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The analogue of the classical Khintchine-Groshev theorem, a fundamental result 
in metric Diophantine approximation, is established for smooth planar curves with 
non-vanishing curvature almost everywhere. 
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1. Introduction 

Let $ : N -+ RS be a decreasing function. The Khintchine-Groshev theorem (see 
theorem 12 in SprindBuk (1979) for details but note that the notation here differs 
slightly) in the plane asserts that the set of points x E IR2, which obey the inequality 

for infinitely many vectors q = (40, 41, 42) E Z3, has zero or full Lebesgue measure 
according to whether the sum CEl$(r) converges or diverges, respectively (H(q) = 
max{lqo 1 ,  lql 1 ,  142I}, the height of q). In this paper the analogue of this theorem is 
established for smooth planar curves with non-zero curvature almost everywhere. 

Theorem 1.1. Let I c R be an interval and suppose that the functions f l ,fi : 
I -+ R are C3 and satisfy fi(x) f;(x) - fy(x) f i(x) # 0 for almost all x E I .  Then, 
for almost all x E I the inequality 

holds for infinitely many or only finitely many integer vectors q according to whether 
the sum 

diverges or converges, respectively. 

Schmidt's theorem on the extremality of planar curves (Schmidt 1964) corresponds 
to $(r) = rl-" with v > 2 and is clearly a special case of the above result. The case 
of convergence was proved in Bernik et al. (1998), which we also refer to for historical 
details. The complementary case of divergence is now proved. 
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Throughout this article the Lebesgue measure of a measurable set E will be 
denoted by IEl. Since the curvature vanishes only on a set of measure zero we take 
I, without loss of generality, to be a sufficiently small closed interval with 171 < 1 
on which the curvature does not vanish. By the implicit function theorem we can, 
again without loss of generality, take the curve {(f2(x), fl(x)) : x E I) to be of the 
form {(f(x), x) : x E I).Thus instead of the linear form q2f2(x) + ql fl(x) + qo we 
consider 

where (qo, ql, qz) E Z3 \ (0) and f : I + R is a smooth function with non-zero 
second derivative everywhere. We write H ( F )  = max{lq21 ,  Iql 1 ,  Iqo1 ) .  Thus it suffices 
to prove that 

for infinitely many F for almost all x when the sum (1.2) diverges. 
Since I is a closed interval, the constant 

M = max ~ u ~ ~ f ( ~ ) ( x ) l +  1 
0 < 6 3  Z E I  

is finite. Also I f  "(x)l 3 c > 0 for all x E I .  Let 

be the family of non-zero F and let 

r = {y E I : there exists F E 3,F(y)  = 0). (1.4) 

If q2 # 0, then F"(x) = q2f t f (x)# 0, and it follows that F has at most two roots in 
I and hence that the set r is countable. For each y E r,define the height h(y) of y 
to be the positive integer 

h(y) = min{H(F) : F E F with F(y)  = 0). 

The proof of theorem 1.1 is based on the following result, which deals with the 
approximation of real numbers by elements of r. 

Theorem 1.2. For almost all x E IR the inequality 

has infinitely many or only finitely many solutions y E r according to whether the 
sum (1.2) diverges or converges, respectively. 

Using the Borel-Cantelli lemma it is not difficult to prove that if CrZl+(h) < ca 
then, for almost all x E I,inequality (1.5) has at most finitely many solutions y E r. 

The proof of theorem 1.2 in the case of divergence is based on some facts concerning 
the distribution of I'.To investigate this distribution, the concept of regular systems, 
introduced by Baker & Schmidt (1970) in their study of Hausdorff dimension and 
Diophantine approximation, is used. 
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Definition 1.3. Let R be a countable set of real numbers and ili : R -+ R+ be a 
function. The pair (R,  N) is called a regular system on an interval I if there exists 
a constant C1 = C1(R, N, I)> 0 such that for any finite interval J c I there exists 
a sufficiently large number To = To(R, N, J)> 0 such that for any T 3 To there are 
71,.. . ,y t  in R n J such that 

In order to establish theorem 1.2 the following refinement of the lower-bound part 
of theorem 3 in Baker (1978) will be proved. 

