inter-criterion comparability is 

needed to avoid the impossibility result, as we know, the prospects for escaping the 

Arrovian predicament by enriching the informational basis of theory choice may seem 

dim. 

 However this is overly pessimistic, for two reasons. Firstly, note that if all 

criteria are absolutely measurable, then interpersonal comparability follows 

immediately. If the ‘utility’ functions that represent the simplicity and accuracy 

orderings cannot be transformed without loss of information, then statements such as 

‘the accuracy of T1 is less than the simplicity of T2’ automatically become 

meaningful. (Crucially, ‘meaningful’ here has a technical sense, i.e. invariance under 

the permissible transformations; it does not mean that there would be any particular 

purpose in uttering the statement in question.)F

20
F Since, as argued above, absolute 

measurability may be appropriate for some criteria of theory choice in some contexts, 

inter-criterion comparability should not be dismissed out of hand. 

 Secondly, recall the discussion of ratio-scale measurability in section 6. If the 

criteria of theory choice are each measured on their own ratio-scale (i.e. RNC), then 

this: (i) permits a limited form of inter-criterion comparability, and (ii) avoids 

Arrovian impossibility so long as all ‘utilities’ are non-negative. Ratio-scale 

measurability is fairly plausible in certain inferential contexts. Consider ‘scope’, for 

example. If differences in scope can be compared, and if in addition there is a natural 

zero point, that is, it makes sense to talk about a theory with zero scope, then scope is 

ratio-scale measurable. This does not seem altogether implausible, for some criteria in 

some inferential contexts. If both scope and accuracy (say) are ratio-scale measurable, 

each with their own scale, then this permits a limited form of inter-criterion 

comparability: percentage increases in scope may be compared with percentage 

increases in accuracy. (So statements such as ‘T1 has 10% less scope than T2, but is 

15% more accurate’ can be made.) As regards point (ii), the restriction to non-

negative ‘utilities’ seems unproblematic; if ‘scope’ has a natural zero point, why 

demand that the theory choice functional be able to deal with profiles in which some 

theories (per impossible) have negative scope? So there is a potential escape route 

from Arrow here too.  

                                                 
20 It is also important to see that inter-criterion comparability does not require that the two criteria be 

measured in the same units, for the comparison in question is a comparison of real numbers, not of the 

quantities that they represent.  
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 To sum up, Sen’s work, transposed to the theory choice case, tells us that there 

do exist theory choice functionals that satisfy Arrow’s four conditions, so long as the 

ONC condition is replaced in favour of one that permits inter-criterion comparison. 

This prompts the question of what replacement of ONC (if any) is appropriate, that is, 

which profiles of ‘utility’ functions should be treated as informationally equivalent. 

There is no simple answer to this question. However, in some cases absolute 

measurement will be appropriate, implying that ONC should be replaced with AFC; 

this permits the impossibility result to be avoided. In other cases ratio-scale 

measurement will be appropriate, which also permits the impossibility result to be 

avoided. The general moral is that enriching the informational basis of theory choice 

does permit an escape from Arrow; though which enrichments are defensible must be 

answered on a case-by-case basis. 

Where does this leave us vis-à-vis Kuhn’s ‘no algorithm’ thesis? If we can 

escape the Arrovian predicament by enlarging the informational basis, as described 

above, we will end up with many theory choice functionals that meet our 

reasonableness constraints. For replacing ONC with an alternative condition (such as 

AFC), while retaining Arrow’s four conditions, does not narrow down the class of 

permissible theory choice functionals to a single one. So we escape Arrow’s 

predicament only to enter Kuhn’s: many acceptable algorithms, and no way to select 

between them. To escape both predicaments, we need reasonableness conditions that 

are satisfied by exactly one algorithm. In the social choice literature, researchers have 

managed to identify conditions that uniquely pick out particular social welfare 

functionals, such as the utilitarian SWFL, Rawlsian maximin, and others; but it is 

doubtful whether the analogues of these conditions, transposed to the theory choice 

case, would be defensible. (By contrast, the analogues of Arrow’s conditions are 

certainly defensible.) Therefore in the theory choice case, escaping Arrovian 

impossibility by enriching the informational basis seems to lead us straight to Kuhn’s 

‘no algorithm’ thesis. 

