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A. Baker’s conjecture and Hausdorff dimension

by

V. Beresnevich1 and V. Bernik2

(Dedicated to the 60th birthday of Professor Kálmán Györy)

Abstract. It this paper we discuss an application of the Hausdorff dimen-
sion to the set of very well multiplicatively approximable points (x, . . . , xn).
In 1998 D.Kleinbock and G.Margulis proved A.Baker’s conjecture stating that
this set is of measure zero. We show that for any natural n multiplicatively
approximable points (x, . . . , xn) to order 1 + ε form a set of Hausdorff dimen-
sion at least 2/(1 + ε). It is conjectured that this number is the exact value of
the dimension. We also prove this conjecture for n = 2.

Introduction. We will use the following notation. The Vinogradov sym-
bol ¿ (À) means ‘≤ (≥) up to a positive constant multiplier’; a ³ b is
equivalent to a ¿ b ¿ a. The Lebesgue measure of A ⊂ R is denoted by |A|.
We denote by Pn the set of polynomials P ∈ Z[x] with deg P ≤ n. Given a
polynomial P (x) = anx

n + . . . + a1x + a0 ∈ Z[x], we define the height of P as
H(P ) = max{|a0|, . . . , |an|}.

Let ε > 0, n ∈ N and Sn(ε) denote the set of x ∈ R such that the inequality

|P (x)| < H(P )−n(1+ε) (1)

has infinitely many solutions P ∈ Pn. In 1932 K. Mahler, in his classification
of real numbers, conjectured that for any ε > 0 the Lebesgue measure of Sn(ε)
is zero. Mahler’s problem was settled by V. Sprindzuk [5] in 1964. The concept
of Hausdorff dimension (see [4]) makes it possible to differ sets of measure zero.
In particular, this was applied to Sn(ε). In 1970 A. Baker and W. Schmidt
[2] established a lower bound for dim Sn(ε), the Hausdorff dimension of Sn(ε).
Later it was proved by V. Bernik [3] that this value is also an upper bound for
dim Sn(ε) resulting in

dim Sn(ε) =
n + 1

n + 1 + nε
. (2)
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In 1975 A. Baker raised a problem by replacing the right hand side of (1)
with the function Π+(P )−1−ε, where P (x) = anxn + . . . + a1x + a0 ∈ Pn and
Π+(P ) =

∏n
i=1 max(1, |ai|). Given ε > 0 and n ∈ N, let Mn(ε) be the set of

x ∈ R such that the inequality

|P (x)| < Π+(P )−1−ε (3)

has infinitely many solutions P ∈ Pn. A. Baker [1] conjectured that for any
n ∈ N one has |Mn(ε)| = 0 for any ε > 0.

Notice that Baker’s conjecture is stronger than that of Mahler. Indeed,
since H(P )n ≥ Π+(P ), we have H(P )−(1+ε)n ≤ Π+(P )−(1+ε). Therefore, if (1)
is soluble infinitely often, then so is (3). In particular, it means that

Sn(ε) ⊂ Mn(ε). (4)

Baker’s conjecture was proved by D. Kleinbock and G. Margulis [7] in 1998.
As in the case of Sn(ε), it is also of interest to determine the Hausdorff

dimension of Mn(ε). We will use the following properties [4]:
1) dim A ≤ dim B for any A,B ⊂ R with A ⊂ B;
2) dim A = supi=1,2,... dim Ai, where A =

⋃∞
i=1 Ai and Ai ⊂ R.

Conjectures and results. First of all, notice that

Mk(ε) ⊂ Mn(ε) for any k, n ∈ N with k < n. (5)

It follows from (4) and (5) that S1(ε) ⊂ Mn(ε) for any n ∈ N. Therefore, we
have dim Mn(ε) ≥ dim S1(ε). Now applying (2) gives

Theorem 1. For any n ∈ N and any ε > 0

dim Mn(ε) ≥ 2

2 + ε
. (6)

Conjecture H1. For any n ∈ N and ε > 0 one has

dim Mn(ε) =
2

2 + ε
.

