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1 Introduction

Despite major results on the distribution of rational numbers on the real line
there remain a number of deep problems. Some of them can be found in the
monographs of Cassels and Schmidt [1, 2]. The problem of counting integer
points is a classical topic in number theory and there are various related
problems like the Gauss circle problem or the problem number of divisors of
natural numbers bounded by some big number [3, 4]. Some facts on counting
integer points in multidimensional domains can be found in [5]. During the
last 20 years considerable progress has been made concerning the number
of points with rational coordinates near smooth curves by Beresnevich and
Vilani [6, 7] insofar as the lower and upper bounds that have been obtained
are of the same order.

In the present paper we introduce a method, which allows us to obtain
bounds for the number of points with algebraic coordinates lying in a given
domains of a Euclidean space. We consider algebraic points in the plane, but
part of our results can be generalized to higher dimensional spaces.

Let P ∈ Z[x] be of the form

P (x) = Pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, (1)

H = H(P ) = max
16j6n

|aj|, degP = n.

Let µA be the Lebesgue measure of a measurable set A ⊂ R2, and |I|
the length of an interval I ⊂ R. In what follows c, c(n), c1, c2, . . . stand for
some positive constants depending on n only. Let Q > Q0(n), where Q0 is a
sufficiently large number. We will use the Vinogradov symbols f � g which
means that f 6 cg. The notation B � D means D � B � D.
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For some arbitrary positive constants µ1, µ2 consider a rectangle

Π1 = I1 × I2 = [a1, b1]× [a2, b2] ⊂ [−1

2
,
1

2
] ⊂ R2

such that
Π1 ∩ {|x− y| 6 0.1} = ∅ (2)

and
|I1| = b1 − a1 = Q−µ1 , |I2| = b2 − a2 = Q−µ2 .

Note that the lengths of I1 and I2 are small provided that µ1 > 0, µ2 > 0
and Q is sufficiently large.

Suppose that α1, α2, . . . , αk denote k real roots of P , 1 6 k 6 n.
We introduce the class of polynomials

Pn(Q) = {Pn ∈ Z[x] : degP = n, n > 3, an � H(P ), H(P ) 6 Q}. (3)

The condition |an| � H implies that the roots of P (x) are bounded, see
Sprindzuk [8].

Let Kn(Π1, Q) be the set of points (αi, αj), 1 6 i < j 6 k, such that

(i) (αi, αj) are real roots of P ∈ Pn(Q),

(ii) (αi, αj) ∈ Π1.

Remark. Condition (ii) excludes the coincidence of the roots α1 and α2.
The aim of this paper is to estimate the cardinality of Kn(Π1, Q).

Theorem 1 Let 0 < µi <
1
2
, i = 1, 2. Then

#Kn(Π1, Q)� Qn+1−µ1−µ2 . (4)

Remark. Consider J1×J2 = [1
3
−Q−1−ε, 1

3
+Q−1−ε]×[1

4
−Q−1−ε, 1

4
+Q−1−ε],

where ε > 0. Suppose that, on the contrary, that there is a polynomial
T ∈ Pn(Q) such that a pair of its roots (α1, α2) belongs to J1 × J2 and T is
coprime to P (x) = (3x − 1)(4x − 1) = 12x2 − 7x + 1. The last assumption
implies that |R(T, P )| ≥ 1, where R(T, P ) is the resultant of T (x) and P (x).
Since the roots of T (x) are bounded, we have

1 6 |R(T, P )| = 12na2
n

n∏
i=1

|1
3
− αi|

n∏
j=1

|1
4
− αj| =

= 12na2
n|α1 −

1

3
||α2 −

1

4
|
∏
i 6=1

|1
3
− αi|

∏
j 6=2

|1
4
− αj| �

� Q2Q−1−εQ−1−ε = Q−2ε. (5)
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The inequality (5) yields a contradiction if Q is sufficiently large.
This remark shows that Theorem 1 cannot be considerably improved. It

won’t hold for maxj µj > 1. Improvements are possible for intervals I1, I2

only that don’t contain algebraic numbers of small degree and height.
Corollary. Let f(x) be a continuous function on the interval I = [a, b]

and let

L(Q, λ) = {(x, y) : x ∈ I, |y − f(x)| < Q−λ}, 0 < λ <
1

2
. (6)

Then there are at least c(n)Qn+1−λ algebraic points such that (α1, α2) ∈
L(Q, λ).

Proof of the corollary. The set L(Q, λ) represents a strip containing the
curve y = f(x). Its width equals 2Q−λ, 0 < λ < 1

2
. Let us split an interval

[a, b] into equal parts of length at most Q−λ choosing points

x0 = a, x1 = x0 +Q−λ, . . . , xj = xj−1 +Qλ, . . . , xs = x0 + sQλ,

where λ 6 1. Furthermore, inscribe rectangles of size Q−λ × c(n)Q−λ into
every rectangle

{(x, y) : |x− xi + xi+1

2
| 6 1

2
Q−λ, |y − f(x)| < 1

2
Q−λ}.

By Theorem 1, every such rectangle contains at least c(n)Qn+1−2λ algebraic
points (α1, α2). Collecting the algebraic in all rectangles we obtain

#L(Q, λ) ∩ An � c(n)Qn+1−λ.

