
ASYMPTOTIC ANALYSIS OFMARKOV QUEUEING NETWORKWITH UNRELIABLE SYSTEMSS. Statkevih, T. RusilkoGrodno State University of Y. KupalaGrodno, Belarussstat�grsu.byThe losed exponentional queueing network with unreliable systems with the largenumber of messages is investigated. We have reeived the systems of di�erential equa-tions for average number of messages and servieable hannels of network systems.Keywords: unreliable queueing systems, approximation.1. INTRODUCTIONLet us examine the losed exponential queueing network with the K messages ofthe same type whih onsist of n+1 queueing systems (QS) S0; S1; : : : ; Sn. The systemSi inludes mi idential servie hannels, i = 1; n, and m0 = K.Considering that servie hannels of the system S0 are absolutely reliable and inthe other systems systems S1; S2; : : : ; Sn the servie hannels are exposed to randomfailure; besides the time of the proper funtionality of eah Si system's hannel hasthe exponential distribution with the parameter �i, i = 1; n. After the breakage thehannel starts to reonstrut immediately. The time of reonstrution also has theexponential distribution with the parameter i, i = 1; n. After serviing in system Sithe message immediately transfer into the system Sj with probability pij, i; j = 0; n,p00 = 0, nXi=0 pij = 1. The matrix P = kpijk(n+1)�(n+1) is transition probability matrixof irreduible Markov hains. If the arrived in the system Sj message �nds at least oneservie hannel operable and free from the other messages it is immediately serviedand the time of servie is a random variable with the parameter �i, i = 1; n. Otherwisethe message expets the beginning of servie without restrition on duration of waiting.Let's assume that if the servie hannel would fail while ompleting some message,then after the restoration the interrupted message will be ompleted. Disiplines of themessage proessing in the network systems are FIFO.Our aim is to reeive the system of the di�erential equations for the average numberof messages and servieable hannels in the network QS at the large values of K. Itshould be noted that the presented tehnis of the results reeption has been o�ered forthe �rst time in the works [1, 2℄ for the exponentional networks without the spei�edfeatures (with reliable QS). 230
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2. THE SYSTEM OF EQUATIONS FOR THE STATESPROBABILITIESAssuming that the servie time of messages, durations of servieable work of hannelsand restoration time of servie hannels are independent random variables. The stateof suh network at the moment t ould be desribed through vetorz(t) = (d(t); k(t)) = (d1(t); d2(t); : : : ; dn(t); k1(t); k2(t); : : : ; kn(t)); (1)where di(t) and ki(t) are the numbers of servieable hannels and the messages numbersin the system Si at the moment t aordingly, 0 � di(t) � mi, 0 � ki(t) � K,t 2 [0;+1). It is obvious that k0(t) = K � nXi=1 ki(t) is the number of messages inthe system S0 at the moment t.Vetor z(t) desribes 2n�dimensional Markov proess with the ontinuous time andthe de�nite number of states. Let's onsider, thatP (d; k; t) = P (d(t) = d; k(t) = k);where d = (d1; d2; : : : ; dn), 0 � di � mi and k = (k1; k2; : : : ; kn), 0 � ki � K, i = 1; n.Let's denote Ii as n�vetor with zero omponents exluding i, that is equals to 1. Let'sdesribe the possible passages of Markov proess z(t) in the state z(t+�t) = (d; k; t+�t)at the time �t:� from the state (d; k + Ii � Ij; t) the passage is possible with the probability�ipij min (di(t); ki(t) + 1)�t+ o(t); i; j = 1; n;� from the state (d; k � Ii; t) with the probability�ipij  K � nXi=1 ki(t) + 1!