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The analogue of the classical Khintchine–Groshev theorem, a fundamental result
in metric Diophantine approximation, is established for smooth planar curves with
non-vanishing curvature almost everywhere.
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1. Introduction

Let ψ : N → R+ be a decreasing function. The Khintchine–Groshev theorem (see
theorem 12 in Sprindžuk (1979) for details but note that the notation here differs
slightly) in the plane asserts that the set of points x ∈ R2, which obey the inequality

|q · x+ q0| 6 ψ(H(q))H(q)−1

for infinitely many vectors q = (q0, q1, q2) ∈ Z3, has zero or full Lebesgue measure
according to whether the sum

∑∞
r=1 ψ(r) converges or diverges, respectively (H(q) =

max{|q0|, |q1|, |q2|}, the height of q). In this paper the analogue of this theorem is
established for smooth planar curves with non-zero curvature almost everywhere.

Theorem 1.1. Let I ⊂ R be an interval and suppose that the functions f1, f2 :
I → R are C3 and satisfy f ′1(x)f ′′2 (x) − f ′′1 (x)f ′2(x) 6= 0 for almost all x ∈ I. Then,
for almost all x ∈ I the inequality

|q2f2(x) + q1f1(x) + q0| < ψ(H(q))H(q)−1 (1.1)

holds for infinitely many or only finitely many integer vectors q according to whether
the sum

∞∑
r=1

ψ(r) (1.2)

diverges or converges, respectively.

Schmidt’s theorem on the extremality of planar curves (Schmidt 1964) corresponds
to ψ(r) = r1−v with v > 2 and is clearly a special case of the above result. The case
of convergence was proved in Bernik et al . (1998), which we also refer to for historical
details. The complementary case of divergence is now proved.
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3054 V. V. Beresnevich and others

Throughout this article the Lebesgue measure of a measurable set E will be
denoted by |E|. Since the curvature vanishes only on a set of measure zero we take
I, without loss of generality, to be a sufficiently small closed interval with |I| 6 1
on which the curvature does not vanish. By the implicit function theorem we can,
again without loss of generality, take the curve {(f2(x), f1(x)) : x ∈ I} to be of the
form {(f(x), x) : x ∈ I}. Thus instead of the linear form q2f2(x) + q1f1(x) + q0 we
consider

F (x) = q0 + q1x+ q2f(x),

where (q0, q1, q2) ∈ Z3 \ {0} and f : I → R is a smooth function with non-zero
second derivative everywhere. We write H(F ) = max{|q2|, |q1|, |q0|}. Thus it suffices
to prove that

|F (x)| < ψ(H(F ))H(F )−1

for infinitely many F for almost all x when the sum (1.2) diverges.
Since I is a closed interval, the constant

M = max
06i63

sup
x∈I
|f (i)(x)|+ 1 (1.3)

is finite. Also |f ′′(x)| > c > 0 for all x ∈ I. Let

F = {F = q2f(x) + q1x+ q0 : q2, q1, q0 ∈ Z, q 6= 0}
be the family of non-zero F and let

Γ = {γ ∈ I : there exists F ∈ F , F (γ) = 0}. (1.4)

If q2 6= 0, then F ′′(x) = q2f
′′(x) 6= 0, and it follows that F has at most two roots in

I and hence that the set Γ is countable. For each γ ∈ Γ , define the height h(γ) of γ
to be the positive integer

h(γ) = min{H(F ) : F ∈ F with F (γ) = 0}.
The proof of theorem 1.1 is based on the following result, which deals with the

approximation of real numbers by elements of Γ .

Theorem 1.2. For almost all x ∈ R the inequality

|x− γ| < h(γ)−2ψ(h(γ)) (1.5)

has infinitely many or only finitely many solutions γ ∈ Γ according to whether the
sum (1.2) diverges or converges, respectively.