�
The proof of Theorem 1 is based on the construction of special polyno-

mials P (t) ∈ Pn(Q) such that

1. |P (x)| and |P (y)| are small,

2. |P ′(x)| and |P ′(y)| are comparable with H(P ),

where (x, y) ∈ B1 ⊂ Π1 and µB1 >
1
2
µΠ1.

Let c = (c1, c2, c3, c4) and v = (v1, v2) denote positive vectors. Let
Mn(c,Q) denote the set of points x ∈ Π1 such that the following system

|P (x)| < c1Q
−v1 ,

|P (y)| < c2Q
−v2 ,

|P ′(x)| < c3Q,

|P ′(y)| < c4Q,

v1 + v2 = n− 1

(7)

has a solution P (t) ∈ Z[t] \ {0}.
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Theorem 2 Assume that c1c2 min(c3, c4) < 2−n−38n−2 and
max(c1, c2, c3, c4) ≤ 1. Then

µMn(c,Q) <
1

4
|I1||I2|. (8)

To prove Theorem 2 we impose an extra condition on P . We consider
only irreducible polynomials. This condition is not very restrictive and leads
to an equivalent problem as shown in Sprindzuk and Bernik [8, 9].

2 Auxiliary statements

This section contains several lemmas that will be used in the proof of Theo-
rem 2.

In what follows Pn(Q) denotes the class of irreducible polynomials P (t)
with H(P ) 6 Q such that (7) holds. Furthermore, let P̃n(H) be the subclass
of Pn(H) consisting of polynomials P with H(P ) = H.

For each polynomial P ∈ P̃n(H) with roots α1, α2, . . . , αn, we pick a pair
of roots αi and αj, i 6= j. Throughout for convenience, we shall write α1

instead of αi and β1 instead of αj. Furthermore, we order the other roots of
P with respect to the distance from the roots α1 and β1

|α1 − α2| 6 |α1 − α3| 6 · · · 6 |α1 − αn|,
|β1 − β2| 6 |β1 − β3| 6 · · · 6 |β1 − βn|.

(9)

Obviously, in (9), the set β1, β2, . . . , βn is a permutation of the roots
α1, α2, . . . , αn. Denote

S(α1) = {x ∈ R : |x− α1| = min
16j6n

|x− αj|},

S(β1) = {x ∈ R : |x− β1| = min
16j6n

|x− βj|}.

We will consider now the system of inequalities (7) for x ∈ S(α1) and y ∈
S(β1).

Lemma 1 (see [8]) If |an| � H then for any i, 1 6 i 6 n,

|αi| < c.

Lemma 2 Let P ∈ P̃n(H) and x ∈ S(α1). Then

|x− α1| 6 n
|P (x)|
|P ′(x)|

,
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|x− α1| 6 2n−1|P (x)||P ′(α1)|−1, (10)

|x− α1| 6 min
26j6n

(2n−j|P (x)||P ′(α1)|−1

j∏
k=2

|α1 − αk|)
1
j .

The first inequality in (10) immediately follows from the identity
|P ′(x)||P (x)|−1 = |

∑n
i=1

1
(x−αi)

| and the inequalities |x − α1| 6 |x − αj|,
j = 2, . . . , n. The remaining inequalities were proved in Sprindzuk and
Bernik[8, 10].

Let ε > 0 be sufficiently small, and let N = N(n) > 0 be sufficiently large
fixed numbers. Write ε1 = εN−1, and T = [ε1]−1.

Using (9) define numbers ρ1,j and ρ2,j (2 6 j 6 n) by setting

|α1 − αj| = H−ρ1j , ρ1,n 6 · · · 6 ρ12,
|β1 − βj| = H−ρ2j , ρ2,n 6 · · · 6 ρ22.

(11)

By Lemma 1 the roots αj are bounded. Then the inequalities (9) and
(11) imply ρi,j > − ε1

2
.

For every polynomial there are uniquely determined integral vectors
(k2, k3, . . . , kn) and (l2, l3, . . . , ln) such that the inequalities

(kj − 1)T−1 6 ρ1j < kjT
−1 , 0 6 kn 6 . . . 6 k2,

(lj − 1)T−1 6 ρ2j < ljT
−1 , 0 6 ln 6 . . . 6 l2

hold. Furthermore, define

qi = T−1

n∑
m=i+1

km, ri = T−1

n∑
m=i+1

lm, 1 ≤ i ≤ n− 1.

Consider ∪∞H=1P̃n(H). Using results of Sprindzuk [8], the number of pos-
sible vectors k = (k2, k3, . . . , kn) and l = (l2, l3, . . . , ln) is finite.
Thus, all polynomials P ∈ P̃n(H) corresponding to the same pair of vectors
s = (k, l) can be grouped together into a class P̃n(H, s).