�t + o(t); i = 1; n;� from the state (d; k + Ii; t) with the probability�ipi0min (di(t); ki(t) + 1)�t + o(t); i = 1; n;� from the state (d� Ii; k; t) with the probabilityi(mi � di(t) + 1)�t+ o(t); i = 1; n;� from the state (d+ Ii; k; t) with the probability�i(di(t) + 1)�t + o(t); i = 1; n;� from the state (d; k; t) with the probability1� "�0 K � nXi=1 ki(t)!+ nXi=1 �imin(di(t); ki(t))++ nXi=1 i(mi � di(t)) + nXi=1 �idi(t)#�t + 0(�t);231



� from all other states with the probability o(�t).Then, the usage of the formula of total probability makes it possible to write thesystem of di�erene equations for the probabilities of states from whih at �t ! 0we reeive the system of di�erene-di�erential equations of Kolmogorov for the statesprobabilitiesdP (d; k; t)dt = nXi=1 nXj=1 �ipij min(di(t); ki(t)) [P (d; k � Ii + Ij; t)� P (d; k; t)℄++ nXi=1 nXj=1 �ipij [min(di(t); ki(t) + 1)�min(di(t); ki(t))℄P (d; k � Ii + Ij; t)++�0 K � nXi=1 ki(t)! [P (d; k � Ij; t)� P (d; k; t)℄ + �0P (d; k � Ij; t)++ nXi=1 �ipi0min(di(t); ki(t)) [P (d; k + Ii; t)� P (d; k; t)℄++ nXi=1 �ipi0 [min(di(t); ki(t) + 1)�min(di(t); ki(t))℄P (d; k + Ii; t)++ nXj=1 i(mi � di(t)) [P (d� Ij; k; t)� P (d; k; t)℄ + nXi=1 iP (d� Ii; k; t)++ nXi=1 �idi(t) [P (d+ Ii; k; t)� P (d; k; t)℄ + nXi=1 P (d+ Ii; k; t): (2)The solution of this system in the analytial form is generally inonvenient. There-fore we will onsider the important ase of the large number of messages in the network,K >> 1. In order to determine probability distribution of the random vetor z(t), it isonvenient to swith to the relative variables, onsidering vetor�(t) = �d1(t)K ; d2(t)K ; : : : ; dn(t)K ; k1(t)K ; k2(t)K ; : : : ; kn(t)K � ;In this ase possible values of this vetor at the �xed t will belong to the bounded losedsetG = ((y; k) = (y1; y2; : : : ; yn; x1; x2; : : : ; xn) : xi � 0; nXi=1 xi � 1; 0 � yi � miK ) (3)in whih they plae in the nodes of the 2n�dimensional grid at the distane " = 1Kfrom eah other. While magnifyingK "the harging density" of the multipleG with thepossible omponents of vetor �(t) will inrease, and it is possible to onsider, that it has232



a ontinuous distribution with the probabilities density p(y; x; t), and K2nP (d; k; t)!p(y; x; t) if K ! 1. Therefore it is possible to use the approximation of the funtionP (d; k; t), using the relation K2nP (d; k; t) = K2nP (yK; xK; t) = p(y; x; t), (y; x) 2 G.Let denote that ei = "Ii, i = 1; n, (b) = � 1; b > 00; b � 0 , andmin(b; a+ 1) = min(b; a) + (b� a); (b� a) = �min(b; a)�a ; (4)thus min(b; a) = � a; b � ab; b < a . Using the relative variables yi = diK , xi = kiK , li = miKfor i = 1; n, expression (4) and that at K ! +1, "! 