Theorern 1.4. Let N(y) = for each y E r (defined in (1.4)). Then ( r ,  N )  h ( ~ ) ~  
is a regular system on I .  

2. Proof of theorem 1.4 

We begin with a brief outline of the proof. Let the interval J = [a,b] c I and the 
sufficiently large integer Q be given. The intervals 

where y runs over r n J with h(y) << Q, will be shown to cover a subset G(J,  Q) 
of J having measure IG(J, Q)I 3 ilJl in order to deduce that (r,N )  is a regular 
system. This will be done by finding, for each x E G(J,  Q), a function F E F such 
that H ( F )  << Q, IF(x)l < EQ and IFt(x)l >> Q for some EQ satisfying Q-2 << EQ < 
QP2. Indeed, it will be proved (see lemma 2.1) that this function F has a root y 
approximating x with error Q-3, where << b means a < cb for some constant c > 0. 

It will also be shown that if 1 Ft(x)l << Q, then H ( F )  < Q; this ensures that 
the condition H ( F )  > Q guarantees that lFt(x)l >> Q. In addition, we will restrict 
ourselves to points x E J, which are at least EQ from the boundary of J, so that 
y E r n J .  We define G(J,  Q) to be the set of points x in (a + EQ,  b -EQ) such that 
for any F E F satisfying IF(x) 1 < EQ we have H ( F )  > Q. We will choose EQ SO that 
the set B(J ,  Q) = J \G(J,  Q) has measure at most $ 1  JI for Q sufficiently large. Thus 
the first step is to show that a suitable EQ exists and to obtain an upper bound for 
IB(J,Q) I. 

The cases of large and small derivatives are considered separately. From now on 
let Q E N,E > 0 and J = [a,b] be a subinterval of I .  Let 

and let B j (Q,  E) be the set of x E J for which there exists a function F E F(Q)  such 
that 

For any F E F(Q)  define g (F )  as the set of all the solutions of (2.1) belonging to J .  
It is necessary to show that lBj(Q, E) I is relatively small. 

Lemma 2.1 shows that if the height H(F)of F exceeds -44 (given in (1.3)), then 
within a small interval the derivative of F is bounded away from zero. Recall that 
without loss of generality III < 1. 
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Lemma 2.1. Fix Q > M and 0 < E < QP2.Then for any F E F ( Q )  such that 
g ( F ) # 0, a t  least one of the follomring statements is true for any xo E o ( F ) .  

(1) ,There exists a number y E J such that F ( y )= 0 and 

1x0 - rl < -
2E 

IF' (7)I ' 

Proof. Fix a function F E F ( Q ) such that g ( F ) # 0. Then choose xo E o ( F ) .We 
may assume without loss of generality that 1x0-a1 > E and 1x0-bl > E as otherwise 
the lemma is true. Then for any x such that lx - xol < E we have x E J .  By the 
mean value theorem (MVT), F' ( x )  = F' ( x o )  + F" ( x l ) ( x  - x o ) ,where xl is a point 
between x and xo. It is readily verified from (1.3) that 

Hence I F f ' ( x l ) ( x- xo)l < AIQE < MQ-l < 1 J I - I  since Q > hf and I JI < III < 1. 
Since lFf(xo)l3 21JIP1,we have 

Thus, by continuity, F' does not change sign in the interval [xo- E ,  xo +E ] .  Further; 
by the MVT, for any x satisfying Ix -xoI < E we have F  ( x )  = F ( x o )+F' ( x 2 )  ( x  -xo), 
where 2 2  = x 2 ( x )is a point between x and xo. Putting x = xo + E gives 

Moreover, one of the values of F f ( x 2 ) ( x- xo) is positive and the other is negative. 
Since 1 F ( x o )1 < E ,  the expression F ( x )= F ( x o )+F' ( x 2 ) ( x  - xo) has different signs 
at points xo Iiz E. It follows that there exists a point y E [zo- E ,  xo + E ]  C J such 
that F ( y )  = 0 and, as we have already proved, I F f ( y ) l3 I 3 I JI-l. Next,F ' ( X ~ ) ~  
by Taylor's formula, 

Using the same method as for (2.3) above, it can be shown that 

IFf('?)f ; ~ " ( x 3 ) ( x 0- Y ) I 3 ; I F ' ( Y ) ~ . 
Together with (2.4) this gives (2.2) and lemma 2.1 is proved. 