Lemma 3 (see Bernik [10]) Let P ∈ P̃n(H, s). The we have

H1−q1 6 |P ′(α1)| < H1−q1+(n−1)ε1 ,
H1−r1 6 |P ′(β1)| < H1−r1+(n−1)ε1 ,

and for any k, 2 6 k 6 n,

|P (k)(α1)| � H1−qk+k(n−1)ε1

|P (k)(β1)| � H1−rk+k(n−1)ε1 .
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Lemma 4 Let δ,K0, η1, η2 ∈ R+. Furthermore, let P1, P2 ∈ Z[x] be two
relatively prime polynomials of degree at most n with max(H(P1), H(P2)) 6
K and K > K0(δ). Let J1 and J2 denote intervals with |J1| = K−η1, |J2| =
K−η2. If there exist numbers τ1, τ2 > 0 such that for all (x, y) ∈ J1 × J2

max(|P1(x)|, |P2(x)|) < K−τ1 ,
max(|P1(y)|, |P2(y)|) < K−τ2 ,

then

τ1 + τ2 + 2 + 2 max(τ1 + 1− η1, 0) + 2 max(τ2 + 1− η2, 0) < 2n+ δ.

For the proof see Bernik [11].
Remark. Actually, a stronger result holds, namely

τ1 + τ2 + 2 + 2 max(
∞∑
k=1

τ1 + 1− η1, 0) + 2 max(
∞∑
k=1

τ2 + 1− η2, 0) < 2n+ δ.

When we apply Lemma 4 we will usually choose parameters τ1, τ2, η1, η2

satisfying

τ1 = k2T
−1 + q1 − 1, τ2 = l2T

−1 + r1 − 1, η1 = k2T
−1, η2 = l2T

−1.

Thus, if the difference between, say, l2T
1 and r1 is larger, then the result

of Lemma 4 will be stronger. Therefore, without loss of generality, we can
assume that k2T

−1 = q1, l2T
−1 = r1, and qj = rj = 0 for j ≥ 2.

3 Proof of Theorem 2

First, we consider a special case of system (7) when |P ′(x)|, |P ′(y)| are
bounded below. Let us remind that x ∈ S(α1) and y ∈ S(β1).

Proposition 1. Let v > 1
2

denote a constant and let Mn,1(c̄, Q) denote
the set of solutions (x, y) ∈ I1 × I2 of the system

|P (x)| ≤ c1Q
−v1 ,

|P (y)| ≤ c2Q
−v2 ,

Qv < |P ′(x)| < c3Q,

Qv < |P ′(y)| < c4Q.

(12)

Then

µMn,1(c̄, v̄, Q) <
1

8
|I1||I2|.
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Now estimates for |P ′(x)| and |P ′(y)| provide estimates for |P ′(α1)| and
|P ′(β1)|.

By the first inequality in (10) for any x ∈ S(α1) and y ∈ S(β1), we have

|x− α1| < n|P (x)||P ′(x)|−1 < c1nQ
−v1−v,

|y − β1| < n|P (y)||P ′(y)|−1 < c2nQ
−v2−v.

(13)

The Mean Value Theorem yields

P ′(x) = P ′(α1) + P ′′(ξ1)(x− α1) for some ξ1 ∈ (α1, x),
P ′(y) = P ′(β1) + P ′′(ξ2)(y − β2) for some ξ2 ∈ (β2, y).

Obviously, we have |P ′′(ξ1)(x − α1)| � Q1−v1−v, |P ′′(ξ2)(y − β1)| �
Q1−v2−v. Thus, for sufficiently large Q we obtain

3
4
Qv ≤ 3

4
|P ′(x)| < |P ′(α1)| < 4

3
|P ′(x)| ≤ 4

3
c3Q,

3
4
Qv ≤ 3

4
|P ′(y)| < |P ′(β1)| < 4

3
|P ′(y)| ≤ 4

3
c4Q.

(14)

By (14) and Lemma 2, we have

|x− α1| < 4
3
n|P (x)||P ′(α1)|−1,

|y − β1| < 4
3
n|P (y)||P ′(β1)|−1.

(15)

Let σx(P ), σy(P ) denote the sets of solutions of (15) for x and y, re-
spectively. Let Π2(P ) = σx(P ) × σy(P ). Clearly, all solutions (x, y) ∈
S(α1)× S(β1) of the system (12) are contained in Π2(P ).

We introduce the intervals

σ1x(P ) : |x− α1| < c5Q
−γ|P ′(α1)|−1,

σ1y(P ) : |y − β1| < c5Q
−γ|P ′(β1)|−1,

(16)

where values of positive constants γ and c5 will be specified below. Assign
Π3(P ) = σ1x(P )× σ1y(P ).

Now we shall estimate the values of P and P ′ on the intervals σ1x(P )
and σ1y(P ). For the sake of simplicity we shall consider P (y) and P ′(y) on
σ1y(P ) only. The Mean Value Theorem yields

P (y) = P ′(β1)(y − β1) + 1
2
P ′′(ξ3)(y − β1)2 for some ξ3 ∈ (β1, y),

P ′(y) = P ′(β1) + P ′′(ξ4)(y − β1) for some ξ4 ∈ (β1, y).
(17)

By (14) and (16), the second terms of P (y) and P ′(y) may be estimated as
follows

|1
2
P ′′(ξ3)(y − β1)2| � Q1−2γ−2v,
|P ′′(ξ4)(y − β1)| � Q1−γ−v.

(18)
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From (17) and (18) we get

|P (y)| < 4
3
c5Q

−γ,
|P ′(y)| < 5

3
c4Q.