Using the Borel–Cantelli lemma it is not difficult to prove that if
∑∞
h=1 ψ(h) <∞

then, for almost all x ∈ I, inequality (1.5) has at most finitely many solutions γ ∈ Γ .
The proof of theorem 1.2 in the case of divergence is based on some facts concerning

the distribution of Γ . To investigate this distribution, the concept of regular systems,
introduced by Baker & Schmidt (1970) in their study of Hausdorff dimension and
Diophantine approximation, is used.
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Definition 1.3. Let Ω be a countable set of real numbers and N : Ω → R+ be a
function. The pair (Ω,N) is called a regular system on an interval I if there exists
a constant C1 = C1(Ω,N, I) > 0 such that for any finite interval J ⊂ I there exists
a sufficiently large number T0 = T0(Ω,N, J) > 0 such that for any T > T0 there are
γ1, . . . , γt in Ω ∩ J such that

N(γi) 6 T (1 6 i 6 t), (1.6)

|γi − γj | > T−1 (1 6 i < j 6 t), (1.7)
t > C1|J |T. (1.8)

In order to establish theorem 1.2 the following refinement of the lower-bound part
of theorem 3 in Baker (1978) will be proved.

Theorem 1.4. Let N(γ) = h(γ)3 for each γ ∈ Γ (defined in (1.4)). Then (Γ,N)
is a regular system on I.

2. Proof of theorem 1.4

We begin with a brief outline of the proof. Let the interval J = [a, b] ⊂ I and the
sufficiently large integer Q be given. The intervals

{x ∈ J : |x− γ| � Q−3},
where γ runs over Γ ∩ J with h(γ) � Q, will be shown to cover a subset G(J,Q)
of J having measure |G(J,Q)| > 1

2 |J | in order to deduce that (Γ,N) is a regular
system. This will be done by finding, for each x ∈ G(J,Q), a function F ∈ F such
that H(F )� Q, |F (x)| < εQ and |F ′(x)| � Q for some εQ satisfying Q−2 � εQ 6
Q−2. Indeed, it will be proved (see lemma 2.1) that this function F has a root γ
approximating x with error Q−3, where � b means a 6 cb for some constant c > 0.

It will also be shown that if |F ′(x)| � Q, then H(F ) 6 Q; this ensures that
the condition H(F ) > Q guarantees that |F ′(x)| � Q. In addition, we will restrict
ourselves to points x ∈ J , which are at least εQ from the boundary of J , so that
γ ∈ Γ ∩ J . We define G(J,Q) to be the set of points x in (a+ εQ, b− εQ) such that
for any F ∈ F satisfying |F (x)| < εQ we have H(F ) > Q. We will choose εQ so that
the set B(J,Q) = J \G(J,Q) has measure at most 1

2 |J | for Q sufficiently large. Thus
the first step is to show that a suitable εQ exists and to obtain an upper bound for
|B(J,Q)|.

The cases of large and small derivatives are considered separately. From now on
let Q ∈ N, ε > 0 and J = [a, b] be a subinterval of I. Let

F(Q) = {F ∈ F : H(F ) 6 Q}
and let BJ(Q, ε) be the set of x ∈ J for which there exists a function F ∈ F(Q) such
that

|F (x)| < ε, |F ′(x)| > 2|J |−1. (2.1)

For any F ∈ F(Q) define σ(F ) as the set of all the solutions of (2.1) belonging to J .
It is necessary to show that |BJ(Q, ε)| is relatively small.

Lemma 2.1 shows that if the height H(F ) of F exceeds M (given in (1.3)), then
within a small interval the derivative of F is bounded away from zero. Recall that
without loss of generality |I| 6 1.
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Lemma 2.1. Fix Q > M and 0 < ε < Q−2. Then for any F ∈ F(Q) such that
σ(F ) 6= ∅, at least one of the following statements is true for any x0 ∈ σ(F ).

(1) There exists a number γ ∈ J such that F (γ) = 0 and

|F ′(γ)| > |F ′(x0)|/2 > |J |−1,

|x0 − γ| < 2ε
|F ′(γ)| . (2.2)

(2) min{|x0 − a|, |x0 − b|} 6 ε.
Proof . Fix a function F ∈ F(Q) such that σ(F ) 6= ∅. Then choose x0 ∈ σ(F ). We

may assume without loss of generality that |x0−a| > ε and |x0− b| > ε as otherwise
the lemma is true. Then for any x such that |x − x0| 6 ε we have x ∈ J . By the
mean value theorem (MVT), F ′(x) = F ′(x0) + F ′′(x1)(x− x0), where x1 is a point
between x and x0. It is readily verified from (1.3) that

|F ′′(x1)| = |q2f ′′(x1)| 6MH(F ) 6MQ.