Next, an estimate for 1 Bj (Q, E )  I is obtained. 

Lemma 2.2. Let Q > Q1 = max{3, M ,  I J I- l)  and E > 0. Then 

Proof. First note that if E 2 Q P 2there is nothing to prove; we therefore assume 
tha,t E < Q-2. Consider the non-empty interval J' = [a+ E,  b - E ] .  Given F E F ( Q ) ,  
define Q' ( F )= g ( F )nJ' and of'( F )= g ( F )\of ( F ) .Since g'' c ([a,a +E] U [b -E, b]) 
it is readily verified that 

Proc. R. Soc. Lond. A (1999) 



3057 The Khintchine-Groshev theorem for planar curves 

Now we proceed to estimate the measure of the union of ol (F)  over F(Q) .  Fix ql 
and q2 not both zero and such that /ql 1 ,  Iq2j < Q and consider R(x) = q2f (x) +qlx. 
There exists a cover of J consisting of two intervals [wiPl, wi], i = 1 ,2  such that R' 
is monotonic (it has at most one turning point) and of constant sign in each one, one 
of which could be just one point. For any function F(x)  = R(x) +qo E F (Q) ,  define 
the sets 

Zi(F) = {y E [wi-1, wi] : F(7)  = 0, IF1(y)l 3 IJI-l}, i = 1,2, 

with Z (F )  = Z1(F)U Z2(F)and 

with Z(R) = 21(R) U 2 2  (R). Finally, let o(y, F) denote the set 

For any F E F(Q) ,  lemma 2.1 implies that 

Since the derivatives of F = R) = F).Ordering the R +qo and R coincide, ~ ( y ,  ~ ( y ,  
elements in the sets &(R),  i = 1 ,2  as follows, 

we have 

C h o ~ ei such th?t k:, > 1, and consider two sequential roots and of 
R + and R + q$'S1 say, respectively. Without loss of generality assume that R' 
is positive and increasing on (wi-1, wi). Using the MVT and the monotonicity of R' 
we find that 

. . 
1 - 1 = 1 - R ( T ~~ ( y f ) )  (j+l))l 

= R ) - yjj+l) I I (j+l)I - i (j+l)1 ,  
where is a point between Tjj) and #+I). It follows that 
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Surnrning this over all j = 1, . . . ,ki- 1 gives 

further implying that 

Summing the last inequality over all i gives 

and hence, by (2.6). 

The last estimate together with (2.5) gives t,he required result and completes the 
proof. 

Let EQ = LQ-~280 a,ndB1(J,Q) = Bj(Q,  E ~ ) .Then by lemma 2.2 IBl(J, & ) I  < $ 1 ~ 1 
when Q > Q1 for some Q1 sufficiently large. 

Now we turn to the case of small derivatives. Consider the set of x E J such that 

for sonle F in F.This set will be divided into two, the first for which H ( F )  is large 
and the second for which H ( F )  is small; both will be shown to have small measure. 
The following lemma will be needed. 

Lemma 2.3. Let J be a finite interval. For almost a11 x E J the system 

has a t  most finitely many solutions F E F. 

This lenlnla follows from a result in Beresnevich (1996) but can also be proved by 
using the following. 

Lemma 2.4. Given 6 > 0, for almost all x the system 

~F(x) /< H ( F ) - ~ - ~ ,  I F ' ( Z ) I  < H(F)-h 

has a t  most finitcly many solutions F E F. 