 

8. Illustrations: Bayesianism and statistical model selection 

The previous section’s main conclusion—that Sen’s escape route from Arrow does 

apply to theory choice—can be illustrated by considering the orthodox Bayesian 

approach to scientific inference. Suppose we have a body of evidence E, and five rival 

hypotheses {T1,  , T5} that are pair-wise exclusive. On the Bayesian view, we use 
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two criteria to choose between the hypotheses: prior probability P(Ti), and likelihood, 

P(E/Ti). (Likelihood can be thought of as a measure of the ‘fit’ between evidence and 

hypothesis, prior probability a measure of the antecedent plausibility of a hypothesis, 

before the evidence.) Clearly, there are many possible ways of combining these two 

criteria into a decision rule; but Bayesians argue that the right way to do it is to 

multiply the prior by the likelihood, that is, to consider the quantity [P(Ti) x P(E/Ti)]. 

The theory with the highest value of this quantity is the most deserving of our 

credence, according to Bayesians; and more generally, this quantity can be used to 

generate an overall ranking of the theories, from best to worst. 

 Bayesians have some sophisticated arguments for why this is the right way to 

combine the two criteria, but they need not detain us. For the moment, we want to 

relate Bayesianism to our foregoing discussion. To do this, simply think of P(Ti) and 

P(E/Ti) as ‘utility’ functions, both of which assign a real number to each of the five 

theories. The ordered pair < P(Ti), P(E/Ti)> is then a profile, corresponding to a 

profile of utility functions in a two-person society, in Sen’s framework. Now consider 

the function which maps the set of profiles onto the ranking generated by the quantity 

[P(Ti) x P(E/Ti)]. This corresponds to a social welfare functional in Sen’s framework, 

or what we called a ‘theory choice functional’ in section 7. The functional takes as 

input the prior probability and likelihood of each theory, and yields as output a 

ranking of the theories, from best to worst. Let us call this the ‘Bayesian theory choice 

functional’, or BCF. 

 Now let us ask: does the BCF satisfy the four Arrovian conditions? Consider 

firstly condition P′, weak Pareto. It easy to see that P′ is satisfied: if theory T1 has a 

higher prior and a higher likelihood than theory T2, that is, P(T1) > P(T2) and P(E/T1) 

> P(E/T2), then T1 will obviously be ranked higher than T2 by the BCF. Condition I′, 

the independence of irrelevant ‘utilities’ condition, is also satisfied: whether T1 or T2 

is ranked higher by the BCF is entirely determined by the priors and likelihoods of 

those two theories; no other information is relevant. Finally, condition N′, non-

dictatorship, is also satisfied. Neither criterion (prior or likelihood) is able to dictate 

over the other—it is not true that if T1 has a higher prior than T2 then it must be 

ranked higher, and similarly for likelihood. 

 What about condition U′, unrestricted domain? This says that the domain of 

the theory choice functional must be the set of all possible profiles, that is, pairs of 

real-valued functions. Clearly the BCF does not satisfy this condition, for both of the 
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functions that we feed into it, P(Ti) and P(E/Ti), can only take on values in the unit 

interval [0,1]; moreover, it is required that ∑P(Ti) ≤ 1. Thus there are two restrictions 

on the permissible values of the functions we feed into the Bayesian theory choice 

functional. So condition U′ is not satisfied, whereas conditions P′, I′ and N′ are. 