(19)

Similarly, for P (x) and P ′(x) on interval σ1x(P ) we obtain

|P (x)| < 4
3
c5Q

−γ,
|P ′(x)| < 5

3
c3Q.

(20)

Fix the vector b = (an, . . . , a3) of coefficients of P (x). The polynomials
P ∈ P̃n(H, s) with the same vector b̄ form a subclass P(b).

Without loss of generality, we may assume that an > 0. Otherwise mul-
tiply the polynomial by −1 which does not change the system (7). Every
coefficient aj, (3 6 j 6 n − 1) may take at most (2Q+1) values. Thus we
have #P(b̄) ≤ Q(2Q+1)n−3. For convenience, note that #P(b̄) ≤ 2n−1Qn−2.

We consider two types of rectangles Π3(P ). One type of rectangle Π3(P1)
with P1 ∈ P(b) is called inessential if there is another rectangle Π3(P2) with
P2 ∈ P(b) such that

µ(Π3(P1) ∩ Π3(P2)) > 0.5µ(Π3(P1)). (21)

The other type of rectangle Π3(P1) and is called essential. It satisfies: for
any P2 ∈ P(b) different from P1

µ(Π3(P1) ∩ Π3(P2)) < 0.5µ(Π3(P1)).

The case of essential rectangles. Summing the measures of rectan-
gles for all polynomials in P(b̄) , we obtain∑

P∈P(b̄)

µΠ3(P ) 6 2|I1| × |I2|. (22)

Combining the definitions of σ1x(P ), σ1y(P ), σx(P ), σy(P ) (see (15),(16)),
we get

µσx(P ) < 4
3
nc1c

−1
5 Q−v1+γµσ1x(P ),

µσy(P ) < 4
3
nc2c

−1
5 Q−v2+γµσ1y(P ).

(23)

Let us estimate the measure of the union of Π2(P ) for all polynomials
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selected above.∑
P∈P(b̄)

µΠ2(P ) =
∑

P∈P(b̄)

µσx(P )× µσy(P ) <

<
∑

P∈P(b̄)

2n2c1c2c
−2
5 Q−v1−v2+2γµσ1x(P )× µσ1y(P ) =

= 2n2c1c2c
−2
5 Q−v1−v2+2γ

∑
P∈P(b̄)

µΠ3(P ) <

< 4n2c1c2c
−2
5 Q−v1−v2+2γ|I1||I2|. (24)

Summing over b̄, we get∑
b̄

∑
P∈P(b̄)

µΠ2(P ) < 2n+1n2c1c2c
−2
5 Qn−2−v1−v2+2γ|I1||I2|.

Taking into account v1 + v2 = n− 1, and writing γ = 1
2
, we obtain∑

b̄

∑
P∈P(b̄)

µΠ2(P ) < 2n+1n2c1c2c
−2
5 |I1||I2|. (25)

Given c2
5 = 2n+5n2c1c2, the estimate in (25) does not exceed 2−4|I1||I2|.

The case of inessential rectangles.
Define R(t) = P2(t)− P1(t) = b2t

2 + b1t+ b0. Without loss of generality,
assume b2 ≥ 0. Obviously, R(t) is not identically zero. The Conditions (19),
(20), and P1, P2 ∈ P(b̄) imply

|R(x)| = |b2x
2 + b1x+ b0| < 3c5Q

−γ,
|R′(x)| = |2b2x+ b1| < 3c3Q,
|R(y)| = |b2y

2 + b1y + b0| < 3c5Q
−γ,

|R′(y)| = |2b2y + b1| < 3c4Q.

(26)

Let α and β denote roots of the polynomial R(x) with degR = 2. By
inequalities (26) for |R(x)|, |R(y)|, and Lemma 2, we can estimate

|x− α| < 6c5Q
−γ|R′(α)|−1, (27)

|y − β| < 6c5Q
−γ|R′(β)|−1. (28)

By (2), if |α−β| < 0.08, we arrive at a contradiction for sufficiently large
Q

0, 1 < |x− y| ≤ |x− α|+ |y − β|+ |α− β| < 0, 09.
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Thus |α− β| ≥ 0.08 and

|R′(α)| = |R′(β)| = b2|α− β| > 0.08b2. (29)

Suppose c4 = min(c3, c4). Applying the Mean Value Theorem on the
interval σ1y, we obtain

R′(y) = R′(β) +R′′(ξ5)(y − β) for some ξ5 ∈ [β, y].