Hence |F ′′(x1)(x − x0)| 6 MQε 6 MQ−1 6 |J |−1 since Q > M and |J | 6 |I| 6 1.
Since |F ′(x0)| > 2|J |−1, we have

|F ′(x)| > |F ′(x0)| − |F ′′(x1)(x− x0)| > 1
2 |F ′(x0)|. (2.3)

Thus, by continuity, F ′ does not change sign in the interval [x0− ε, x0 + ε]. Further,
by the MVT, for any x satisfying |x−x0| 6 ε we have F (x) = F (x0)+F ′(x2)(x−x0),
where x2 = x2(x) is a point between x and x0. Putting x = x0 ± ε gives

|F ′(x2)(x− x0)| > 1
2ε|F ′(x0)| > ε.

Moreover, one of the values of F ′(x2)(x − x0) is positive and the other is negative.
Since |F (x0)| < ε, the expression F (x) = F (x0) + F ′(x2)(x− x0) has different signs
at points x0 ± ε. It follows that there exists a point γ ∈ [x0 − ε, x0 + ε] ⊂ J such
that F (γ) = 0 and, as we have already proved, |F ′(γ)| > 1

2 |F ′(x0)| > |J |−1. Next,
by Taylor’s formula,

F (x0) = [F ′(γ) + 1
2F
′′(x3)(x0 − γ)](x0 − γ). (2.4)

Using the same method as for (2.3) above, it can be shown that

|F ′(γ) + 1
2F
′′(x3)(x0 − γ)| > 1

2 |F ′(γ)|.
Together with (2.4) this gives (2.2) and lemma 2.1 is proved. �

Next, an estimate for |BJ(Q, ε)| is obtained.

Lemma 2.2. Let Q > Q1 = max{3,M, |J |−1} and ε > 0. Then

|BJ(Q, ε)| 6 35εQ2|J |.
Proof . First note that if ε > Q−2 there is nothing to prove; we therefore assume

that ε < Q−2. Consider the non-empty interval J ′ = [a+ ε, b− ε]. Given F ∈ F(Q),
define σ′(F ) = σ(F )∩J ′ and σ′′(F ) = σ(F )\σ′(F ). Since σ′′ ⊂ ([a, a+ ε]∪ [b− ε, b])
it is readily verified that ∣∣∣∣ ⋃

F∈F(Q)

σ′′(F )
∣∣∣∣ 6 2ε. (2.5)

Proc. R. Soc. Lond. A (1999)
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Now we proceed to estimate the measure of the union of σ′(F ) over F(Q). Fix q1
and q2 not both zero and such that |q1|, |q2| 6 Q and consider R(x) = q2f(x) + q1x.
There exists a cover of J consisting of two intervals [wi−1, wi], i = 1, 2 such that R′
is monotonic (it has at most one turning point) and of constant sign in each one, one
of which could be just one point. For any function F (x) = R(x) + q0 ∈ F(Q), define
the sets

Zi(F ) = {γ ∈ [wi−1, wi] : F (γ) = 0, |F ′(γ)| > |J |−1}, i = 1, 2,

with Z(F ) = Z1(F ) ∪ Z2(F ) and

Ẑi(R) =
⋃

F=R+q0
|q0|6Q

Zi(F ), i = 1, 2

with Ẑ(R) = Ẑ1(R) ∪ Ẑ2(R). Finally, let σ(γ, F ) denote the set{
x ∈ J : |x− γ| < 2ε

|F ′(γ)|
}
.

For any F ∈ F(Q), lemma 2.1 implies that

σ′(F ) ⊂
⋃

γ∈Z(F )

σ(γ, F ).

