
Peer reviewed version

Link to publication record in Explore Bristol Research

PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be removed. However, if you believe that this version of the work breaches copyright law please contact open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an initial judgement of the validity of the claim and, where appropriate, withdraw the item in question from public view.
Distributed Spectrum Detection Algorithms for Cognitive Radio

T.J. Harrold, P.C. Faris and M.A. Beach

Thursday 18th September 2008
Background and Introduction

• For Cognitive Radio networks
 – There is a need to identify the White Space in the spectrum
 – The capabilities of the terminals could allow them to perform spectrum sensing to achieve this
 – The sensing task could be implemented more accurately/efficiently by teaming of terminals

• This technique introduced in this work
 – Decides whether a single channel is occupied
 – Shares results between CR nodes to improve performance
Background and Introduction

Spectrum Occupancy and White Space
Spectrum Sensing Challenges

- Maintaining an up to date picture of spectrum occupancy is difficult
 - Transmitters may be agile
 - Path loss may suffer temporal changes between transmitter and sensor
 - Transmitter may be temporarily hidden due to shadowing

- Getting it wrong
 - False detection: lost re-use opportunity
 - Missed transmission: potential interference
Distributed Sensing
Distributed Sensing

\[Q = [X_1 \ldots X_N] \begin{bmatrix} D_1 \\ \vdots \\ D_N \end{bmatrix} + [Y_1 \ldots Y_M] \begin{bmatrix} T_1 \\ \vdots \\ T_M \end{bmatrix} + S \times Z \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>Number of previous results/time-steps included</td>
</tr>
<tr>
<td>(N)</td>
<td>Number of neighbouring nodes included</td>
</tr>
<tr>
<td>(X_n)</td>
<td>Sensing result from neighbouring node (n) [+1,-1]</td>
</tr>
<tr>
<td>(D_n)</td>
<td>Weighting factor according to distance applied to neighbouring node (n)</td>
</tr>
<tr>
<td>(Y_m)</td>
<td>Result from (m) time-steps previously</td>
</tr>
<tr>
<td>(T_m)</td>
<td>Weighting applied to previous result (m)</td>
</tr>
<tr>
<td>(S)</td>
<td>Weighting applied to the node’s own result</td>
</tr>
<tr>
<td>(Z)</td>
<td>Node’s own result [+1,-1]</td>
</tr>
<tr>
<td>(Q)</td>
<td>Final result [positive, negative]</td>
</tr>
</tbody>
</table>
Weighted Algorithm

• Various Trade-offs exist
 – How many neighbour nodes to include?
 – How to weight the importance of neighbour nodes’ decisions?
 – How to weight the importance of the own node’s decision
 – How to weight historic results

• Factors
 – Extra control traffic required
 – Accuracy of results and false-positives
Simulations

• MATLAB simulations to test algorithm performance
 – Sensor nodes deployed randomly
 – Aim is to test the probability of detecting a transmission
 – Compare single node vs distributed algorithm

• 5 Different transmitter types to detect
 – Distinguished by transmitter power

• 3 scenarios
 – Simulation area
 – Path loss exponent
 – Shadowing variance
Simulations
Performance – Single Node Sensing

Probability of detection

Rural
Urban
Dense Urban

Primary system type

TV
UMTS Microcell
UMTS Macrocell
TV Broadcast
DVB-T 27dBW

TV Broadcast 50dBW
UMTS Microcell 17dBW
UMTS Macrocell 32dBW
TV Broadcast 47dBW
DVB-T 27dBW
Performance – With Distributed Detection

- **TV Broadcast**: 50dBW
- **UMTS Microcell**: 17dBW
- **UMTS Macrocell**: 32dBW
- **TV Broadcast**: 47dBW
- **DVB-T**: 27dBW

The diagram shows the probability of detection for different primary system types in various urban settings: Rural, Urban, and Dense Urban. The y-axis represents the probability of detection, ranging from 0% to 100%. The x-axis lists the primary system types.
Sensitivity – Node Density

- Dense Urban Scenario – 1km²

Probability of Detection vs. No. of Receivers per sq. km
Sensitivity – Number of Neighbours

Primary System Type

- TV Broadcast 50dBW
- UMTS Microcell 17dBW
- UMTS Macrocell 32dBW
- TV Broadcast 47dBW
- DVB-T 27dBW

Probability of Detection

No Sharing
5 Neighbouring Nodes
10 Neighbouring Nodes
15 Neighbouring Nodes
Conclusions

• Sharing of single channel sensing information
 – Can greatly improve detection accuracy
 – >99% accuracy has been shown in these simulations
 – Not so good for lower power transmissions in highly shadowed propagation environments

• Applications and further work
 – Allocation of sensing task for multiple channels
 – WiMAX bandsharing with swept radar
 – Real-time updating
 – Spectrum Access
• Thank you for your attention