[13] Witten E. Noncommutative geometry and string field theory // Nuclear Physics B. - 1986. - no. 268. - P. 253-294.

Sums of nearly Kähler f-structures on

A.S. Samsonov

Belarusian State University
andrey.s.samsonov@gmail.com
Introduction. We continue investigation of canonical f-structures [5] on homogeneous Φ-spaces of order $k\left(\Phi^{k}=i d\right)$ [6], [12] (also known as homogenous k-symmetric spaces [9]) in the generalized Hermitian geometry field (see, for example, [7]).

Recent results of the investigations extend some facts for the well known almost complex structure $J=\frac{1}{\sqrt{3}}\left(\theta-\theta^{2}\right)$ (see [13], [14]) on homogeneous 3 -symmetric spaces in Hermitian geometry and for canonical f-structures on naturally reductive homogeneous 4 - and 5 -symmetric spaces (see [2]). For example, any base canonical f-structure belongs to nearly Kähler f structures ($\mathbf{N K f}$) on arbitrary homogeneous Φ-space of any order $k(k \geq 3)$ with naturally reductive metric [4] (see [10] for $k=6$) and for more general set of metrics [11]. The papers [10], [4], [11] also contain necessary and sufficient conditions under which the sum and difference of two base canonical f structures belong to the class NKf.

Let us consider a sum of three or more base canonical f-structures. It is clear that if each pair from the sum is $N K f$-structure then the entire sum belongs to the class NKf. The converse is not true in general. Thus this article indicates appropriate necessary and sufficient conditions for a sum of three base canonical f-structures and describes some special cases of the pointed theorem.

Preliminaries. Let G be a connected Lie group with an automorphism Φ. Denote by G^{Φ} the fixed points subgroup of Φ and by G_{o}^{Φ} the identity component of G^{Φ}. If a closed subgroup H of G satisfies $G_{o}^{\Phi} \subset H \subset G^{\Phi}$ then G / H is called a homogeneous Φ-space [12], [6].

Homogeneous Φ-spaces include homogeneous Φ-spaces of order $k\left(\Phi^{k}=\right.$ id) [6], [9], [12] which contain well known homogeneous symmetric spaces $\left(k=2, \Phi^{2}=i d\right)$ and homogeneous 3 -symmetric spaces $\left(k=3, \Phi^{3}=i d\right)$.

Let consider homogeneous Φ-spaces G / H of order k and point some facts for them. Denote by \mathfrak{g} and \mathfrak{h} Lie algebras for G and H respectively and let
$\varphi=d \Phi_{e}$ be the automorphism in $\mathfrak{g}\left(\varphi^{k}=i d\right)$. It's known [12] G / H is reductive and its canonical reductive decomposition is $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$. Denote by $\theta=\left.\varphi\right|_{\mathfrak{m}}$, $s=\left[\frac{k-1}{2}\right]$ (integer part), $u=\left[\frac{k}{2}\right]$ (i.e. $u=s$ if k is odd and $u=s+1$ otherwise). Recall the decomposition of \mathfrak{m} corresponding to the automorphism φ [9]:

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}=\mathfrak{m}_{0} \oplus \mathfrak{m}=\mathfrak{m}_{0} \oplus \mathfrak{m}_{1} \oplus \ldots \oplus \mathfrak{m}_{u} \tag{1}
\end{equation*}
$$

where some of \mathfrak{m}_{i} can be trivial. We also will denote a subspace $\mathfrak{m}_{k-(i+j)}$ by \mathfrak{m}_{i+j} if $i+j>u$ in the next theorems.

Any canonical f-structure can be represented (see [3], the definition of canonical structures is in [5]) as

$$
f=\left(\zeta_{1} J_{1}, \ldots, \zeta_{s} J_{s}\right),
$$

where J_{1}, \ldots, J_{s} are specially defined almost complex structures $\left(J_{i}^{2}=-1\right)$ on $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{s}, \zeta_{i} \in\{-1 ; 0 ; 1\}, i=\overline{1, s},\left.f\right|_{\mathfrak{m}_{u}}=0$ for even k. If subspace \mathfrak{m}_{i} isn't trivial, $\zeta_{i}=1$ and other $\zeta_{j}=0(j \neq i)$, then the structure f will be denoted by f_{i} (i.e. f_{i} is the base canonical f-structure).