Since |R′′(ξ5)(y − β)| < 24c5Q
1−γ|R′(β)|−1, if |R′(β)|2 > 48c5Q

1−γ, then

|R′(β)| < 2|R′(y)| < 6c4Q. (30)

The estimate (30) follows from the inequalities (14). This implies that the
number of possible b2 is bounded by

#b2 < 75c4Q. (31)

Suppose that I1 = [d1, d2], I2 = [f1, f2], and |I2| ≥ |I1|.
First let us assume that |I1| = |I2| = Q−µ1 . The point − b1

2b2
is the

maximum of the parabola z = b2x
2 + b1x + b0. It is easy to verify that this

point lies inside the interval [d1+d2
2
, f1+f2

2
]. The conditions x ∈ I1 ⊂ [−1

2
, 1

2
],

y ∈ I2 ⊂ [−1
2
, 1

2
] imply

#b1 ≤ 2b2Q
−µ1 + 2 = 2b2|I1|+ 2 (32)

and |b1| ≤ |b2|.
Now assume |I1| > |I2|. Divide I2 into m = [ |I2||I1| ]+1 intervals Ji such that

Ji ≤ |I1| where 1 6 j 6 m. Similarly, for every pair x ∈ I1 and y ∈ Ji we
obtain an upper bound for #b1 similar to (32). Summing (32) over j gives
the following exact estimate of the number of possible b1

#b1 ≤ (2b2|I1|+ 2)(|I2||I1|−1 + 1) ≤ 4b2|I2|. (33)

Suppose now that (26) holds for some R1 = b2x
2 + b1x + b0. If we take

R2 = b2x
2 + b1x+ b0 + 1 we may shift the argument by ∆x, i.e.,

1 = R2(x)−R1(x) = R1(x+∆x)−R1(x) = R′(ξ6)∆x for some ξ6 ∈ [x, x+∆x].

If x + ∆x ∈ I1, then ξ ∈ I1. For a fixed pair (b2, b1) the estimate for the
derivative in (26) can be improved, namely

|R′(ξ6)| = |2b2ξ6 + b1| ≤ 2|b2|
1

2
+ |b1| ≤ 2|b2|.
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Summarizing, we conclude that

∆ = |R′(ξ6)|−1 ≥ 1

2
|b2|−1.

This means that the number of possible values of b0 is at most

#b0 6 |I1||∆|−1 < 2|b2||I1|. (34)

By Lemma 2 and the estimates |R′(α)| > 2−4b2, |R′(β)| > 2−4b2 from
(26), we obtain

|x− α| < 28c5Q
−γb−1

2

and
|y − β| < 28c5Q

−γb−1
2 .

Thus, the measure of the intersection Π3(P1) ∩ Π3(P2) is less than
218c2

5b
−2
2 Q−2γ. If γ = 1

2
, then the measure of the inessential rectangle is

less than
219c2

5b
−2
2 Q−1. (35)

Using the estimates for b0, b1, b2 from (31), (33),(34), we may sum (35)
over (b0, b1, b2), and get∑

b2

∑
b1

∑
b0

µΠ3(P ) < 229 min(c3, c4)c2
5|I1||I2|. (36)

For c5 = 2n+5n2c1c2 the estimate in (36) says

2n+34n2c1c2 min(c3, c4)|I1||I2|.

Given c1c2 min(c3, c4) < 2−n−38n−2, this bound is smaller than 2−4. Thus, we
proved that

µMn1(c̄, Q) <
1

8
|I1||I2|. (37)

�
The remaining part of the proof strongly depends on the structures of q̄,

r̄ (they were introduced in the Auxiliary Statements) and on their relations
with the degrees v1, v2. In all of these statements below the measure tends
to zero as Q → ∞. The constants c1, c2, c3, c4, and others no longer play
a significant role and will be replaced by the Vinogradov symbol � in the
remaining part of the paper.

Introduce a new subclass of polynomials as follows:

P t = P t(q̄, r̄) =
⋃

2t6H<2t+1

P̃(H, q̄, r̄).
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In order to proceed we need one more definition.
A polynomial P ∈ P̃(H, q̄, r̄) is called (i1, i2)–linear, where i1 = 0, 1 and

i2 = 0, 1, according to the ordering between q1 +k2T
−1 and v1 + 1, r1 + l2T

−1

and v2 + 1. For example, (0, 0)–linearity means that the following system
holds:

q1 + k2T
−1 < v1 + 1,

r1 + l2T
−1 < v2 + 1.

(38)

(0, 1)–linearity means (<,>) inequalities in the system above, (1, 1)–
linearity means (>,>), and so on. The most important case are the (1, 1)
and (0, 0)– linearities. Denote

d1 = q1 + r1, d2 = (k2 + l2)T−1.

We will consider polynomials P ∈ P t such that H � Q. The main differences
between 0– and 1–linearity will be finding proper estimates of the differences
|x − α1| and |y − β1| when applying Lemma 2. We use the first estimate in
(13) for 0 –linearity and the second estimate in (13) for 1–linearity.

Proposition 2. Let Mn,2(c̄, v̄, Q) denote the set of (x, y) ∈ I1 × I2 such
that the system of inequalities{

|P (x)| � Q−v1 ,

|P (y)| � Q−v2
(39)

holds for (1, 1)–linearity. Then

µMn,2(c̄, v̄, Q) <
1

32
|I1||I2|. (40)

Proof.
(1, 1)–linearity implies d1 + d2 ≥ n+ 1. By Lemmas 2 and 3,{

|x− α1| � Q−
v1+1

2
+

q1
2

+(n−1)ε1 ,

|y − β1| � Q−
v2+1

2
+

r1
2

+(n−1)ε1 .
(41)

Suppose ρ1 = v1−q2+1
2

. Let us divide the interval I1 into equal subintervals
Ii, where |Ii| = Q−ρ1+ε. Similarly, suppose ρ2 = v2−r2+1