 Mindful of Arrow’s theorem, one might think that it is because the BCF has a 

restricted domain, so violates condition U′, that it can satisfy P′, I′ and N′. But this is 

not correct. Recall that within Sen’s framework, the derivation of Arrow’s result 

requires the ONC condition, in addition to conditions U′, P′, I′ and N′. The ONC 

condition says that any two profiles are informationally equivalent, hence should be 

mapped to the same ranking, if one is derivable from the other by applying increasing 

transformations to the functions in the profile. But the BCF does not satisfy this 

condition; on the contrary, it is quite possible to have two profiles < P(Ti), P(E/Ti)> 

and < Q(Ti), Q(E/Ti)>, where the two prior functions P(Ti) and Q(Ti) rank the theories 

identically, and the two likelihood functions P(E/Ti) and Q(E/Ti) also rank them 

identically, and yet the overall rankings, generated by the BCF, are different in the 

two cases. 

  This prompts the question: which measurability/comparability assumption is 

appropriate for the Bayesian theory choice functional? Since probabilities are 

measured on an absolute scale, the answer is clear: absolute full comparability (AFC). 

Given a profile < P(Ti), P(E/Ti)>, applying any transformation to it other than the 

identity transformation will alter its informational content—for the actual probability 

numbers are meaningful.F

21
F So the prior probability function contains much more than 

the merely ordinal information that gives rise to Arrovian impossibility; the same is 

true of the likelihood function. 

 Therefore, the Bayesian theory choice functional violates two of the 

conditions that are required to generate Arrow’s impossibility result in Sen’s 

framework—U′ and ONC. The fact that the BCF has a restricted domain is not 

crucial—what matters is the fact that it uses more than ordinal non-comparable 

information. For even with the domain restriction appropriate to the BCF, if the ONC 

condition were imposed, then the P′, I′ and N′ conditions would be jointly 

unsatisfiable (see Appendix for proof.) The fact that the BCF satisfies the latter three 

                                                 
21 Probabilities are measured on an absolute scale modulo the convention that the sure event has 

probability 1. If this convention were relaxed, i.e. if we chose some other positive number for the 

probability of the sure event, then probability would become ratio-scale measurable. 
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conditions is therefore attributable to the richness of the information fed into it, rather 

than to its restricted domain. 

 This illustrates how Sen’s escape route from Arrow does apply to theory 

choice. The Bayesian theory choice functional constitutes a kind of algorithm for 

theory choice, and does satisfy the Arrovian conditions (other than U′); this is 

possible because the appropriate measurability/comparability assumption is AFC, 

rather than ONC. The BCF is by no means the only theory choice functional that 

satisfies AFC and the Arrovian conditions; so there is potential for a Kuhnian ‘no 

unique algorithm’ argument. However, such an argument would have to counter the 

Bayesians’ argument for why their theory choice functional is the ‘correct’ one. This 

important issue cannot be addressed here. My aim has only been to illustrate how in 

theory choice, enriching the informational basis permits an escape from Arrovian 

impossibility, just as it does in social choice. 

 A second illustration of this point is provided by a quite different approach to 

scientific inference, namely statistical model selection. This approach is a 

sophisticated variant of what philosophers call the ‘curve fitting’ problem, or inferring 

the functional relation between two variables from finite data. However, unlike in 

more simplified discussions of curve-fitting, it is assumed that the data are ‘noisy’, 

that is, the data points are affected by measurement error. The aim is to choose 

between alternative hypotheses about the functional relation between two variables x 

and y, from the noisy data. Two criteria are used: simplicity and fit-with-the-data. The 

two will often exhibit a trade-off: improving fit means sacrificing simplicity. Clearly, 

we have here the ingredients for a Kuhnian ‘no unique algorithm’ claim – there are 

many conceivable ways of combining fit and simplicity into a single decision rule. 

