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1. INTRODUCTION

In this note we consider the estimates of stability for the simplest generalization of
nonstationary Erlang queueing model. There is a number of investigations of nonsta-
tionary continuous-time Markov chains, see for instance first results in [5], and more
detail studies for birth and death processes (BDPs) in [I [6]. Now we consider nonsta-
tionary M;/My/N/N + R queue and obtain some simple stability bounds.

Let X = X (¢), t > 0 be queue-length process for M;/M;/N/N + R queue. This is a
BDP on state space Ey, g = {0,1..., N + R} and birth and death rates A, (t) = A(¢),
tn(t) = min (n, N) u(t) respectively. We suppose that arrival and service intensities
A(t) and pu(t) are locally integrable on [0,00). Let p;(t) = Pr{X(t) =i} be state
probabilities of X (¢), and p(t) = (po(t), ..., pn+r(t))T be the respective column vector.

Then we can write the forward Kolmogorov system

o — —\(t)po + p(t)p1,
e\ ()ppor — (A1) -+ kp(8) pe + (k + Dp(pen ] < k< N — 1, 0
D = N )pr—1 — (A(#) + Nu(®) pr + Np(t)prs1, N < k < N + R,
Py = \(t)pn—1 — Nu(t)py

in the following form:
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where A(t) = {a;;(t), t > 0} is the transposed intensity matrix of the process, and

A (t) ) if ] =1i- 1’
o min (i + 1, N) p (t), if j=i4+1,
ai(t) = _ (A () +min (4, N)u(t)), if j=1i, @
0, overwise.

We denote throughout the paper by || e || the [1-norm, i.e. ||x]| = ) |y, for x =
(1‘0, ...,IN+R)T and ||B|| = max; Zz |bz]| for B = (sz)i\f’]—i]g

Let @ ={x: x>0, ||x|| = 1} be a set of all stochastic vectors.

Let Fr(t) = E{X(t) |X(0) = k} be the mean of the process at the moment ¢ under
initial condition X (0) = k, and E,(¢) be the mathematical expectation (the mean) at
the moment ¢ under initial probability distribution p(0) = p.

Consider also a "perturbed" queue-length process X = X(t), t > 0 with general
structure of intensity matrix A(¢). In general, X () is not BDP. Put A(t) = A(t) — A(t).
We assume that the perturbations are uniformly small, i.e. ||A(t)|| < ¢ for almost all
t>0.

2. STABILITY BOUNDS

Let dy,...,dnyr be positive numbers. Consider the following expression:
o dit1 div . .
a;(t) = A(t) + min (i, N) p(t) — d A(t) — 7 min (1 —1,N) pu(t),
i=1,2,...,N+R, (4)

where do = dN+R+1 =0. Put G = Zf\;TR dz and d = min1§i§N+R dz

Theorem 1. Let there exist a positive sequence {d;} and a positive number 6 such
that
a;(t)y >0, 1=1,2,...,.N+R, t>0. (5)

Then the following stability bounds hold:

€ (1 +log%)

limsup [|p(t) — p(t)[| < ———F—5, (6)
t—00 9
and log 1€
_ N+ R 1+ ==
lirnsup‘Ep(t)—E,—)(t)‘ < ( )8(9 o8 d), (7)
t—00

for arbitrary initial probability distributions p(0) and p(0) for X(t) and X (t) respec-
tively.

Proof. Firstly we find the basic estimate of the rate of convergence. The property
SV pi(t) = 1 for any t > s allows to put po(t) = 1 — 3,0, pi(t), then we obtain the
following system from (2))
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dz(t)
dt
where z(t) = (pi(t),...,pver®)”, £(1) = (A(1),0,...,0)", B(t) = (sz(t))iv;}f and
respective b;;(t), see details in [7, 8]. Consider now the triangular matrix

= B(t)a(t) + £(t), (8)

di dy dy --- d,
0 dy dy --- ds
D = 0 0 dg --- ds , (9)

00 0 0 dyg
and the respective norms ||x||;p = ||Dx]||, and ||B||:p = ||DBD||.