Lemma 2.4 is proved in Beresnevich & Bernik (1996). In addition lemma 2.3 can 
be obtained from lemma 2.4 by adapting the argument in $ 2of Beresnevich & Bernik 
(1996). 
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For any function F E F,denote the set of points x E J that satisfies the system 
of inequalities (2.8) by T ~ ( F )  and let 

By lemma 2.3, IB2(J, Q')I -+ 0 as Q' -+ ca.Hence there exists a number Q2 such 
that IB2(J, Q2)l 6 kIJI. It is straightforward to verify that if x satisfies system (2.7) 
for some F E F(Q)  with H ( F )  3 Q2, then x E B2(J, Qz) for any Q > Q2. This 
leaves the case H ( F )  6 Q2. Let r3(F: Q) = {x E J : IF(x)1 < EQ). It is easy to 
see that 1~3(F, 0 as Q -+ cc,Q)I + 0 as Q -+ w. Then it follows that IB3(J, Q)I -+ 
where 

Thus, there exists Q3 such that for any Q 3 Q3 we have IB3(J, Q) 1 < 1 JI. 
Define the set B(J ,Q) = Bl(J ,Q)U B2(J, Q2) U B3(J,Q) U [ U , U + E Q ]  U [b- E Q , ~ ] .  

Then from above 

for Q sufficiently large. 
Define the constant L = max{ill, supzE 1x1) > 1 (by the definition of M )  and fix J 

a point x in J \ B(J,  Q). Consider the system 

By Minkowski's linear-forms theorem, there exists a non-zero integer solution (qo, 
ql, q2) of the system (2.9). From now on we assume that F(x)  = q2f (x) + qlx + qo 
where (qo,ql, q2) is the solution of (2.9). By working backwards in (2.9) starting 
with the third inequality it can be readily verified that the system (2.9) implies that 
H ( F )  < 841L3Q. If 

then, by (2.9), H(F)  < Q. In this situation the poirlt x would belong to B(J ,  Q) 
contradicting x E J \ B(J,Q). Hence 

From now on Q will be assumed to be sufficiently large. By lemma 2.1 there exists 
a root y E J of the function F such that 

Therefore, by definition, h(y) 6 H(F)  6 841L3Q. Thus, for any x E J \ B(J,Q) 
there exists y E r n J such that h(y) 6 8 4 1 ~ ~ ~yl < ~ L ~ Q - ~ .and Ix -
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Fix a maximal collection r = r ( J ,  Q )  = { y l ,. . . ,yt )  c P n J satisfying the fol- 
lowing conditions: 

h(yi )  < 8 4 1 ~ ~ ~lyi - yjl 3 for i # j .and 

Then for any y E r nJ such that h ( y )  < 841L3Q there exists yi in such that 

I Y  - " l i  < &L2QP3.  

Hence for any x E J \ B ( J ,  Q )  there exists yi E 1; such that 

Ix - yil < &L2QP3.  

The set J \ B ( J ,  Q )  is covered by the union of the intervals 

Ki = { x  E J : lx - yil < & L ~ Q - ~ )for yi E r, 
with I Kil 6 4L 2 a P 3and i = 1, .  . . ,t .  Thus, 

; I  JI 6 I J \ B ( J ,Q ) l  < 4tL2QP3 

so that t 3 2L-2Q31JI. Taking T = ( 8 4 1 Q ~ ~ ) ~gives (1.6)-(1.8) and completes the 
proof of the theorem. 

3. Proof of theorem 1.2 

For any y E r define 

4 7 )= { x  E I : lx - 71 < h(y ) -2$(h (y ) ) ) .  
Let r($)denote the set of x E R,which belongs to infinitely marly intervals cr(y). 
Our aim is to prove that if C;="=,(h) = oc then r($)has full measure. Without 
loss of generality we can assume that 

$ ( h )  < ih-l for all h. (3.1) 

For each k let cp(k)= 2 k ~ ( 2 k ) .The monotonicity and divergence of $ imply that 

The following two lemmas will be needed. The first follows from the Lebesgue 
density theorem and the second is lemma 5 in Sprindiuk (1979,ch. 1).They can also 
be found in Harman (1998) as lemmas 1.6 and 2.3, respectively. 

Lemma 3.1. Let A c I be a measurable set. I f  there exists a positive constant 
C2 < 1 such that for any interval J C I the inequality / A  n JI 3 C21 JI holds, then 
the set A  has full measure. 

