
SOME MARTINGALE RELATIONSFOR M/G/1 RETRIAL QUEUEH. Oukid1, A. Aissani21 University of Blida,2 USTHB1 Blida, Algeria)2 USTHB, Algeria)aaissani�usthb.dzAbstra
tIn this paper we apply the martingale method due to Ba

elli and Makowski foranalysing the M=G=1 retrial queue. Using the re
ursive equation of the pro
essembedded at depart epo
hs, we 
onstru
t a dis
rete-time martingale stopped atthe �rst passage time where the system be
omes empty. We derive the stability
ondition and study the busy period of this system.Keywords:Retrial queues, Embedded Markov Chain, Martingale, Busy Period.1. INTRODUCTIONDuring the past years, an important resear
h e�ort has been devoted to retrialqueues due to their spe
i�
ity and their ability in modeling several systems. Our queu-ing system is 
hara
terized by the phenomenon that an arriving 
ustomer who �ndsthe server busy upon arrival is obliged to leave the servi
e area and repeat his demandafter some time 
alled retrial time. Between trials, a blo
ked 
ustomer that remainsin a retrial group is said to be orbit. The major analyti
 results and te
hniques usedin retrial systems area are summarized in Yang and Templeton [2℄ and Falin [5℄ surveypapers. We also refer to the synthesis presented by A.Aissani [4℄. Regarding analysis oroptimization for whi
h stability problems are studied, often under spe
i�
 assumptions,the martingale method represents an alternative approa
h; although, this approa
h wasnot very often used Queuing Theory. The purpose of this work is to enlarge the s
opeof appli
ability of martingale method to M/G/1 retrial systems.2. THE MATHEMATICAL MODELWe 
onsider an M=G=1 retrial queuing system where the primary 
ustomers arrivea

ording to a Poisson pro
ess with arrival rate � and the servi
e times are independentand identi
ally distributed with arbitrary probability distribution B(:) and Lapla
e -Stieljes transforms B�(:); Re(s) � 0. The time between su

essive repeated attemptsare exponentially distributed with rate �. If the server is free at the instant of aprimary 
all, the arriving 
ustomer begins servi
e immediately and leaves the system191
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after servi
e 
ompletion. Otherwise, if the 
ustomer �nds the server busy, then it entersorbit and be
omes a sour
e of repeated 
alls (se
ondary 
all sour
e). We de�ne thenumber of 
ustomers in the system at time t to be X(t). Note that this pro
ess isnot a Markov 
hain sin
e it depends on the history of the pro
ess and not just uponthe 
urrent state. So, we 
onsider the dis
rete time pro
ess fXn; n � 1g, where Xn isthe number of 
ustomers in the system as seen by the nth departing 
ustomer. Morepre
isely, fXn = X(tn);n = 1; 2; :::gwhere tn is the departure time of the nth 
ustomer. A

ording to the resultsestablished in [6℄, Xn+1 = Xn + An+1 � ÆXn ; n � 1: (1)where An is the number of primary 
alls during the nth 
ustomer servi
e time;ÆXn = 1 If the (n + 1)th 
ustomer 
omes from the orbit and ÆXn = 0 otherwise. Therandom variables An are mutually independent and their joint distribution is given byP (An = k) = Z 10 (�t)kk! e��tdB(t); k = 0; 1; 2; :::;n � 1: (2)The generating fun
tion of this distribution isa(z) = 1Xk=0 zkP (An = k) = B�(�� �z)); 0 � z � 1: (3)where B�(s) is the Lapla
e-Stieltjes transform of the servi
e time probability distri-bution. Let (
;=; P ) be the basi
 probability spa
e, where = is the �-algebra generatedby the input parametri
 sequen
es. We also de�ne the in
reasing sequen
e of sigma-algebras =n by =n = �fAm : 0 < m < ng generated by the sequen
e of events fAmg.Consequently the random variables Xn are =n-measurable and the random variableAn+1is independent from the Fn �-algebras. With the above notations and using theproperties of the 
onditional expe
tationsE(zXn+1==n) = zXn�ÆXna(z)a:s: (4)3. THE MARTINGALEWe 
an de�ne a martingale Mn(z) with �ltration (=n) byM0(z) = zX0Mn(z) = zXn zPn�1k=0 ÆXka(z)n ; 0 � z � 1 (5)is an integrally positive martingale. 192