We have now the following bound of the logarithmic norm + (B(¢)) in 1D—norm
(see for instance |2} 3] [7, 9]):

8y = max (A0 % min - 1V ()~

i d; d;
(A(t) + min (¢, N) p(t))) = max (—q; (t)) < =¥, (10)

in accordance with (Bl). Therefore the following inequality holds:

lz*(t) = 2 () lip < e l2" (s) — 2" (5) i, (11)

for any initial conditions z*(s) , z**(s) and any s,¢, 0 < s < ¢. Then we obtain

lp*(1) = p™ ()| < 2[]2°(1) — 2" ()] =
2[[D7ID (2*(t) — 2 (1)) || <

4 k kk
(@) = 27 (1) <
4

S|z (s) = 27 (5) i
4G
—e |2 (s) — 27 (s)

d
4G —0(t—s * *ok 8G —0(t—s
et () = p (s < e,

IN

(12)

IN

for any initial conditions p*(s) , p*(s) and any s,t, 0 < s < t.
Consider the forward Kolmogorov system for perturbed process:

D Aol (13)
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We can apply the approach of paper [4]. Put

B(t,s) = sup UL, s)v]| =
V=13 =0
1
5 H%Z‘-sz: pik(t, s) — pir(t, 5)], (14)

where U(t, s) is Cauchy matrix of (2], and p;(t,s) = Pr{X(t) = k|X(s) = i}. Mitro-
phanov in [4] proved the bound of stability, that in the nonstationary case is the fol-
lowing one:

Ip(t) =) < B(# s)l[p(s) = D(s)] +/ 1A()lIB(u, 5) du. (15)

Moreover, the following estimates hold:
—b(t—s)

2

ce

Blt,s) <1, Pt s) <

, 0<s<t, (16)
where under our assumptions ¢ = %, b = 0. Finally the following stability bound holds:

Ip(s) = B(s)]| + (£ — s)e,
0<t—s<bllogs,
-1 c _ ap—b(t—s)
b~'(log 5 +1—ce e+
) p(s) = p(s)ll, t—s>b7"logs,

Ip(t) —p(®)[| < (17)

c
26

for any initial conditions p(s), p(s). Let t — s — oo. Then (7)) implies our claim. [

Consider here the case of sufficiently large service rate, namely let there exist d > 1
such that the following assumption holds:

Nu(t) —dA(t) > 0 >0, (18)
for any t > 0.
Put dy =1, %2 =6, =1, k<N —2,and %2 =g, =d, k> N - 1.
Then

w(t), k<N —1;
) owm-w-oae, F= N1
(1) = (155)(%@)—@()), N<k<N+R-2 (19)
Nu(t)(1—2)=X(), k=N+R-1.
Let d < %, then we obtain
0= inf oy (1) = (1 - %) (N () — dA (1)) > (1— é) 0. (20)

Hence we obtain the following statement.
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Theorem 2. Under assumption (I8) stability bounds (6) and () hold for 6 =
(1-1)6,d=1,and G =N -1+ d"

Let now our original process have 1-periodic intensities.

Then the following claim holds.

Theorem 3. Let A(t) and p(t) be 1-periodic. Let there exist a positive sequence {d;}
and a positive number ¢* such that

a;(t) > (), i=1,2,..., N+R0<t<1, (21)
where )
/ ot dt > o (22)
0
Let
¢
K = sup /cp(T) dr < o0. (23)
jt—sl<1

S

Then we have the following stability bounds:

5 (1 + log %)
limsup ||p(t) — p(?)|| <

t—o00 90*

, (24)

and
K
(N+R)e <1+10g%>

limsup | Ep(t) — E5(t)| <

t—00 p*

: (25)
for arbitrary initial probability distributions p(0) and p(0) for X (t) and X (t) respec-
tively.

Proof. The statement follows from inequality e~ Js #() dv < Keg=9"(t=5) O

In the case of sufficiently large service rate we obtain the following claim.

Theorem 4. Let arrival and service rates be 1-periodic, and let

1

/ (Nu(r) — dA(F)) dr = v > 0, (26)

0

instead of (I8). Then stability bounds (24) and (Z3) hold for o* = (1—3) ¢, d =1,
and G = N — 1+ S 4 db,
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