
represented in analytic form in terms of series with respect to certain group of symmetries
which are obtained by using functional equation method.

Thus, at the study of properties of circular composites with constant conductivity of each
component one can use an analytic formulas for the solution as well as analytic formulas for
effective conductivity [1].

When the multiply connected domain tends to the limiting punctured domain the elliptic
state equation becomes degenerating at a finite number of points. Thus we have to perform
an asymptotic analysis of the solution to the corresponding boundary value problems. It is
difficult to refer to all essential contribution to the asymptotic study of the solution to the
boundary value problems for elliptic equations in singularly perturbed domain. Recently a
new approach has been proposed (see, e.g., [2]) based on the methods of nonlinear functional
analysis. In our work we use also a special type of asymptotic analysis (see [3]) performed
for the case boundary value problems for elliptic equations degenerating at a line (in three-
dimensional case) or at a point (in two-dimensional case).
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UNDERDETERMINED LINEAR SYSTEMS IN THE SENSOR LOCATION
PROBLEM

L. A. Pilipchuk, T. S. Vishnevetskaya (Minsk, Belarus)

We consider underdetermined linear systems and characteristics of optimal solutions in
the sensor location problem.

For the finite connected directed symmetric graph G = (I, U) let’s consider following
linear underdetermined system:

∑

(v,w)∈I+(v)

xv,w −
∑

(w,v)∈I−(v)

xw,v =

{
Sv, v ∈ S,

0, v ∈ I \ S,
(1)

where the sets I−(v) and I+(v) are of entering and proceeding arcs for the node v accordingly,
x – vector of unknowns, x = (xi,j, (i, j) ∈ U ; Sv, v ∈ S), S ⊆ I.

Kronecker-Capelli theorem implies the following necessary and sufficient conditions of

104

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/290241866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


consistency for the system (1): ∑
v∈S

Sv = 0.

In the sensor location problem we shall assume, that the values of flows on all entering
and proceeding arcs for the each node i of the set M, M ⊆ I are known:

xi,j = fi,j, (i, j) ∈ I−(i)
⋃

I+(i), i ∈ M.

If the set M includes the nodes from the set S, that we known the values of flows on all
entering and proceeding arcs for the nodes of the set M, M ⊆ I and we known the values
Sv, v ∈ M

⋂
S:

xi,j = fi,j, (i, j) ∈ I−(i)
⋃

I+(i), i ∈ M and Sv = Fv, v ∈ M ∩ S.

Let’s enter the set M+. For that let’s construct a cut CC(M) concerning for the set
of nodes M. Let’s denote the set of nodes I(CC(M)), that are adjacent to nodes in M
and the nodes of the set M. So, we construct the set M+ = I(CC(M)) \M. Let’s denote
M∗ = M

⋃
M+ and form the set I \M∗.

Let’s write down additional equations connecting arc flow for each proceeding arc from
the node i, i ∈ I \M through the set split ratio coefficients pij on every arc (i, j) ∈ U as
follows:

• for each node i from the set I \ M∗ we shall carry out the following: we choose an
any proceeding arc (i, j) from the node i, and we believe an arc flow on it arc equal
unknown xi,j. For each following proceeding arc (i, v) from the node i, let’s express
through the set split ratio coefficient on arc (i, v) as follows:

xi,v =
pi,v xi,j

pi,j

(2)

If for some node of set I \M∗ exists the unique proceeding arc with a unknown flow in
that case there is no additional equation connecting arc flow for proceeding arc from
through the set split ratio coefficients.

• for each node i from the set M+ we shall carry out the following:
We choose an any proceeding arc (i, j) from the node i, for which arc flow it is known:
xi,j = fi,j. It is obvious, that the node j belongs to set M. For each following proceeding
arc (i, v) from the node i, with an unknown flow xi,v (v does not belong to set M)
let’s express through the set split ratio coefficient on arc (i, v) as (2).

Let’s substitute the calculated arc flows for each proceeding arc from the node i, i ∈
I \ M in the equations of the system (1). We delete from the graph G the set of the arcs
I−(i)

⋃
I+(i) for each node i ∈ M

⋃
M̃ , on which the arc flow and value Si known, M̃ ⊆ I,

M̃ – some nodes from the set I \M. Also, we delete from the graph G the set of the nodes
M

⋃
M̃. We shall denote the new graph Ĝ = (Î , Û). Graph Ĝ will consist from a component

of connectivity, and in some components of connectivity can not contain nodes of the set I∗.
The system (1), (2) for the graph Ĝ will be following:

∑

j∈bI+
i (bU)

xij −
∑

j∈bI−i (bU)

xji =

{
ai, i ∈ Î \ I∗,

xi · sign[i], i ∈ I∗, I∗ ⊆ S, sign[i] = ±1,
(3)
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∑

(i,j)∈bU
λp

ijxij = αp, p = 1, q, (4)

where Î+
i (Û) =

{
j : (i, j) ∈ Û

}
, Î−i (Û) =

{
j : (j, i) ∈ Û

}
; ai, λp

ij, αp – parameters of the
system; q – the number of additional equation connecting arc flow for proceeding arc from
through the set split ratio coefficients; x = (xij, (i, j) ∈ U ; xi, i ∈ I∗) – vector of unknowns.

Calculation of a rank of the matrix of the system (3)–(4), building the algorithms for
finding the solutions of the systems of the type (3)–(4) and characteristics of optimal solutions
are investigated in [2]–[4].
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NUMERICAL MODELING OF A STATIC MAGNETIC FLUID SEAL
SUBJECT TO DIFFUSION OF FERROMAGNETIC PARTICLES

V. K. Polevikov (Мinsk, Belarus)

Because magnetic fluid is a stable colloidal suspension of small ferromagnetic particles
in a carrier liquid, its macroscopic interaction with an external nonuniform magnetic field
is determined by the force acting on each separate particle. The force causes a Brownian
motion of the particles with respect to the carrier liquid, as a result of which the particle
concentration increases in the places where the magnetic field intensity is higher. This leads
to redistribution of the fluid magnetization M being of a basic magnetic characteristics of
the fluid which is defined by the relation M = MsCL(ξH) where Ms is the saturation
magnetization of the fluid; C, the volume concentration of particles; L(t) = coth t − 1/t,
the Langevin function; H, the magnetic field intensity; ξ = µ0m/kT ; µ0, the magnetic
constant; m, the magnetic moment of a particle; k, the Boltzmann constant; T , the fluid
temperature. The steady-state distribution of the concentration C in the fluid volume V
is described by the equation ∇ · (∇C − ξCL(ξH)∇H) = 0 with the Robin-type boundary
condition ∂C/∂n − ξL(ξH)(∂H/∂n)C = 0 and the condition of particle mass conservation∫

V
CdV = C0V where C0 is a constant corresponding to a uniform distribution of particles.

Exact solution of the problem is given in [1] and is of the form C = ϕC0V
/∫

V
ϕdV , ϕ =

sinh(ξH)/(ξH). A Stefan-type diffusion problem can arise if the fluid is under the action
of a high-gradient magnetic field. The point is that the particles diffuse in the direction of
magnetic gradient ∇H and if the gradient is sufficiently large, particle concentration in the
magnet pole vicinity reaches a maximum possible value corresponding to the dense packing
of the particles.
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