Since the derivatives of F = R+ q0 and R coincide, σ(γ,R) = σ(γ, F ). Ordering the
elements in the sets Ẑi(R), i = 1, 2 as follows,

Ẑi(R) = {γ(1)
i , . . . , γ

(ki)
i },

we have ∣∣∣∣ ⋃
F=R+q0∈F(Q)

σ′(F )
∣∣∣∣ 6 ∣∣∣∣ ⋃

F=R+q0∈F(Q)

⋃
γ∈Z(F )

σ(γ, F )
∣∣∣∣

6
∑

γ∈Ẑ(R)

|σ(γ,R)| 6
2∑
i=1

ki∑
j=1

|σ(γ(j)
i , R)|

6
2∑
i=1

ki∑
j=1

4ε

|R′(γ(j)
i )|

. (2.6)

Choose i such that ki > 1, and consider two sequential roots γ(j)
i and γ

(j+1)
i of

R + qi,j0 and R + qi,j+1
0 say, respectively. Without loss of generality assume that R′

is positive and increasing on (wi−1, wi). Using the MVT and the monotonicity of R′
we find that

1 6 |qi,j0 − qi,j+1
0 | = |R(γ(j)

i )−R(γ(j+1)
i )|

= |R′(γ̃(j)
i )||γ(j)

i − γ(j+1)
i | 6 |R′(γ(j+1)

i )||γ(j)
i − γ(j+1)

i |,
where γ̃(j)

i is a point between γ
(j)
i and γ

(j+1)
i . It follows that

1

|R′(γ(j+1)
i )|

6 γ(j+1)
i − γ(j)

i , j = 1, . . . , ki − 1.
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Summing this over all j = 1, . . . , ki − 1 gives

ki−1∑
j=1

1

|R′(γ(j+1)
i )|

6
ki−1∑
j=1

(γ(j+1)
i − γ(j)

i ) = γ
(ki)
i − γ(1)

i 6 wi − wi−1,

further implying that

ki∑
j=1

1

|R′(γ(j)
i )|

6 wi − wi−1 +
1

|R′(γ(1)
i )|

6 wi − wi−1 + |J |.

Summing the last inequality over all i gives

2∑
i=1

ki∑
j=1

1

|R′(γ(j)
i )|

6
2∑
i=1

(wi − wi−1 + |J |) = w2 − w0 + 2|J | 6 3|J |

and hence, by (2.6),∣∣∣∣ ⋃
F∈F(Q)

σ′(F )
∣∣∣∣ 6 Q∑

q2=0

Q∑
q1=−Q

12ε|J | = 12ε|J |(Q+ 1)(2Q+ 1).

The last estimate together with (2.5) gives the required result and completes the
proof. �

Let εQ = 1
280Q

−2 and B1(J,Q) = BJ(Q, εQ). Then by lemma 2.2 |B1(J,Q)| 6 1
8 |J |

when Q > Q1 for some Q1 sufficiently large.
Now we turn to the case of small derivatives. Consider the set of x ∈ J such that

|F (x)| < εQ, |F ′(x)| < 2|J |−1 (2.7)

for some F in F . This set will be divided into two, the first for which H(F ) is large
and the second for which H(F ) is small; both will be shown to have small measure.
The following lemma will be needed.

Lemma 2.3. Let J be a finite interval. For almost all x ∈ J the system

|F (x)| < H(F )−2, |F ′(x)| < 2|J |−1 (2.8)

has at most finitely many solutions F ∈ F .

This lemma follows from a result in Beresnevich (1996) but can also be proved by
using the following.

Lemma 2.4. Given δ > 0, for almost all x the system

|F (x)| < H(F )−1−δ, |F ′(x)| < H(F )−δ

has at most finitely many solutions F ∈ F .

Lemma 2.4 is proved in Beresnevich & Bernik (1996). In addition lemma 2.3 can
be obtained from lemma 2.4 by adapting the argument in § 2 of Beresnevich & Bernik
(1996).
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For any function F ∈ F , denote the set of points x ∈ J that satisfies the system
of inequalities (2.8) by τ2(F ) and let

B2(J,Q′) =
⋃
F∈F

H(F )>Q′

τ2(F ).