We will use the next Theorem 1 to prove new results. Observe that for $k=2$ it yields well-known commutator relations for homogeneous symmetric spaces [8]:

$$
[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h},[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m},[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h} .
$$

Theorem 1. [4], [11] Suppose that G / H is a homogeneous Φ space of order $k(k \geq 2) ; \mathfrak{m}$ is the corresponding canonical reductive complement with decomposition (1); $i, j=0,1, \ldots, u ; i \geq j$; and \mathfrak{m}_{i+j} denotes $\mathfrak{m}_{k-(i+j)}$ if $i+j>u$. Then, the following commutator relations are valid:

$$
\left[\mathfrak{m}_{i}, \mathfrak{m}_{j}\right] \subset \mathfrak{m}_{i+j}+\mathfrak{m}_{i-j}
$$

Let consider now the set of G-invariant Riemannian metrics on a homogeneous Φ-spaces G / H of order k in the case of semisimple compact Lie algebra \mathfrak{g} with Killing form B. Using the bijective correspondence [8] between the G-invariant metrics and the $A d(H)$-invariant inner products on the canonical reductive complement \mathfrak{m} let take the next family:

$$
\begin{equation*}
\langle X, Y\rangle=\lambda_{1} B\left(X_{1}, Y_{1}\right)+\ldots+\lambda_{u} B\left(X_{u}, Y_{u}\right) \tag{2}
\end{equation*}
$$

where $X, Y \in \mathfrak{g}, i=\overline{1, u}, X_{i}, Y_{i} \in \mathfrak{m}_{i}$, while \mathfrak{m}_{i} is a summand of the decomposition (1), $\lambda_{i} \in \mathbb{R}, \lambda_{i}<0$.

The bilinear symmetric mapping $U: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ for the Nomizu function [8] α is determined (see [8]) from

$$
\begin{equation*}
2\langle U(X, Y), Z\rangle=\left\langle X,[Z, Y]_{\mathfrak{m}}\right\rangle+\left\langle[Z, X]_{\mathfrak{m}}, Y\right\rangle \quad \forall Z \in \mathfrak{m} \tag{3}
\end{equation*}
$$

in case of the Levi-Civita connection ∇ for an invariant Riemannian metric $g=\langle\cdot, \cdot\rangle$ on the homogeneous reductive space G / H.

We establish in Theorem 2 that $U(X, Y)$ is determined by the commutator of $X, Y \in \mathfrak{m}$ in the case of homogeneous k-symmetric spaces with the metric (2).

Theorem 2. [11] Consider a homogeneous Φ-space of order $k(k \geq 3)$ $M=G / H$ with the metric (2), and suppose that the Lie algebra \mathfrak{g} of G is semisimple and compact. Take arbitrary elements X_{i}, Y_{i}, Y_{j} of the summands \mathfrak{m}_{i} and \mathfrak{m}_{j} in (1) for $i, j=\overline{1, u}$ with $i>j$. Then U satisfies

$$
U\left(X_{i}, Y_{j}\right)_{\mathfrak{m}_{i \pm j}}=\frac{\lambda_{j}-\lambda_{i}}{2 \lambda_{i \pm j}}\left[X_{i}, Y_{j}\right]_{\mathfrak{m}_{i \pm j}}, \quad U\left(X_{i}, Y_{i}\right)=U\left(X_{i}, Y_{j}\right)_{\mathfrak{m}_{n}}=0
$$

where \mathfrak{m}_{i+j} with $i+j>u$ stands for $\mathfrak{m}_{k-(i+j)}$, while λ_{i+j} with $i+j>u$ stands for $\lambda_{k-(i+j)}$, and \mathfrak{m}_{n} is an arbitrary summand of (1) except for \mathfrak{m}_{i-j} and \mathfrak{m}_{i+j}.

Finally, let point defining property for $N K f$-structures [1]:

$$
\begin{equation*}
\nabla_{f X}(f) f X=0 \tag{4}
\end{equation*}
$$

where f is a metric f-structure on a (pseudo)Riemannian manifold (M, g), ∇ is the Levi-Civita connection of $(M, g), X, Y \in \mathfrak{X}(M)$.

New Results. The results are formulated for a sum $f_{v}+f_{w}+f_{z}$ of three base canonical f-structures f_{v}, f_{w}, f_{z}. Similar results can be received for f-structures $f_{v}+f_{w}-f_{z}, f_{v}-f_{w}+f_{z}$ and $f_{v}-f_{w}-f_{z}$.

Let us remind first the recent necessary and sufficient conditions for a sum of two canonical f-structures and class NKf.

Theorem 3. [11] Consider a homogeneous Φ-space $M=G / H$ of order k with the metric (2) and arbitrary base canonical f-structures f_{i} and f_{j} on M, with $i>j$. The structure $f_{i}+f_{j}$ is of class NKf if and only if two conditions simultaneously hold:

1) $\left[\mathfrak{m}_{i}, \mathfrak{m}_{j}\right] \subset \mathfrak{m}_{i+j}$ or both $i=2 j$ and $\lambda_{i}=2 \lambda_{j}$.
2) $\left[\mathfrak{m}_{i}, \mathfrak{m}_{j}\right] \subset \mathfrak{m}_{i-j}$ or $\lambda_{i}=\lambda_{j}$.

Using similar approach as for Theorem 3 (i.e. the expression 4 is analyzed taking into account Theorem 2, commutator and other helpful relations from [11] for the homogeneous k-symmetric spaces) we prove the theorem below for a sum of three base canonical f-structures.