In a typical model selection problem, we start with a number of families of 

hypotheses. For example, one family consists of all hypotheses of the form y = a + bx, 

a, b  ; let us call this family LIN. Another family, PAR, consists of all hypotheses 

of the form y = a + bx + cx
2
; and a third, EXP, consists of all hypotheses of the form y 

= a
x
. The real numbers a, b and c are called free parameters; and the simplicity of a 

hypothesis is defined as the number of free parameters in its family. Thus each 

hypothesis in LIN is simpler than each in PAR. Next, one finds the best-fitting 

hypothesis in each family, denoted L(LIN), L(PAR) and L(EXP) respectively; the 

criterion of best-fit is highest likelihood, where ‘likelihood’ has its customary 
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statistical meaning (roughly, the probability of observing the actual data, if the 

hypothesis were true.) 

 In the statistical literature, there exist various suggestions for how to combine 

simplicity and fit into a decision rule (Forster 2001); such a rule would allow us to 

choose between the three hypotheses L(LIN), L(PAR) and L(EXP), in the above 

example. One of the best-known is the Akaike criterion, which says that that we 

should choose the hypothesis with the highest Akaike score; the Akaike score of a 

hypothesis H is defined as [log-likelihood H − k], where k is the number of free 

parameters of the family to which the hypothesis belongs. Therefore, the better a 

hypothesis fits the data the higher its Akaike score; however, there is a penalty for 

complexity, that is, for having lots of free parameters. Thus Akaike’s criterion 

combines simplicity and fit-with-the-data into a single algorithm for hypothesis 

choice, which ranks the hypotheses from best to worst. Obviously, there are many 

other conceivable algorithms, but there exist sophisticated arguments for why 

Akaike’s is the ‘correct’ one. 

 To relate statistical model selection to social choice, think of log-likelihood Hi 

and ki as ‘utility functions’, each of which assigns a number to each hypothesis 

reflecting, respectively, its fit and its simplicity. Then consider the set of all ordered 

pairs (profiles) of the form <log-likelihood Hi, ki>—these are all the possible 

combinations of fit with simplicity. Then consider the function from this set to the 

ranking of hypotheses generated by the Akaike score. Formally, this function 

corresponds to the social choice functional of section 6 and the theory choice 

functional of section 7. Let us call it the ‘Akaike choice functional’. 

 Now we can ask: does the Akaike choice functional satisfy the Arrovian 

conditions? It is easy to see that conditions P′, I′ and N′ are all satisfied, by an 

argument parallel to the one given above for the Bayesian choice functional. But 

condition U′ (unrestricted domain) is not satisfied—for the log-likelihood function 

only takes negative values and the free parameter function only takes positive integer 

values, which implies a domain restriction. What about the ONC (ordinal non-

comparability) assumption? This is not satisfied either. It is not the case that if one 

profile can be got from another by applying increasing transformations to the two 

‘utility’ functions, that the Akaike choice functional will necessarily map them to the 

same ranking. Again, the appropriate assumption, in lieu of ONC, is absolute full 

comparability (AFC); since the actual numbers assigned by the two functions are 
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meaningful, any transformations will change their informational content. As with the 

Bayesian choice functional, it is because the Akaike choice functional does not satisfy 

ONC, rather than because of its restricted domain, that it is able to satisfy conditions 

P′, I′ and N′.F

22
F  

Again, the point of this is not to defend the Akaike criterion in particular, but 

rather to illustrate how Sen’s moral—that enriching the informational basis can avoid 

Arrovian impossibility—applies to theory choice. The information we feed as input 

into the Akaike choice functional is far more than merely ordinal, which explains why 

it satisfies the Arrovian conditions (other than U′). Of course there are many 

alternative functionals, besides Akaike’s, that will also satisfy those conditions, so 

again, escaping the Arrovian predicament may land us in the Kuhnian one. However, 

there are also arguments for why the Akaike criterion is the uniquely ‘correct’ one; so 

it may be that both predicaments can be avoided. A proper assessment of this issue 

cannot be undertaken here. 