By lemma 2.3, |B2(J,Q′)| → 0 as Q′ → ∞. Hence there exists a number Q2 such
that |B2(J,Q2)| 6 1

8 |J |. It is straightforward to verify that if x satisfies system (2.7)
for some F ∈ F(Q) with H(F ) > Q2, then x ∈ B2(J,Q2) for any Q > Q2. This
leaves the case H(F ) 6 Q2. Let τ3(F,Q) = {x ∈ J : |F (x)| < εQ}. It is easy to
see that |τ3(F,Q)| → 0 as Q → ∞. Then it follows that |B3(J,Q)| → 0 as Q → ∞,
where

B3(J,Q) =
⋃

F∈F(Q2)

τ3(F,Q).

Thus, there exists Q3 such that for any Q > Q3 we have |B3(J,Q)| 6 1
8 |J |.

Define the set B(J,Q) = B1(J,Q)∪B2(J,Q2)∪B3(J,Q)∪ [a, a+ εQ]∪ [b− εQ, b].
Then from above

|B(J,Q)| 6 1
2 |J |

for Q sufficiently large.
Define the constant L = max{M, supx∈J |x|} > 1 (by the definition of M) and fix

a point x in J \B(J,Q). Consider the system

|q2f(x) + q1x+ q0| 6 εQ, |q2f
′(x) + q1| 6 840L2Q, |q2| 6 1

3L2Q. (2.9)

By Minkowski’s linear-forms theorem, there exists a non-zero integer solution (q0,
q1, q2) of the system (2.9). From now on we assume that F (x) = q2f(x) + q1x + q0
where (q0, q1, q2) is the solution of (2.9). By working backwards in (2.9) starting
with the third inequality it can be readily verified that the system (2.9) implies that
H(F ) 6 841L3Q. If

|q2f
′(x) + q1| 6 1

3L2Q,

then, by (2.9), H(F ) 6 Q. In this situation the point x would belong to B(J,Q)
contradicting x ∈ J \B(J,Q). Hence

|F ′(x)| > 1
3L2Q.

From now on Q will be assumed to be sufficiently large. By lemma 2.1 there exists
a root γ ∈ J of the function F such that

|x− γ| 6 4
280Q

−2
(

1
3L2Q

)−1

< 1
20L

2Q−3.

Therefore, by definition, h(γ) 6 H(F ) 6 841L3Q. Thus, for any x ∈ J \ B(J,Q)
there exists γ ∈ Γ ∩ J such that h(γ) 6 841L3Q and |x− γ| < 1

20L
2Q−3.
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Fix a maximal collection Γ̂ = Γ̂ (J,Q) = {γ1, . . . , γt} ⊂ Γ ∩ J satisfying the fol-
lowing conditions:

h(γi) 6 841L3Q and |γi − γj | > 1
20L

2Q−3 for i 6= j.

Then for any γ ∈ Γ ∩ J such that h(γ) 6 841L3Q there exists γi in Γ̂ such that

|γ − γi| 6 1
20L

2Q−3.

Hence for any x ∈ J \B(J,Q) there exists γi ∈ Γ̂ such that

|x− γi| 6 1
10L

2Q−3.

The set J \B(J,Q) is covered by the union of the intervals

Ki = {x ∈ J : |x− γi| 6 1
10L

2Q−3} for γi ∈ Γ̂ ,
with |Ki| 6 1

5L
2Q−3 and i = 1, . . . , t. Thus,

1
2 |J | 6 |J \B(J,Q)| 6 1

5 tL
2Q−3

so that t > 2L−2Q3|J |. Taking T = (841QL3)3 gives (1.6)–(1.8) and completes the
proof of the theorem.

