
STOCHASTIC BOUNDS FOR THEMEAN CHARACTERISTICS OF ANM/G/1 QUEUE WITH GENERALRETRIAL TIMESM. Boualem1, N. Djellab2, D. A��ssani11 Laboratory of Modelization and Optimization of Systems(LAMOS), University of B�eja��a,2 Department of Mathematis, University of Annaba1 B�eja��a, Algeria2 Annaba, Algeriarobertt15dz�yahoo.frThe main goal of this paper is to investigate various monotoniity properties of asingle server retrial queue with a �rst-ome-�rst-served (FCFS) orbit and general retrialtimes using the stohasti order relations (strong stohasti (�st), inreasing onvex(�ix), and Laplae ordering (�L)) in order to derive performane indies bounds.Keywords: Retrial queues, Stohasti ordering, Monotoniity, Ageing distributions.1. INTRODUCTIONThe retrial queueing system has been studied extensively due to its wide applia-bility. Apart from theoretial interest, it has been suessfully applied in telephoneswithing systems, teleommuniation networks, and omputer networks [1℄.In almost all models of retrial queues, the time between retrials for any ustomer isassumed to be exponentially distributed. In reent years, retrial queueing systems withgeneral servie times and nonexponential retrial time distribution have reeived littleattention [3, 6℄. An important harateristi of the general retrial times poliy is thatwe always obtain analytial solutions in terms of losed-form expressions. The generalretrial times poliy arises naturally in problems where the server is required to searhfor ustomers, that is, this poliy is related to many servie systems where, after eahservie ompletion, the proessor will spend a random amount of time in order to �ndthe next item to be proessed.Many e�orts have been devoted to derive performane measures suh as queue lengthdistribution, waiting times distribution, busy period distribution et. in retrial queues.In many ases the behavior of the retrial queue is desribed by the Markov hainwith spatially inhomogeneous in�nitesimal generator (or transition probability matrix)aused by transitions due to repeated attempts. This spatial inhomogeneity often leadsthe analytial omplexity and bounds and/or approximations are used instead.Stohasti omparison methods have been used to produe bounds and approximations38
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for queue length proesses and waiting times in many queueing systems. For the de-tailed results about the omparison methods and their appliations, e.g. see [4, 5℄In this paper we study some monotoniity properties similar to Boualem et al. [2℄,for an M=G=1 queue with general servie times and nonexponential retrial time distri-bution under FCFS orbit disipline. The performane harateristis of suh a systemare available in G�omez-Corral [3℄. We prove the monotoniity of the transition oper-ator of the embedded Markov hain relative to strong stohasti ordering and onvexordering. We obtain omparability onditions for the distribution of the number ofustomers in the system. Inequalities are derived for the mean harateristis of thebusy period, number of ustomers served during a busy period, number of orbit busyperiods and waiting times.2. DESCRIPTION OF THE QUEUEING SYSTEMWe onsider a single server retrial queue with general servie times and nonexponen-tial retrial time distribution under FCFS orbit disipline. Primary ustomers arrive in aPoisson proess with rate �. If the server is free, the primary ustomer is served imme-diately and leaves the system after servie ompletion. Otherwise, the ustomer leavesthe servie area and enters the retrial group in aordane with an FCFS disipline. Wewill assume that only the ustomer at the head of the orbit is allowed for aess to theserver. If the server is busy upon retrial, the ustomer joins the orbit again. Suh a pro-ess is repeated until the ustomer �nds the server idle and gets the requested servie atthe time of a retrial. Suessive inter-retrial times of any ustomer follow an arbitrarylaw with ommon probability distribution funtion A(x), Laplae-Stieltjes transformLA(s) and �rst moment �1. The servie times