This conjecture is trivial for n = 1. Indeed, it is easy to notice that for
any δ > 0 we have the inclusion M1(ε) ⊂ S1(ε− δ). Therefore, for any δ with
0 < δ < ε we have dim M1(ε) ≤ dim S1(ε − δ). By (2), we conclude that
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dim M1(ε) ≤ 2/(2 + ε− δ). Since δ ∈ (0, ε) is arbitrary, we have dim M1(ε) ≤
2/(2 + ε). In this paper we also prove the conjecture for n = 2.

Theorem 2. For any ε > 0 we have

dim M2(ε) =
2

2 + ε
.

Proof of Theorem 2. By (6), it is sufficient to show that dim M2(ε) ≤
2/(2 + ε). Let {Ik}∞k=1 be a collection of closed intervals such that R \ {0} =⋃∞

k=1 Ik. The existence of such a collection is easily verified. Then, M2(ε) =
{0}⋃

(
⋃∞

k=1 M2(ε)
⋂

Ik). Since dim{0} = 0, by property 2 of Hausdorff dimen-
sion above, we have dim M2(ε) ≤ supk=1,2,... dim(M2(ε)

⋂
Ik). Therefore, it is

sufficient to show that dim(M2(ε)
⋂

Ik) ≤ 2/(2 + ε) for any k. Let I be one of
the intervals Ik. There is no loss of generality in assuming that I = [a, b] with
0 < a < b < ∞.

Let x ∈ I and P (t) = a2t
2 + a1t + a0 ∈ P2 be a solution of (3). It follows

from (3) that

|a0| = |P (x)− a2x
2 − a1x| ≤ Π+(P )−1−ε + |a2|x2 + |a1|x ≤

1 + |a2|b2 + |a1|b ≤ (1 + b + b2) max{|a1|, |a2|}.
Therefore, we have

max{|a1|, |a2|} ≤ H(P ) ≤ (1 + b + b2) max{|a1|, |a2|}. (7)

Now define the constant

C = min(a, 1/2)/(1 + b + b2). (8)

Let M1
2 (ε, I) be the subset of M2(ε)∩ I consisting of x ∈ I such that there are

infinitely many P ∈ P2 satisfying

{
|P (x)| < Π+(P )−1−ε,
|P ′(x)| < CH(P ).

(9)

Let x ∈ I and P (t) = a2t
2+a1t+a0 be a solution of (9). We have the following

two possibilities:
1) |a2| ≥ |a1|;
2) |a1| ≥ |a2|.
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Consider the first one. It follows from (7) and (9) that

|2x + a1/a2| ≤ CH(P )/|a2| ≤ C(1 + b + b2) ≤ a.

Since x ≥ a, we have |a1/a2| = |2x − (2x + a1/a2)| ≥ |2x| − |2x + a1/a2| ≥
2a− a = a. Therefore, we obtain a ≤ |a1/a2| ≤ 1.

Consider the other possibility: |a1| ≥ |a2|. It follows from (7) and (9) that

|2xa2/a1 + 1| ≤ CH(P )/|a1| ≤ C(1 + b + b2) ≤ 1/2.

Hence, |2xa2/a1| = |1−(2xa2/a1+1)| ≥ 1−|2xa2/a1+1| ≥ 1−1/2 = 1/2. Since
x ≤ b, we have |a2/a1| ≥ 1/(4b). Therefore, we obtain 1/(4b) ≤ |a2/a1| ≤ 1.

As a result we conclude that |a1| ³ |a2| for both the possibilities. Moreover,
by (7), we have |a1| ³ |a2| ³ H(P ). Therefore, P+(P ) ³ H(P )2 and the first
inequality of (9) implies that

|P (x)| ¿ H(P )−2(1+ε). (10)

Now if x ∈ M1
2 (ε, I), then inequality (10) holds for infinitely many polynomials

P ∈ P2 and for any δ > 0 the inequality |P (x)| < H(P )−2(1+ε−δ) has infinitely
many solutions P ∈ P2. It follows that M1

2 (ε, I) ⊂ S2(ε − δ) for any δ with
0 < δ < ε. By (2), we obtain

dim M1
2 (ε, I) ≤ dim S2(ε− δ) =

3

3 + 2(ε− δ)
.