3. Proof of theorem 1.2

For any γ ∈ Γ define

σ(γ) = {x ∈ I : |x− γ| < h(γ)−2ψ(h(γ))}.
Let Γ (ψ) denote the set of x ∈ R, which belongs to infinitely many intervals σ(γ).
Our aim is to prove that if

∑∞
h=1ψ(h) = ∞ then Γ (ψ) has full measure. Without

loss of generality we can assume that

ψ(h) 6 1
2h
−1 for all h. (3.1)

For each k let ϕ(k) = 2kψ(2k). The monotonicity and divergence of ψ imply that
∞∑
k=1

ϕ(k) =∞. (3.2)

The following two lemmas will be needed. The first follows from the Lebesgue
density theorem and the second is lemma 5 in Sprindžuk (1979, ch. 1). They can also
be found in Harman (1998) as lemmas 1.6 and 2.3, respectively.

Lemma 3.1. Let A ⊂ I be a measurable set. If there exists a positive constant
C2 < 1 such that for any interval J ⊂ I the inequality |A ∩ J | > C2|J | holds, then
the set A has full measure.

Lemma 3.2. Let Ei ⊂ I be a sequence of measurable sets and let E be the set
of points x belonging to infinitely many Ei. If the sum

∑∞
i=1 |Ei| diverges, then

|E| > lim sup
N→∞

( N∑
i=1

|Ei|
)2

N∑
i=1

N∑
j=1

|Ei ∩ Ej |
.
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Fix any interval J ⊂ I. By theorem 1.4, there exist positive constants C1 and
k0 = k0(J) such that for any k > k0 there exists a collection

Γk(J) = {γ1 < · · · < γtk} ⊂ Γ ∩ J
satisfying the following conditions (taking T = 23k and N(γ) = h(γ)3):

h(γ) 6 2k for all γ ∈ Γk(J), (3.3)

|γ − β| > 2−3k for any numbers β, γ ∈ Γk(J) with γ 6= β, (3.4)

C123k|J | 6 tk 6 23k|J |. (3.5)

Moreover, Γk(J) can be chosen so that the distance between any γ ∈ Γk(J) and the
boundary of J is more than 2−3k. From now on, unless otherwise stated, γ ∈ Γk(J).
Let

Ek =
⋃

γ∈Γk(J)

{x ∈ I : |x− γ| < 2−2kψ(2k)} =
⋃

γ∈Γk(J)

Ek(γ),

say, and consider the set E(J) = ∩∞N=k0
∪∞k=N Ek. The monotonicity of ψ together

with (3.3) implies that Ek(γ) ⊂ σ(γ). It follows that E(J) ⊂ Γ (ψ) ∩ J , whence

|Γ (ψ) ∩ J | > |E(J)|. (3.6)

It is readily verified that

|Ek(γ)| = 2 · 2−2kψ(2k) = 2 · 2−3kϕ(k). (3.7)

By (3.1) and (3.4), the intersection Ek(γ)∩Ek(β) is empty if γ 6= β. Thus, |Ek| =
tk|Ek(γ)| and hence, by (3.5) and (3.7), we have

2C1ϕ(k)|J | 6 |Ek| 6 2ϕ(k)|J |. (3.8)

It follows that

2C1|J |
N∑

k=k0

ϕ(k) 6
N∑

k=k0

|Ek| 6 2|J |
N∑

k=k0

ϕ(k), (3.9)

and so from (3.2) that
∑∞
k=k0

|Ek| =∞.
We proceed to estimate the measures of the intersections Ek and El. In general

|Ek ∩ El| will not be comparable with |Ek||El|, but ‘on average’ suitable estimates
hold. Fix, as we may by (3.2), a number N0 > k0 such that

N0∑
k=k0

ϕ(k) > 1. (3.10)

Fix k and l such that k0 6 k < l 6 N , where N > N0. For any γ ∈ Γk(J),

El ∩ Ek(γ) =
⋃

β∈Γl(J)

El(β) ∩ Ek(γ). (3.11)

The number of different β ∈ Γl(J) satisfying El(β)∩Ek(γ) 6= ∅ is less than or equal to

2 + |Ek(γ)|/2−3l 6 2 + 2 · 23(l−k)ϕ(k)
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from (3.7). Using this, (3.7) and (3.11) give

|El ∩ Ek(γ)| 6 4 · 2−3lϕ(l)(1 + 23(l−k)ϕ(k))

and therefore from (3.5)

|El ∩ Ek| 6 4|J |ϕ(l)ϕ(k) + 4|J |2−3(l−k)ϕ(l). (3.12)