 

9. Conclusion 

Although Kuhn’s ‘no algorithm’ thesis is quite widely accepted in philosophy of 

science, there have been few attempts to subject it to serious scrutiny. To remedy this 

situation, I have used the machinery of social choice theory, and tried to relate Kuhn’s 

thesis to Arrow’s famous impossibility theorem. Though superficially similar to 

Kuhn’s, Arrow’s conclusion that there is ‘no algorithm’ for social choice is in fact 

quite different. For Kuhn’s claim is that there are many algorithms, all equally 

acceptable, while Arrow’s claim is that no algorithms meet minimum standards of 

acceptability. 

 By identifying Kuhn’s five criteria with Arrow’s individuals, the theory choice 

problem was seen to have the same structure as a standard social choice problem. 

Moreover, Arrow’s four conditions seem as defensible for theory choice as they are 

for social choice, which raises the spectre of an Arrovian impossibility result for 

theory choice. Such a result would constitute a refutation of Kuhn’s thesis, but would 

also pose a threat for the rationality of science; a threat that if anything is more 

worrying than that posed by Kuhn.  

                                                 
22 An argument parallel to the one given in the Appendix shows that with the domain restriction 

appropriate to the Akaike choice functional, conditions P′, I′ and N′ are jointly unsatisfiable if ONC is 

assumed. Thus it is the violation of ONC, not the domain restriction, that permits the satisfaction of 

conditions P′, I′ and N′. 
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A number of possible ‘ways out’ of the impossibility, while remaining within 

Arrow’s framework, were canvassed; these included confining attention to binary 

theory choices and accepting a serial dictatorship of ‘accuracy’. More promising was 

Sen’s idea of moving to a different framework by enriching the informational basis, 

that is, going beyond the ordinal, non-comparable information that Arrow starts with. 

Applying Sen’s idea to theory choice raised difficult questions about the appropriate 

measurability/comparability assumptions; however, we showed by example that two 

well-known approaches to theory choice, Bayesianism and statistical model selection, 

avoid Arrovian impossibility precisely by incorporating more than ordinal, non-

comparable information. 

 Finally, what then of Kuhn’s ‘no algorithm’ thesis? Is it correct? No simple 

answer to this question emerges from the foregoing analysis. It may be that we can 

avoid Arrovian impossibility only by opening the door to many different algorithms, 

thus vindicating Kuhn; but we should not rule out the possibility of finding additional 

rationality constraints which considerably narrow down the acceptable ones, possibly 

even to uniqueness. Although my analysis does not provide a definitive resolution, I 

hope to have identified the sorts of consideration that are relevant to determining 

whether Kuhn’s thesis is correct.F
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Appendix 

Consider a finite set X of pair-wise exclusive theories {T1,  , Tn}. We assume X is a 

partition of logical space.F

24
F Let Y be the set of all orderings of X. 

There are two ‘individuals’, each with a real-valued ‘utility’ function over X, denoted 

u1 and u2 respectively. A profile (ordered pair) of utility functions, one for each 

individual, is denoted <u1, u2>.  

Let D be the set of all possible profiles.  

Let R  D be the set of all profiles satisfying the condition: for all individuals i, and 

all x  X, 0 ≤ ui(x) ≤ 1, i.e. both utility functions can only take values in [0,1]. 

Let T  R be the set of all profiles satisfying the additional condition: ∑ u1(Ti) = 1, 

i.e. the utilities that individual 1 assigns to the theories sum to 1. 

So we have T  R  D (see diagram). 

 

D 

 d          

  

 

 

 

 

 

 

 

 

By Arrow’s theorem (in Sen’s framework), there exists no function f: D→Y 

satisfying the conditions P′, I′, N′ and ONC. 

We wish to show that there is no function f: T→Y satisfying the conditions P′, I′, N′ 

and ONC. 

We show firstly that there is no function g: R→Y satisfying the conditions P′, I′, N′ 

and ONC. 