are independently and identially dis-tributed with probability distribution funtion B(x), Laplae-Stieltjes transform LB(s)and �rst two moments �1, �2. We suppose that inter-arrival times, retrial times andservie times are mutually independent. The performane harateristis of suh a sys-tem are available in G�omez-Corral [3℄.Let �n be the time of the nth departure and Qn the number of ustomers in theorbit just after the time �n. We have the following fundamental reursive equation:Qn+1 = Qn + vn+1 � ÆQn+1 ;where vn+1 is the number of primary ustomers arriving at the system during the servietime whih ends at �n+1. Its distribution is given by kj = R10 (�x)j(j!)�1e��xdB(x); j �0, with generating funtion k(z) = Pj�0 kjzj = LB(�(1� z)).The Bernoulli random variable ÆQn+1 is equal to 1 or 0 depending on whether the us-tomer who leaves the system at time �n+1 proeeds from the orbit or otherwise.The sequene of random variables fQng forms an embedded Markov hain for ourqueueing system whih is irredutible and aperiodi on the state-spae N . The inequal-ity ��1 < LA(�) is a neessary and su�ient ondition for the system to be stable [3℄.39



2.1. Some useful lemmas. This subsetion presents several useful lemmas whihwill be used later in establishing the main results. Consider two M=G=1 retrial queueswith lassial retrial poliy and feedbak with parameters �(i), �(i) and B(i), i = 1; 2. Letk(i)j be the distribution of the number of primary alls whih arrive during the servietime of a all in the ith system.The following two lemmas turns out to be a useful tool for showing the monotoniityproperties of the embedded Markov hain.Lemma 1. If �(1) � �(2) and B(1) �s B(2), then fk(1)n g �s fk(2)n g, where �s is oneof the symbols �st or �ix.Proof. the proof is known in the more general setting of a random summation.Lemma 2. If �(1) � �(2) and B(1) �L B(2), then fk(1)n g �L fk(2)n g.Proof. We have k(i)(z) =Xn�0 k(i)n zn = LB(i)(�(i)(1� z)); i = 1; 2where k(1)(z), k(2)(z) are the orresponding distributions of the number of new arrivalsduring a servie time.Let �(1) � �(2), B(1) �L B(2). To prove that fk(1)n g �L fk(2)n g; we have to establish thatLB(1)(�(1)(1� z)) � LB(2)(�(2)(1� z)):3. MONOTONICITY PROPERTIES OF THE EMBEDDEDMARKOV CHAINThe one-step transition probabilities of the embedded Markov hain fQn; n � 1g isde�ned in the following formulaepnm = (1� LA(�))km�n + LA(�)km�n+1; for n 6= 0 and m � 0,p0m = km; for m � 0.Let T be the transition operator of an embedded Markov hain whih assoiatesto every distribution ! = f!mgm�0 a distribution T! = f�mgm�0 suh that �m =Pn�0!npnm. From Stoyan [5℄, T is monotone with respet to �st if and only ifpnm � pn�1m � 0 for all n and m;and is monotone with respet to �v if and only ifpn�1m + pn+1m � 2pnm � 0 for all n and m:Here, �pn;m = 1Pl=m pn;l and ��pn;m = 1Pl=m �pn;l.40



Theorem 1. T is monotone with respet to the orders �st and �ix.Proof. In our ase:pnm = (1� LA(�))km�n + LA(�)km�n+1 = (1� LA(�))km�n + km�n+1;pnm = (1� LA(�))km�n + km�n+1:Thus pnm � pn�1m = (1� LA(�))km�n + LA(�)km�n+1 � 0;pn�1m + pn+1m � 2pnm = (1� LA(�))km�n�1 + LA(�)km�n � 0:In the following two theorems, we give omparability onditions of two transitionoperators. Consider two M=G=1 retrial queues with nonexponential retrial times withparameters �(1), A(1), B(1) and �(2), A(2), B(2) respetively. Let T1 and T2 be thetransition operators of the orresponding embedded Markov hains.Theorem 2. If �(1) � �(2), B(1) �s B(2) and A(1) �L A(2), then T1 �s T2, i.e. forany distribution !, we have T1! �s T2!, where �s is one of the symbols �st or �ix.Proof. From Stoyan [5℄, it is well known that to prove T1 �s T2, we have to show thefollowing numerial inequalities for the one-step transition probabilities p(1)nm; p(2)nm:p(1)nm � p(2)nm; 8n; m; (for �s=�st); (1)p(1)nm � p(2)nm; 8n; m; ( for �s=�ix); (2)To prove inequality (1), we havep(1)nm = (1� LA(1)(�(1)))k(1)m�n + k(1)m�n+1:Sine �(1) � �(2) and A(1) �L A(2), then LA(1)(�(1)) � LA(2)(�(2)) andp(1)nm � (1� LA(2)(�(2)))k(1)m�n + k(1)m�n+1:But (1� LA(2)(�(2)))k(1)m�n + k(1)m�n+1 = (1� LA(2)(�(2)))k(1)m�n + LA(2)(�(2))k(1)m�n+1:By Lemma 1, we have k(1)n � k(2)n ; 8n � 0:Using these inequalities we get:p(1)nm � (1� LA(2)(�(2)))k(2)m�n + LA(2)(�(2))k(2)m�n+1 = p(2)nm:Following the tehnique above it is possible to establish inequality (2).Theorem 3. If �(1) � �(2), B(1) �L B(2) and A(1) �L A(2), then T1 �L T2:41