Since δ ∈ (0, ε) is arbitrary, we get

dim M1
2 (ε, I) ≤ 3

3 + 2ε
<

2

2 + ε
. (11)

Now we consider the set M2
2 (ε, I) = (M2(ε) ∩ I) \M1

2 (ε, I). It is easy to
verify that for any x ∈ M2

2 (ε, I) the system

{
|P (x)| < Π+(P )−1−ε,
|P ′(x)| ≥ CH(P )

(12)

holds for infinitely many polynomials P ∈ P2. Given a polynomial P ∈ P2, let
σ(P ) denote the set of x ∈ I satisfying (12). It is easy to notice that σ(P ) is a
union of at most three intervals, say σi(P ) with i = 1, 2, 3. Also if x ∈ M2

2 (ε, I)
then x belongs to σi(P ) for infinitely many different polynomials P ∈ P2.
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Fix P ∈ P2 and x, y ∈ σi(P ). By the Mean Value Theorem, we have
P (x)− P (y) = P ′(θ)(x− y), where θ is a point between x and y. Since σi(P )
is an interval, θ ∈ σi(P ) and, therefore, |P ′(θ)| ≥ CH(P ). Hence,

|x− y| ≤ |P (x)|+ |P (y)|
|P ′(θ)| ≤ 2Π+(P )−1−ε

CH(P )
.

Thus,
|σi(P )| ¿ Π+(P )−1−ε ·H(P )−1. (13)

Let 2/(2 + ε) < ρ < 1. We have the following inequality

∑

P∈P2

3∑

i=1

|σi(P )|ρ ¿
∞∑

k=0

∞∑

l=0

∑

2k≤|a1|<2k+1

∑

2l≤|a2|<2l+1

∑
a0

3∑

i=1

|σi(P )|ρ, (14)

where P (x) = a2x
2+a1x+a0. If 2k ≤ |a1| < 2k+1 and 2l ≤ |a2| < 2l+1 then, by

(13), |σi(P )| ¿ 2−(1+ε)(k+l)−max{k,l}. Moreover, by (7), the number of different
a0 such that σ(P ) 6= ∅ is ¿ 2max{k,l}. Now it follows from (14) that

∑
P∈P2

∑3
i=1 |σi(P )|ρ ¿

∑∞
k=0

∑∞
l=0

∑
2k≤|a1|<2k+1

∑
2l≤|a2|<2l+1 2max{k,l} · (2−(1+ε)(k+l)−max{k,l})ρ ¿

∑∞
k=0

∑∞
l=0 2k · 2l · 2max{k,l} · (2−(1+ε)(k+l)−max{k,l})ρ =

∑∞
k=0

∑∞
l=0 2(1−ρ(1+ε))(k+l)+(1−ρ)max{k,l} ≤

∑∞
k=0

∑∞
l=0 2(1−ρ(1+ε))(k+l)+(1−ρ)(k+l) =

∑∞
k=0

∑∞
l=0 2(2−ρ(2+ε))(k+l) =

(∑∞
k=0 2(2−ρ(2+ε))k

)
·
(∑∞

l=0 2(2−ρ(2+ε))l
)
.

Since ρ > 2/(2 + ε), we have 2 − ρ(2 + ε) < 0. It is now easy to see that the
sum

∑∞
l=0 2(2−ρ(2+ε))l converges. Therefore, we have

∑
P∈P2

∑3
i=1 |σi(P )|ρ < ∞ (15)

for any ρ with 2/(2 + ε) < ρ < 1. By Lemma 4 in [4,pp. 94], the Hausdorff
dimension of the set consisting of x ∈ I, which belongs to infinitely many
intervals σi(P ), is at most ρ. This set is exactly M2

2 (ε, I). Since ρ ∈ (2/(2 +
ε), 1) is arbitrary, we have dim M2

2 (ε, I) ≤ 2/(2 + ε). Combining this and (11)
completes the proof of Theorem 2. 2
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