Theorem 4. Consider a homogeneous Φ-space $M=G / H$ of order k with the metric (2) and arbitrary base canonical f-structures f_{u}, f_{w}, f_{z} on M, with $u>w>z$. The structure $f_{u}+f_{w}+f_{z}$ is of class NKf if and only if for each triple (i, j, t) from the set $\{(u, w, z),(u, z, w),(w, z, u)\}$ two conditions simultaneously hold:

1) $\left[\mathfrak{m}_{i}, \mathfrak{m}_{j}\right] \subset \mathfrak{m}_{i+j}$ or both $i=2 j$ and $\lambda_{i}=2 \lambda_{j}$

$$
\text { or both } t=i-j \text { and } \lambda_{t}=\lambda_{i}-\lambda_{j}
$$

2) $\left[\mathfrak{m}_{i}, \mathfrak{m}_{j}\right] \subset \mathfrak{m}_{i-j}$ or $\lambda_{i}=\lambda_{j}$.

So, the only new condition in Theorem 4 is $t=i-j$ and $\lambda_{t}=\lambda_{i}-\lambda_{j}$. It allows to additionally vary metrics (2) to find an $N K f$-structure among canonical f-structures.

For example, let consider order $k=7$ or $k=8$ in Theorem 4. We have only three base canonical f-structure f_{1}, f_{2} and f_{3} in these cases. If we take $\lambda_{2}=2 \lambda_{1}$ and $\lambda_{3}=3 \lambda_{1}$ then the first condition from Theorem 4 is automatically satisfied and only condition $\left[\mathfrak{m}_{i}, \mathfrak{m}_{j}\right] \subset \mathfrak{m}_{i-j}$ should be verified for the taken set of coefficients λ.

If we take a naturally reductive metric (i.e. $\lambda_{i}=\lambda_{j}$ for all i, j in the expression (2) and Theorem 4) then only condition $\left[\mathfrak{m}_{i}, \mathfrak{m}_{j}\right] \subset \mathfrak{m}_{i+j}$ should be verified. Moreover, the structure $f_{u}+f_{w}+f_{z}$ is of class NKf in this case if and only if each pair $f_{u}+f_{w}, f_{u}+f_{z}, f_{w}+f_{z}$ from the sum is $N K f$-structure.

The author is grateful to Vitaly V. Balashchenko for helpful discussions and recommendations related to this article.

Библиографический список

[1] Balashchenko V.V. Riemannian geometry of canonical structures on regular Φ-spaces // Fakultät für Mathematik der Ruhr-Universität Bochum. - 1994. - P. 1-19. - Preprint №174/1994.
[2] Balashchenko V.V. Homogeneous Hermitian f-manifolds // Russian Math. Surveys. - 2001. - Vol. 56, no. 3. - P. 575-577.
[3] Balashchenko V.V. The algebra of canonical affinor structures on homogeneous k-symmetric spaces // Differential Geometry and Its Applications. Silesian University. Opava (Czech Republic).- 2001.P. 3-13.
[4] Balashchenko V.V., Samsonov A.S. Nearly Kahler and Hermitian f-structures on homogeneous k-symmetric spaces // Doklady Mathematics. - 2010. - Vol. 81, no. 3. - P. 1-4.
[5] Balashchenko V.V., Stepanov N.A. Canonical affinor structures of classical type on regular Φ-spaces // Sbornik: Mathematics. - 1995. Vol. 186, no. 11. - P. 1551-1580.
[6] Fedenko A.S. Spaces with symmetries. - Minsk : Belarusian State University, 1977.
[7] Kirichenko V.F. Quasi-homogeneous manifolds and generalized almost Hermitian structures // Math. USSR, Izv. - 1984. - Vol. 23. - P. 473486.
[8] Kobayashi S., Nomizu K. Foundations of Differential Geometry. - New York: Intersc. Publ. J.Wiley \& Sons, 1963.
[9] Kowalski O. Generalized symmetric spaces. - LN in Math. - Berlin, Heidelberg, New York: Springer-Verlag, 1980. - Vol. 805.
[10] Samsonov A.S. Nearly Kähler and Hermitian f-structures on homogeneous Φ-spaces of order 6 // Russian Math. (Iz. VUZ). - 2011. no. 4. - P. 74-82.
[11] Samsonov A.S. Nearly Kähler and Hermitian f-structures on homogeneous Φ-spaces of order k with the special metrics // Sib. Math. Journal. - 2011. - Vol. 52, no. 6. - P. 904-915.
[12] Stepanov N.A. Basic facts of the theory of φ-spaces // Izv. Vyssh. Uchebn. Zaved. Mat. - 1967. - no. 3. - P. 88-95.
[13] Stepanov N.A. Homogeneous 3-cyclic spaces // Izv. Vyssh. Uchebn. Zaved. Mat. - 1967. - no. 12. - P. 65-74.
[14] Wolf J.A., Gray A. Homogeneous spaces defined by Lie group automorphisms // J. Diff. Geom. - 1968. - Vol. 2, no. 1,2. - P. 77159.