2
and divide I2 into

equal subintervals Ij, where |Ij| = Q−ρ2+ε.
Then the number of rectangles Ii × Ij does not exceed

c(n)Q
1
2

(v1+v2+2)−q2−r2−2ε|I1||I2| = c(n)Q
1
2

(n+1)−q2−r2−2ε|I1||I2|. (42)

12



Choose rectangles Ii×Ij that contain not more than one solution P of system
(39). From (41) and (42) it follows that the measure of the solution set of
(39) does not exceed

c(n)Q−2ε+2(n−1)ε1|I1||I2| <
1

64
|I1||I2|. (43)

Let us show that the case where (39) holds for at least two polynomials
leads to a contradiction. Using a Taylor expansion on Ii and Ij, we obtain

P1(x) = P ′(α1)(x− α1) +
1

2
P ′′(α1)(x− α1)2 +

n∑
j=3

(j!)−1P (j)(α1)(x− α1)j,

P1(y) = P ′(β1)(y − β1) +
1

2
P ′′(β1)(y − β1)2 +

n∑
j=3

(j!)−1P (j)(β1)(y − β1)j.

Similarly we obtain an expansion for P2. The above estimates of |x−α1|,
|y−β1|, and the estimates for the derivatives that follow from Lemma 3 lead
to the following inequalities:

|P1(x)| � Q−v1+(n−1)ε1+2ε,

|P1(y)| � Q−v2+(n−1)ε1+2ε,

|P2(x)| � Q−v1+(n−1)ε1+2ε,

|P2(y)| � Q−v2+(n−1)ε1+2ε.

(44)

Since P1 and P2 are irreducible they have no common roots. Thus, we can
apply Lemma 4 to obtain

τ1 + 1 = v1 − (n− 1)ε1 − 2ε, 2(τ1 + 1− η1) = v1 + 1 + q2 + 2(n− 1)ε1 − 4ε,

τ2 + 1 = v2 − (n− 1)ε1 − 2ε, 2(τ2 + 1− η2) = v2 + 1 + r2 + 2(n− 1)ε1 − 4ε,

and in the left side of the inequality in Lemma 4 we get

2v1 + 2v2 + 4− 12ε− 6(n− 1)ε1 = 2n+ 2− 12ε− 6(n− 1)ε1.

The right-hand side of this inequality then becomes 2n+ δ. Given ε, ε1, we
obtain a contradiction to Lemma 4 when δ < 0.5. �

Now let consider the case of (0, 0)– linearity. Suppose that n + 0.1 <
d1 + d2 < n+ 1, namely 

q1 + k2T
−1 6 v1 + 1,

r1 + l2T
−1 6 v2 + 1,

d1 + d2 > n+ 0.1.

(45)
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Proposition 3. Let Mn,3(c̄, v̄, Q) denote the set of (x, y) ∈ I1× I2 such
that (39) holds together with (45). Then

µMn,3(c̄, v̄, Q) <
1

32
|I1||I2|. (46)

Proposition 3 can be proved in a similar manner. When (45) holds the
first estimate is sharper then the second one in (13).

Again divide the rectangle I1 × I2 into equal rectangles Ii × Ij, where
|Ii| = Q−ρ3+ε, |Ij| = Q−ρ4+ε and ρ3 = k2T

−1, ρ4 = l2T
−1. Then the number

of rectangles Ii × Ij does not exceed

c(n)Q(k2+l2)T−1−2ε|I1||I2|. (47)

Again choose rectangles Ii × Ij such that there are no solutions or there is
at most one solution P of the system (39) with an extra condition (45). By
Lemma 2, we have for fixed a polynomial P (t){

|x− α1| � Q−v1−1+q1+(n−1)ε1 ,

|y − β1| � Q−v2−1+r1+(n−1)ε1 .

Their product gives us an upper estimate for the measure of {(x, y) : x ∈
S(α1), y ∈ S(β1)}. Multiplying it by (47), we get the following upper esti-
mate for the measure of the solution set:

c(n)Q−v1−v2−2+(k2+l2)T−1+q1+r1−2ε+2(n−1)ε|I1||I2| � Q−ε|I1||I2| <
1

32
|I1||I2|.

Assume that there are at least two solutions in the rectangle I1×I2. Again
using a Taylor expansion of P and estimating its summands from above we
obtain 

|P1(x)| � Q1−q1−k2T−1+(n−1)ε1−ε,

|P1(y)| � Q1−r1−l2T−1+(n−1)ε1−ε,

|P2(x)| � Q1−q1−k2T−1+(n−1)ε1−ε,

|P2(y)| � Q1−r1−l2T−1+(n−1)ε1−ε.

(48)

By Lemma 4 for

τ1 + 1 = q1 + k2T
−1 − (n− 1)ε1 − ε, 2(τ1 + 1− η1) = 2q1 − 2(n− 1)ε1 − 2ε,

τ2 + 1 = r1 + l2T
−1 − (n− 1)ε1 − ε, 2(τ2 + 1− η2) = 2r1 − 2(n− 1)ε1 − 2ε,

we get the following left-hand side for the inequality in Lemma 4

3q1 + k2T
−1 + 3r1 + l2T

−1 − 6(n− 1)ε1 − 6ε. (49)
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But k2T
−1 6 q1, l2T

−1 6 r1, and (45) implies that the expression in (49) is
at least

2(d1 + d2)− 6ε− 6(n− 1)ε1 > 2(v1 + v2) + 3.6− 6ε− 6(n− 1)ε1 =

= 2n+ 0.2− 6ε− 6(n− 1)ε1.