0, system (2) an be written asfollows: �p(y; x; t)�t = nXi=1 nXj=1 K�ipij min(yi; xi) [p(y; x+ ei � ej; t)� p(y; x; t)℄++ nXi=1 nXj=1 �ipij �min(yi; xi)�xi p(y; x+ ei � ej; t)++K�0 1� nXi=1 xi! [p(y; x� ej; t)� p(y; x; t)℄ + �0p(y; x� ej; t)+ nXi=1 K�ipi0min(yi; xi) [p(y; x+ ei; t)� p(y; x; t)℄++ nXi=1 �ipi0�min(yi; xi)�xi p(y; x+ ei; t)++ nXi=1 Ki(li � yi) [p(y � ei; x; t)� p(y; x; t)℄ + nXj=1 ip(y � ei; x; t)++ nXi=1 K�iyi [p(y + ei; x; t)� p(y; x; t)℄ + nXj=1 �ip(y + ei; x; t): (5)3. THE SYSTEM OF DE FOR EXPECTEDCHARACTERISTICSLet's present the right part (5) with the auray of term "2. If p(y; x; t) is twieontinuously di�erentiated at y and x, thanp(y; x� ei; t) = p(y; x; t)� "�p(y; x; t)�xi + "22 �2p(y; x; t)�x2i + o("2);p(y; x+ ei � ej; t) = p(y; x; t) + "��p(y; x; t)�xi � �p(y; x; t)�xj �+233



+"22 ��2p(y; x; t)�x2i � 2�2p(y; x; t)�xi�xj + �2p(y; x; t)�x2j � + o("2);p(y � ei; x; t) = p(y; x; t)� "�p(y; x; t)�yi + "22 �2p(y; x; t)�y2i + o("2); i = 1; n: (6)Using them and that "K = 1, it is possible to reeive that the density p(y; x; t) satis�eswith the auray within the term "2 to the Kolmogorov-Fokker-Plan equation:�p(y; x; t)�t = � nXi=1 ��yi �A(y)i (y)p(y; x; t)�� nXi=1 ��i �A(x)i (y; x)p(y; x; t)�++ "2 nXi;j=1 �2�yiyj �B(y)ij (y)p(y; x; t)�+ "2 nXi;j=1 �2�xixj �B(x)ij (y; x)p(y; x; t)� ; (7)where A(y)i (y) = i (li � yi) ; i = 1; n; (8)A(x)i (y; x) = nXj=1 �jp�jimin(yj; xj) + �0p0i 1� nXi=1 xi! ; (9)p�ji = � pji; j 6= i;pii � 1; j = i; B(y)ii (y) = i(li � yi) + �iyi; B(y)ij (y) = 0; i 6= j;B(x)ii (y; x) = nXj=1 �jp��ji min(yj; xj) + �0p0i 1� nXi=1 xi! ;p��ji = � pji; j 6= i;1� pii; j = i; B(x)ij (x) = ��ipij min(yi; xi); i 6= j; i; j = 1; n:As the density p(y; x; y) satis�es the Kolmogorov-Fokker-Plan equation and A(y)i (y),A(x)i (x) pieewise linear funtions on y, x, aording to [3℄, the mathematial expeta-tions wi(t) = M �di(t)K �, ni(t) = M �ki(t)K �, i = 1; n, with the auray within theterms of in�nitesimal order O("2) are de�ned from the systems of the equationsdwi(t)dt = A(y)i (wi(t)) = i(li � wi(t))� �iwi(t); i = 1; n; (10)dni(t)dt = A(x)i (wi(t); ni(t)) = nXj=1 �jp�jimin(wj(t); nj(t))�+ �0p0i 1� nXi=1 ni(t)! ; i = 1; n: (11)The right hand sides of system (11) are ontinuous pieewise linear funtions. Bysegmentation of phase spae and obtaining solutions of system (11) in ranges of righthand sides linearity it is possible to solve whole system.234



Let 
(t) = f1; 2; : : : ; ng be set of vetor n(t) omponent indies. Let's divide 
(t)into two disjoint sets 
0(t) and 
1(t):
0(t) = fi : wi(t) < ni(t) � 1g; 
1(t) = fj : 0 � nj(t) � wj(t)g:Eah partitioning spei�es disjoint regions G� (t) in setG(t) = (n(t) : ni(t) � 0; nXi=1 ni(t) � 1);suh that: G� (t) = (n(t) : wi(t) < ni(t) < 1; i 2 
0(t);0 � nj(t) � wj(t); j 2 
1(t); nX=1 n(t) � 1) ; � = 1; 2; : : : ; 2n; 2n[�=1G� (t) = G(t):Then system of equations (11) of expliit form is:dni(t)dt =X0 �jp�jiwj(t) +X1 �jp�jinj(t)++ �0p0i 1� nXi=1 ni(t)! ; i = 1; n; (12)for eah region G� (t).The solution of uniform system of equations (10), (12) allows obtaining average rel-ative number of messages and servieable hannels at any queueing system of queueingnetwork. REFERENCES1. Medvedev G. A. Closed queueing systems and their optimization // Proeedingsof the USSR Aademy of Sienes: Engineering Cybernetis, 1978. � 6. P. 199�203.2. Medvedev G. A. About optimisation of losed queueing systems // Proeedingsof the USSR Aademy of Sienes: Engineering Cybernetis, 1975. � 6. P. 65�73.3. Parajev Y. I. Introdution statistial dynamis of ontrol proesses. M.: Sov. Radio,1976.
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