Lemma 3.2. Let Ei c I be a sequence o f  measurable sets and let E  be the set 
o f  points x belonging to  infinitely many Ei.  I f  the sum CEl IEi diverges, then 

lim sup 
N + m  

i=l j=1 
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Fix any interval J c I. By theorem 1.4, there exist positive constants C1 and 
ko = ko(J) such that for any k 3 ko there exists a collection 

rk(J)  = {n< . . . < ?ti,) C r n J 

satisfying the following conditions (taking T = 23%nd N(y) = h(y)3): 

h ( ~ ) < 2 ~  (3.3)f o r a l l y E T k ( J ) ,  

ly - 3 2-3"0r any numbers P , y E r k ( J )  with y # p, (3.4) 

~ ~ 2 ~ ~ ! (3.5)JI6 tk  G 23kl J I .  

Moreover, r k ( J )  can be chosen so that the distance between any y E r k ( J )  and the 
boundary of J is more than 2-3k. From now on, unless otherwise stated, y E r k ( J ) .  
Let 

say, and consider the set E ( J )  = ng=koUr=NEk.The monotonicity of $ together 
with (3.3) implies that Ek(y)  c ~ ( y ) .It follows that E ( J )  c T($) n J, whence 

It is readily verified that 

By (3.1) and (3.4), the intersection Ek(y)  n Ek(@ is empty if y f ,!?. Thus, lEkl= 
tklEk(y)1 and hence, by (3.5) and (3.7), we have 

It follows that 

and so from (3.2) that Czko1 Ek1 = cm. 
We proceed to estimate the measures of the intersections Ek and EL.  In general 

I El,n El1 will not be comparable with IEe1 1  ElI, but 'on average' suitable estimates 
hold. Fix, as we may by (3.2), a number N,-, > ko such that 

Fix k and l such that ko 6 k < 1 ,< N ,  where N > No. For any y E r k ( J ) :  

The number of different ,B E rL( J )  satisfying El(P)nEk(y) # 0 is less than or equal to 
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from (3.7). Using this, (3.7) and (3.11) give 

I E ~nEl,(?)[ 6 4 .  2-31v(1)(1 + 2 3 ( 1 - k ) ~ ( k ) )  

and therefore from (3.5) 

IEl nEkl 6 41 J l (p( l )p (k )  + 41 ~ / 2 - ~ ( ' - " ) ( p ( l ) .  

Since El, nEl = E l  nE k ,  we have 

N N N N 1-1 

The double sum on the right-hand side of (3.13) is estimated with the help of 
(3.12): 

Thus, from (3.10),  (3.9) and (3.14),we conclude that 

This estimate and (3.9) gives 

It follows that I E ( J )I 2 Jl from lemma 3.2 and from (3.6) that Ir($)r l JI 
LC21 1 JI. This holds for any finite interval J .  By lemma 3.1 the proof of theorem 1.22 
is complete. 

4. Proof of theorem 1.1 

Let F($)denote the set of real numbers x satisfying the inequality (1.1) for infinitely 
many F E F. Define &(h)= 4 ( h ) / ( M+ 1) . It is clear that q l ( h )  is monotonic and 
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that the sum CT=l $l( h )diverges. By theorem 1.2, the set r(gl)has full measure. 
Given y E I', define the interval crl(y)= { x  E I : lx - yi < h(y ) -2$ l (h (y ) ) ) .Then, 

Given y E r ,  let F., be the unique function in F with F ( y )  = 0 and h ( y )  = H ( F ) .  
By the MVT, 

where 2 is a point between y and x. Thus IF.,(x) 1 < H(F)(A/ f+ 1) 1x - y 1 .  Let 
x E a1(7).Then 

Thus for any y E r such that a l ( y )  # 0, F., is a solution of (1.1) when x E .I(?). 

It follo~vs that if x E I ' ( d l ) , then the inequality (1.1) has infinitely snany solutions, 
whence x belongs to F ( $ ) .  Thus r($l)c F ( $ ) .  It follows that F ( $ )  has full measure 
and the proof is complete. 

The natural question of extending this result to curves and indeed to manifolds in 
higher dimensions is much snore difficult and probably requires deeper arguments. 
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