Proof. It is not di�
ult to see that the sequen
e fMn(z); n 2 Ng is a positive martingalesin
e E(Mn+1(z)==n) = Mn(z) (6)Moreover, from the Martingale theorem [7℄it is integrable.The quantity � = �� is 
alled the tra�
 intensity i.e. the mean number of arrivalsper mean servi
e time.4. STABILITY OF THE M/G/1 RETRIAL SYSTEMWe �rst study the instability of the M/G/1 retrial system.Theorem 1. Under the assumption � > 1, the M=G=1 retrial system is unstable,and additionally, we have a.s. limn!1Xn =1Proof. For every 0 < z � 1 and every n 2 N , the relation (5) implies thatE(ZXn+1==n) � a(z)z zXna:s: (7)Under the assumption � > 1 and sin
e a(:) is 
onvex, then a

ording to Taka
slemma [6℄ ( p .47), we 
an �nd z0 su
h 
0 = a(z0z0 < 1. Consequently E(zXn0 ==n) �C0zXn0 � zXn0 a.s., whi
h proves that the sequen
e fzXn0 ; n 2 Ng is an a.s. majorizedby a 
onstant a = 1 positive super martingale. A

ording to [6℄ ( th II-2-9, p26), thissequen
e 
onverges then a.s. On the other hand, by using the Dominated Convergen
eTheorem, we obtain limnE(zXn0 ) = E(limnzXn0 (8)By re
urren
e on n, we dedu
e thatE(zXn0 ) � 
n0E(zX00 � 
n0 (9)Passing to the limit when n tends to the in�nity, we getlimnE(zXn0 ) = E(limnzXn0 ) = 0 (10)whi
h implies that limnE(zXn0 ) = 0 a.s. for 0 < z0 < 1. This leads to the result.The 
ase where � � 1 remains for study.We 
onsider � as an arbitrary stopping time for =n and we de�ne the randomvariable �(�) as the �rst instant after the time �where the system 
omes ba
k to itsempty state. That is �(�) = inffn � 1 : X�+n = 0g; if� <1; (11)�(�) = 0; otherwise;with the 
onvention that inff;g = +1. The following theorem formulates a
onservation law for the re
allM=G=1 system and that is essential to prove the stabilityresult. 193



Theorem 2. For 0 < z � 1 and under the assumption � � 1,E(1[�<1;�(�)<1℄ zP�(�)�1k=� ÆXka(z)�(�) ==�) = 1[�<1℄zX�a:s: (12)Proof. We 
onsider �(�) = �+ �(�) a stopping time for f=t; t 2 Ng. For every t � 0 ,�(�)^t and �^t will still be the stopping times. It is 
lear that 8�^t � �(�)^t. Sin
efMn(z)g10 is an integrable positive martingale, then a

ording to [7℄ ( 
or.IV-2-6,p.67),we have for every 0 < z � 1 and t 2 NE(M�(�)^t(z)==�^t) = M�^t(z)a:s: (13)By using proposition II-1-3 of [7℄ ( p21) and the =�^t measurability of the event[� < t℄, the equality (13) writes up as followE(1[�<t℄M�(�)^t(z)==�^tM�^t(z)a:s: (14)On the other hand, sin
e a(:) is 
onvex and � � 1 then a

ording to Taka
s lemma[6℄( p47℄, for 0 < z � 1 we have z < a(z). Consequently, for every 0 < z � 1 and t 2 N ,0 � 1[�<t℄zX�(�)^t zP�(�)^tk=0a(z)�(�)^t � 1[�<t℄z�P�(�)^tk=0 �1ÆXk (15)5. MAIN RESULTWe formulate, now the main result,Theorem 3. Assume that � = ��B�0(0) � 1 , and the sequen
e of servi
e timesforms a renewal sequen
e, then there exists a sequen
e f�n(n)g11 of a.s. �nite =n-stopping times su
h that X�n = 0 on f�n < 1g and �n + 1 � �n+1; 8n 2 N�. Addi-tionally, if �n+1 := �n+1 � �nforalln > 0, then the random variables f�n(n)g12 form ani.i.d. sequen
e independent of �1 andE(�n+2) = 	(1)1� �; if� < 1; (16)E(�n+2) =1; if� = 1; (17)where 	(1) = e(�� R 10 1�a(u)a(u)�udu� .The proof of the theorem 3 follows the methodology of Ba

elli and Makowski [1℄using the above Martingale relations and the fa
t that for the M/G/1 Retrial Queue,the busy period satis�es the equationE(�(�)) = I1exp��� Z 10 1� a(y)a(y)� ydy194
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