 

                                                 
24 Taking X to be a partition makes the second half of the proof easier, as it allows us to assume that ∑ 

u1(Ti) = 1 as opposed to merely ∑ u1(Ti) ≤ 1, but could easily be relaxed. 
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1. Suppose for reductio that there exists a function g: R→Y satisfying conditions P′, 

I′, N′ and ONC.  

Let S  R be the set of all profiles satisfying the condition: for all individuals i, and 

all x  X, 0  ui(x)  1. 

Since g satisfies P′, I′, N′ and ONC, and since g has domain R and S  R, then there 

exists a function g: S→Y satisfying the conditions P′, I′, N′ and ONC.  

Let t: →(0,1) be any increasing function mapping the real number line onto the 

open unit interval, e.g. t(x) = [x-2]
-1

 if x< 0, t(x) = [x+1]/[x+2] if x ≥0. 

Let h be the result of applying the transformation ui(x) → t[ui(x)] to each individual’s 

utility function in each profile <u1, u2> in D. Therefore h: D → S maps each profile in 

D onto a profile in S. 

The function g  h (‘g after h’) then has domain D and range Y. 

Since g satisfies conditions P′, I′, N′ and ONC, and since t is increasing, it follows 

that g  h satisfies conditions P′, I′, N′ and ONC too. But by Arrow’s theorem no 

function with domain D satisfies these conditions.  

Therefore there is no function g: R→Y satisfying conditions P′, I′, N′ and ONC. 

 

2. Suppose for reductio that there exists a function f: T→Y satisfying the conditions 

P′, I′, N′ and ONC. 

Let r: [0,1] →[0,1] be a function mapping individual 1’s utility function u1(Ti) onto 

[u1(Ti) / [(u1(T1) + u1(T2) +,  , + u1(Tn)]]. (Applying r to individual 1’s utility 

function has the effect of normalizing it, to ensure that ∑ u1(Ti) = 1.) 

Let h be the result of applying the transformation <u1, u2> → <r(u1), u2>  to each 

profile in R. Therefore h: R→T maps each profile in R onto a profile in T. 

The function f  h (‘f after h’) then has domain R and range Y. 

Since f satisfies conditions P′, N′ and ONC, and since r is increasing, it follows that 

f  h satisfies conditions P′, N′ and ONC too. 

 

To show that f  h satisfies condition I′, consider two profiles <u1, u2> and <v1, v2> 

in R that coincide over the theories T1 and T2, i.e. u1(T1) = v1(T1), u2(T1) = v2(T1) and 

u1(T2) = v1(T2), u2(T2) = v2(T2). 

[Note: it does not follow that <r(u1), u2>  and <r(v1), v2> must also coincide over T1 

and T2.] 
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Choose any profile <r(u1), u2> in T such that:  

(i) r(u1) and r(u1) order the theories in the same way; and  

(ii) r(u1)(T1) = r(v1)(T1), and r(u1)(T2) = r(v1)(T2) 

(There must be such a profile, since r(u1) and r(v1) order T1 and T2 in the same way; 

for all other theories Ti, choose r(u1)(Ti) so as to produce the same order as r(u1).) 

Now, the profiles <r(u1), u2> and <r(v1), v2> coincide over T1 and T2, so f must map 

them onto orderings of the set X in which T1 and T2 are ranked identically, by 

condition I'. 

Since r(u1) and r(u1) order the theories in the same way, f must map <r(u1), u2> and 

<r(u1), u2> onto the same ordering of the set X, by condition ONC. 

Therefore, f must map <r(u1), u2> and <r(v1), v2> onto orderings of the set X in 

which T1 and T2 are ranked identically.  

Therefore, f  h maps <u1, u2> and <v1, v2> onto orderings of the set X in which T1 

and T2 are ranked identically, i.e. f  h satisfies condition I′. 

 

So f  h has domain R and satisfies conditions P′, I', N' and ONC. However, by part 

1 above, no function with domain R satisfies those conditions. 

Therefore, there is no function f: T→Y satisfying the conditions P′, I′, N′ and ONC. 
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