Given ε, ε1, we obtain a contradiction to Lemma 4 when δ < 0.1.
Now let us consider the case of (0, 0)-linearity for

n− 0.3 < d1 + d2 ≤ n+ 0.1 (50)

Proposition 4. Let Mn,4(c̄, v̄, Q) denote the set of (x, y) ∈ I1× I2 such
that (38), (39) hold together with (50). Then

µMn,4(c̄, v̄, Q) <
1

32
|I1||I2|. (51)

Proof.
Let us divide the rectangle I1 × I2 into equal rectangles Ii × Ij, where

|Ii| = Q−k2T
−1−γ1 , |Ij| = Q−l2T

−1−γ1 for some γ1 > 0 that will be specified
below. Let us choose those rectangles where the system (39) has at least
c(n)Qθ1 solutions in polynomials P (t) for some θ1 ≥ 0. Estimate the measure
of A1 = {(x, y) : (x, y) ∈ Ii × Jj}, which satisfies (39).

µA1 � Q−v1−1+q1−v2−1+r1+k2T−1+l2T−1+2γ1+θ1|I1| × |I2| �

� Qθ1−n−1+d1+d2+2γ1 |I1||I2|.

When
θ1 < n+ 1− d1 − d2 − 2γ1

the statement of Proposition 4 can be easily verified.
Consider now the opposite inequality

θ1 ≥ u1 = n+ 1− d1 − d2 − 2γ1. (52)

By (50), θ1 > 0 for γ1 ≤ 0.4.
Similarly to (48), estimate Pl(t), l = 1, 2, in Ii × Jj. We obtain

|Pl(x)| � Q1−q1−k2T−1−γ1+(n−1)ε1 , (53)

|Pl(y)| � Q1−r1−l2T−1−γ1+(n−1)ε1 . (54)
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Apply Lemma 4 to P1(t) and P2(t) with following parameters

τ1 + 1 = q1 + k2T
−1 + γ1 − (n− 1)ε1,

2(τ1 + 1− η1) = 2q1 − 2(n− 1)ε1,

τ2 + 1 = r1 + l2T
−1 + γ1 − (n− 1)ε1,

2(τ2 + 1− η2) = 2r1 − 2(n− 1)ε1.

By Lemma 4 and (50), the inequality

2(d1 + d2) + 0.8− 6(n− 1)ε1 < 2n+ δ (55)

leads to a contradiction. �
Consider now the next case when

n− 0.55 < d1 + d2 ≤ n− 0.3. (56)

Proposition 5. Let Mn,5(c̄, v̄, Q) denote the set of (x, y) ∈ I1× I2 such
that (38), (39) hold together with (56). Then

µMn,5(c̄, v̄, Q) <
1

32
|I1||I2|. (57)

Proof.
The proof of Proposition 5 is similar to the proof of Proposition 4. Let

us divide the rectangle I1 × I2 into equal rectangles Ii × Ij, where |Ii| =
Q−k2T

−1−γ2 , |Ij| = Q−l2T
−1−γ2 for some γ2 > 0. Similarly, we introduce a

constant θ2 ≥ 0 and a set A2. When θ2 < n + 1− d1 − d2 − 2γ2 holds, then
Proposition 4 can be easily proved. So consider

θ2 ≥ u2 = n+ 1− d1 − d2 − 2γ2. (58)

By (56), we can choose γ2 = 0.6 in (58). Similarly to (53), estimate Pl(t),
l = 1, 2 in newly constructed rectangles Ii × Jj. Applying Lemma 4, we
obtain an inequality similar to (55)

2(d1 + d2) + 1.2− 6(n− 1)ε1 < 2n+ δ.

Since (56) and δ < 0.05, the inequality leads to a contradiction. �
Let

2 < d1 + d2 ≤ n− 0.55. (59)

Proposition 6. Let Mn,6(c̄, v̄, Q) denote the set of (x, y) ∈ I1× I2 such
that (38), (39) hold together with (59). Then

µMn,5(c̄, v̄, Q) <
1

32
|I1||I2|. (60)

16



Proof.
The start of the proof is similar to the proofs of Propositions 4 and 5. We

divide the rectangle I1×I2 into equal rectangles Ii×Ij, where |Ii| = Q−k2T
−1

,
|Ij| = Q−l2T

−1
. Similarly, we introduce the constant θ3 ≥ 0 and the set A3.

When θ3 < n + 1 − d1 − d2 holds the proof of Proposition 6 is obvious.
Consider now

θ3 ≥ u3 = n+ 1− d1 − d2 ≥ 1.45. (61)

We can rewrite u3 as

u3 = [u3] + {u3}, [u3] ≥ 1.

Expanding Pl(t) and P ′l (t) on intervals Ij and Ji into a Taylor series and
estimating its terms above, we obtain

|P (x)| � Q1−q1−k2T−1
,

|P ′(x)| � Q1−q1 ,

|P (y)| � Q1−r1−l2T−1
,

|P ′(y)| � Q1−r1 .