Since Ek ∩ El = El ∩ Ek, we have

N∑
l=k0

N∑
k=k0

|El ∩ Ek| =
N∑
l=k0

|Ek|+ 2
N∑

l=k0+1

l−1∑
k=k0

|El ∩ Ek|. (3.13)

The double sum on the right-hand side of (3.13) is estimated with the help of
(3.12):

2
N∑

l=k0+1

l−1∑
k=k0

|El ∩ Ek| 6 8|J |
N∑

l=k0+1

l−1∑
k=k0

ϕ(l)ϕ(k) + 8|J |
N∑

l=k0+1

l−1∑
k=k0

2−3(l−k)ϕ(l)

6 8|J |
N∑

l=k0+1

l−1∑
k=k0

ϕ(l)ϕ(k) + 8|J |
N∑

l=k0+1

ϕ(l)
l−1∑
k=k0

2−3(l−k)

< 8|J |
N∑

l=k0+1

l−1∑
k=k0

ϕ(l)ϕ(k) + 2|J |
N∑

l=k0+1

ϕ(l). (3.14)

Thus, from (3.10), (3.9) and (3.14), we conclude that

N∑
l=k0

N∑
k=k0

|El ∩ Ek| 6 4|J |
N∑

k=k0

ϕ(k) + 8|J |
N∑

l=k0+1

l−1∑
k=k0

ϕ(l)ϕ(k)

6 4|J |
( N∑
k=k0

ϕ(k)
)2

+ 4|J |
N∑
l=k0

N∑
k=k0

ϕ(l)ϕ(k) = 8|J |
( N∑
k=k0

ϕ(k)
)2

.

This estimate and (3.9) gives( N∑
k=k0

|Ek|
)2

( N∑
k=k0

N∑
l=k0

|Ek ∩ El|
) >

(2C1|J |)2
( N∑
k=k0

ϕ(k)
)2

8|J |
( N∑
k=k0

ϕ(k)
)2

= 1
2C

2
1 |J |.

It follows that |E(J)| > 1
2C

2
1 |J | from lemma 3.2 and from (3.6) that |Γ (ψ) ∩ J | >

1
2C

2
1 |J |. This holds for any finite interval J . By lemma 3.1 the proof of theorem 1.2

is complete.

4. Proof of theorem 1.1

Let F(ψ) denote the set of real numbers x satisfying the inequality (1.1) for infinitely
many F ∈ F . Define ψ1(h) = ψ(h)/(M + 1). It is clear that ψ1(h) is monotonic and
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that the sum
∑∞
h=1 ψ1(h) diverges. By theorem 1.2, the set Γ (ψ1) has full measure.

Given γ ∈ Γ , define the interval σ1(γ) = {x ∈ I : |x− γ| < h(γ)−2ψ1(h(γ))}. Then,

Γ (ψ1) =
∞⋂
k=1

⋃
γ:h(γ)>k

σ1(γ).

Given γ ∈ Γ , let Fγ be the unique function in F with F (γ) = 0 and h(γ) = H(F ).
By the MVT,

Fγ(x) = F ′(x̃)(x− γ),

where x̃ is a point between γ and x. Thus |Fγ(x)| 6 H(F )(M + 1)|x − γ|. Let
x ∈ σ1(γ). Then

|Fγ(x)| 6 H(F )(M + 1)h(γ)−2ψ1(h(γ)) = H(F )−1ψ(H(F )).

Thus for any γ ∈ Γ such that σ1(γ) 6= ∅, Fγ is a solution of (1.1) when x ∈ σ1(γ).
It follows that if x ∈ Γ (ψ1), then the inequality (1.1) has infinitely many solutions,
whence x belongs to F(ψ). Thus Γ (ψ1) ⊂ F(ψ). It follows that F(ψ) has full measure
and the proof is complete.

The natural question of extending this result to curves and indeed to manifolds in
higher dimensions is much more difficult and probably requires deeper arguments.
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