Proof. Let ! = (!m) be a distribution and T! = � = (�m), where�m = Pn�0!npnm = !0km + Pn�1!npnm; for all m � 0.Let k(z) = Pn�0 knzn and !(z) = Pn�0!nzn be the generating funtions of (kn) and (!n)respetively. The generating funtion of � is given byG(z) = Xm�0 �mzm =Xm�0Xn�0 !npnmzm =Xm�0[!0km +Xn�1 !npnm℄zm= !0k(z) + 1z k(z)(!(z)� !0)(z + (1� z)LA(�)):If the onditions of Theorem 3 are ful�lled, then k(1)(z) � k(2)(z) by Lemma 2 and(1� z)LA(1)(�(1)) � (1� z)LA(2)(�(2)), 8 z 2 [0; 1℄. Hene G(1)(z) � G(2)(z).4. BOUNDS FOR THE MEAN CHARACTERISTICS OFTHE SYSTEMThe main harateristis of a system busy period, the orbit busy period and waitingtime are:L: the length of a system busy period,I: the number of servie ompletions ourring during (0; L℄,Nb: the number of orbit busy periods whih take plae in (0; L℄,W : the waiting time.G�omez-Corral [3℄ shows that, if ��1 < LA(�), thenE(L) = �1LA(�)���1 ; E(I) = LA(�)LA(�)���1 ; E(Nb) = 1�LB(�)LB(�) ; and E(W ) = ��2+2�1(1�LA(�))2(LA(�)���1) :Suppose one more that we have two M=G=1 retrial queues with nonexponentialretrial times with parameters �(1), A(1), B(1) and �(2), A(2), B(2), respetively. Let L(i),I(i), N (i)b and W (i) be the length busy period, the number of ustomers served duringa busy period, the number of orbit busy periods whih take plae in (0; L(i)℄ and thewaiting time respetively, in the i-th system, i = 1; 2:Theorem 4. If �(1) � �(2), B(1) �s B(2) and A(1) �L A(2), then E(L(1)) � E(L(2)),and E(I(1)) � E(I(2)), where �s is one of the symbols �st, �ix, �L.Proof. The quantities E(L) and E(I) whih are inreasing with respet to � and �1,dereasing with respet to LA(:). Under onditions of Theorem 4, we obtain the desiredinequalities. Reall that X �s Y implies E(Xn) � E(Y n) for all n.Theorem 5. For any M=G=1 retrial queue,E(L) � �1e���1���1 ; and E(I) � e���1e���1���1 :If A and B are L, then E(L) � �1(1+��1)1���1(1+��1) ; and E(I) � 11���1(1+��1) :Proof. We onsider auxiliary M=D=1 and M=M=1 retrial queues with the same arrivalrates �, mean servie times �1 and mean retrial times �1. A is Dira distribution at �1for the M=D=1 system, and is exponential distribution for the M=M=1 system. Usingthe theorem above we obtain the stated results.42



Theorem 6. If �(1) � �(2), B(1) �st B(2) and A(1) �L A(2), thenE(N (1)b ) � E(N (2)b ); and E(W (1)) � E(W (2)):Proof. The quantities E(Nb) and E(W ) are inreasing with respet to �, �1 and �2,dereasing with respet to LB(:) and LA(:). Under the onditions of Theorem 6 weobtain the desired inequalities.Theorem 7. For any M=G=1 retrial queue,E(Nb) � e��1 � 1; and E(W ) � ��2+2�1(1�e���1 )2(e���1���1) :If B and A are L, thenE(Nb) � ��1; and ��2(1+��1)+2��1�12(1���1(1+��1)) � E(W ) � 2��21+2�1(1�e���1 )2(e���1���1) :Proof. The proof is similar to that of Theorem 5. In addition, if a given distribution Fis L then �2 � 2�21 . REFERENCES1. Artalejo J.R. , G�omez-Corral A. Retrial queueing system: A omputation approah// Springer Edition, Berlin, 2008.2. Boualem M., Djellab N., A��ssani D. Stohasti inequalities for M=G=1 retrialqueues with vaations and onstant retrial poliy // Mathematial and ComputerModelling. 2009. V. 50. � 1-2. P. 207�212.3. G�omez-Corral A. Stohasti analysis of single server retrial queue with the generalretrial times // Naval Researh Logistis. 1999. V. 46. P. 561�581.4. Shaked M., Shanthikumar J. G. Stohasti Orders // Springer-Verlag, New York,2007.5. Stoyan D. Comparison methods for queues and other stohasti models // Wiley,New York, 1983.6. Taleb S., Saggou H., Aissani A. Unreliable M/G/1 retrial queue with geometriloss and random reserved time // Int. J. Operational Researh. 2010. V. 7. � 2.P. 171�191.
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