(62)

Since there are at most c(n)Q[u3]+{u3} polynomials P (t) that belong to
Ij × Ji, then, by Dirichlet’s principle, there are at least K = c(n)Q{u1}

polynomials with equal coefficients of tn, tn−1, . . . , tn−[u3]+1.
Now we construct further polynomials with degree at most n− [u3]

Rj−1(t) = Pj(t)− P1(t) j = 2, . . . , K.

By (62) for Ri(f), i = 1, . . . , K − 1, we have

|Ri(x)| � Q1−q1−k2T−1+(n−1)ε1 ,

|R′(x)| � Q1−q1 ,

|Ri(y)| � Q1−r1−l2T−1+(n−1)ε1 ,

|R′(y)| � Q1−r1 ,

degRi ≤ n− [u3] = d1 + d2 + {u3} − 1.

(63)

We apply Lemma 4 to the two polynomials Rs1(t) and Rs2(t). This results
in a contradiction when {u3} ≤ 0.7.

Thus assume that {u3} > 0.7. Again we divide the rectangle I1 × I2

into equal rectangles Ii × Ij, where |Ii| = Q−k2T
−1−γ3 , |Ij| = Q−l2T

−1−γ3 for
some γ3 > 0 such that 2γ3 ≤ {u3}. If the number of polynomials in these
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rectangles is c(n)Qθ3 and θ3 < u3 = n + 1 − d1 − d2 − 2γ3 then Proposition
6 can be easily proved. When

θ3 ≥ u3 = n+ 1− d1 − d2 − 2γ3 = [u3] + {u3}n− 2γ3

one can obtain (63) with an approximation of |Ri(x)| and |Ri(y)| of the type
1−q1−k2T

−1−γ3 +(n−1)ε1 and 1−r1− l2T−1−γ3 +(n−1)ε1 respectively.
Applying Lemma 4 to the pair of coprime polynomials, we get

2(d1 + d2)− 6(n− 1)ε1 + 2γ3 < 2(d1 + d2)− 2 + 2{u4}+ δ

that leads to a contradiction for γ3 = {u4}
2

and δ = 0.1. �
Let us show how the theorem can be proved for the cases of (1, 0) and

(0, 1)-linearity. Since both proofs are absolutely similar we will demonstrate
the method for (1, 0)-linearity only.

Proposition 7. Let Mn,7(c̄, v̄, Q) denote the set of (x, y) ∈ I1× I2 such
that (39) hold together with{

q1 + k2T
−1 > v1 + 1,

r1 + l2T
−1 ≤ v2 + 1.

(64)

Then

µMn,7(c̄, v̄, Q) <
1

32
|I1||I2|.

Proof.
Again divide the rectangle I1 × I2 into rectangles Ii × Ij, where |Ii| =

Q−
v1−q2+1

2
+ε, |Ij| = Q−l2T

−1+ε. We replace the second inequality in (64) by

v2 + 0.5 < r1 + l2T
−1 ≤ v2 + 1. (65)

Consider the rectangles Ii×Ij which contain no more than one polynomial
P (t). Fix such a polynomial P (t). Then the solution of (39) belongs to the
rectangle {

|x− α| � Q−
v1+1−q2

2 ,

|y − β| � Q−v2−1+r1 .
(66)

Multiplying the estimates (66), we sum them over all rectangles Ii×Ij. Thus
we get the estimate of the kind c(n)Q−ε|I1||I2| that proves Proposition 7. If
there are at least two polynomials such that belong to Ii×Ij, then we expand
them into Taylor series. We get

|Pi(x)| � Q−v1+(n−1)ε1+2ε,
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|Pi(y)| � Q1−r1−l2T−1

.

Apply Lemma 4 with

τ1 = v1 + 1− 2ε− (n− 1)ε1,

2(τ1 + 1− η1) = v1 + 1 + q2 − 2ε− 2(n− 1)ε1,

τ2 + 1 = r1 + l2T
−1 − ε,

2(τ2 + 1− η2) = 2r1.

Then,
2v1 + 2 + l2T

−1 + 3r1 + q2 − 3(n− 1)ε1 − 4ε < 2n+ δ. (67)

However, by (65), we have l2T
−1 + 3r1 > 2v2 + 1, and the left side in (67) is

larger than 2n+ 1− 5ε. Thus, for δ < 0.5 we arrive at a contradiction.
The final part of the proof is similar to the proof of the (0, 0)–linearity.

We omit the above estimate in (65) until we can use Dirichlet’s principle,
which results in polynomials of lower degree. �

The case r1 <
1
2

and r1 <
1
2

is considered in Proposition 1. It remains to
consider polynomials such that

1 ≤ d1 + d2 ≤ 2 (68)

holds. Here as in Proposition 1 we can pass to first degree polynomials which
lead to a contradiction with (3) or to the second degree polynomials. For
this case Theorem 1 was proved in Proposition 1.

Combining the results of all Propositions, we finally get

µMn(c̄, v̄, Q) 6
7∑
j=1

µMn,j(c̄, v̄, Q) 6
1

4
|I1||I2|,

concluding the proof of Theorem 2. �
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