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On Palais universal G-spaces
and isovariant absolute extensors

S. M. Ageev

Abstract. We develop the theory of isovariant absolute extensors which
were earlier introduced by R. Palais. The existence of injective objects of
the isovariant category is proved and their properties are studied.
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§ 1. Introduction

A productive tendency in the study of spaces with action of a compact group G
is their examination as generalized principal G-bundles. This approach is justified
by existing equivalence between categories of free G-spaces and principal G-bundles
(which is reflected in the fact that the orbit projection of a freeG-space is a principal
G-bundle, and the total space of a principal G-bundle is canonically supplied with
a free action).

When passing to arbitrary actions, we shall follow the principle of naturalness
expressed in an attempt to preserve in the category of generalized bundles (being
constructed) as high a number of characteristic properties of principal G-bundles as
possible (among them the possibility of their homotopy classification with the help
of universal principal G-bundles). If the situation with objects of such a category
is perfectly clear— these are G-spaces, then the choice of morphisms is ambiguous
since beyond the class of free G-spaces the equivariant maps begin to behave differ-
ently: points of an orbit are glued by its action (this is not the case for isovariant
maps). This observation leads to the alternative between the category of metric
G-spaces and equivariant maps (briefly, EQUIV-TOP) and the category of metric
G-spaces and isovariant maps (briefly, ISOV-TOP).

However, in terms of declared positions the category EQUIV-TOP possesses an
essential deficiency: here the classification of G-spaces is not possible in any reason-
able sense, since all morphisms with an equivariant contractible space as a range,
are G-homotopic to a constant map. It counts in favour of the isovariant category
that the theorem on covering homotopy of G-spaces — an analogue of the corres-
ponding fact for principal G-bundles, holds. To confirm finally the validity of the
choice of the last mentioned category we subject the injective objects of the cate-
gory ISOV-TOP or the isovariant absolute extensors (briefly, the Isov-AE-space)
to detailed analysis.1

1The definition of such an object is available in the paper [1], 2.6, of R. Palais, where the term
‘universal G-space’ was used.
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If such an object exists, then its orbit brings about the classification of all
G-spaces, and the category ISOV-TOP is homotopical [2]. It is precisely this object
that should be considered as a universal generalized principal G-bundle. However,
the partial results established in Palais’s problem on the existence of isovariant
absolute extensors deal with the finite-dimensional case under some restrictions on
orbit types [1], 2.6, and without such restrictions [3]; the methods produced in the
process of establishing them fail in the general infinite-dimensional case.

From Theorem 3.2 proved below the complete solution of Palais’s problem fol-
lows: isovariant absolute extensors exist without any restrictions on dimension
and orbit types. For example, the countable power J 
 (Con T)ω of the metric
cone Con T over a discrete union T of all homogeneous spaces G/H ∈ G-ANE
is appropriate: J ∈ Isov-AE. Therefore, there appears the possibility of devel-
oping an adequate theory of extensors of the category ISOV-TOP, where the
principal objects of examination are isovariant absolute neighbourhood extensors,
Isov-ANE-spaces.

It turns out that the isovariant absolute extensor constructed in Theorem 3.2
possesses the extra property of extension: each partial equivariant (not necessarily
isovariant) map Z←↩ A ϕ→ X ∈ Isov-ANE has a neighbourhood extension ψ : U→ X
isovariant on the complement (Theorem 3.3). This combined property of extension
in its turn implies several important relations between injective objects of the iso-
variant and (more studied) equivariant categories. We single out among them the
following properties:
• each Isov-A[N]E-space is an Equiv-A[N]E-space (Theorem 3.5);
• each G-map ϕ : Z → X ∈ Isov-ANE is approximated arbitrarily closely by

an isovariant map ψ : Z→ X, and each G-homotopy F : Z× I → X between
isovariant maps can be transformed into an isovariant homotopy between
the same maps (Theorem 8.4).

This implies the important conclusion that the properties of equivariant and iso-
variant homotopy equivalences for Isov-ANE-spaces are equivalent (Theorem 8.1).

In what follows the theory of isovariant extensors developed for the compact
Lie group G is applied to the investigation of the equivariant homotopy cate-
gory EQUIV-HOMOT, the objects of which are Equiv-ANE-spaces and the mor-
phisms —G-homotopy classes of equivariant maps. We substantiate the thesis that
this category needs to be studied jointly with the arising isovariant homotopy cate-
gory ISOV-HOMOT, the objects of which are Isov-ANE-spaces and the morphisms
are isovariant homotopy classes of isovariant maps. As established, the forgetful
functor

F : ISOV-HOMOT→ EQUIV-HOMOT

is an equivalence of categories, the inverse of which will be Borel’s homotopy functor

[E] : EQUIV-HOMOT→ ISOV-HOMOT

constructed in the paper. Therefore, the study of the G-homotopy type of Equiv-
ANE-spaces is completely and sufficiently constructively reduced to the investiga-
tion of the isovariant homotopy type of Isov-ANE-spaces. In so doing the volume
of information about G-homotopy type is not reduced and invoking new objects,
isovariant extensors, permits us to succeed in the solution of a number of problems.
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For example, it is possible to define in a natural way the endofunctor of passing to
the bundle orbit of the given type F ⊂ ConjG in the category EQUIV-HOMOT
(which is sufficiently complicated to make without previous preparation, as, for
example, even nice spaces have a bad local structure of orbit bundle of a given
type).

The constructed equivalence of homotopy categories admits an essential refine-
ment related to the spaces with a fixed orbit type F ⊂ ConjG, for which pur-
pose we develop (as a preliminary) the theory of extensors of full subcategories:
ISOVF -TOP ⊂ ISOV-TOP and EQUIVF -TOP ⊂ EQUIV-TOP, the objects of
which are metric G-spaces with the orbit type F . The absolute neighbourhood
extensors of these categories are connected by the following relation: IsovF -ANE ⊂
EquivF -ANE (property (1), § 6), the class of EquivF -ANE-space coincides with
Equiv-ANE-spaces, which have the orbit type F (Theorem 6.1). It turns out that in
the absolute case the forgetful functor F : ISOVF - HOMOT→ EQUIVF - HOMOT
is an equivalence of full subcategories ISOV- HOMOT and EQUIV- HOMOT, the
objects of which are metric IsovF -ANE-spaces and EquivF -ANE-spaces, respec-
tively.

A number of equivariant homotopy invariants are closely connected with
F -classifying spaces in the sense of [4], [5] (differently, terminal objects of the
category EQUIVF - HOMOT). As an example, the generalized cohomology of an
acting group G from [6], [7] is Bredon’s cohomology of F -classifying spaces. We
take a new glance at such spaces with the help of the concentration effect based
on a simple observation: each F -orbit bundle of an isovariant absolute extensor
is an F -classifying space. Therefore, the various F -classifying spaces are situ-
ated in a unique isovariant absolute extensor, the orbit space of which turns out
to be partitioned into classifying spaces for appropriate principal bundles. This
method permits one to perform effective calculations and to find in specific cases
the generalized cohomology of the group G in an explicit form.

The present paper owes its appearance to one more circumstance. Investigating
in [8] the orbit space exp(S1)/S1 of the hyperspace exp(S1) of all nonvoid com-
pact subsets with the natural action of the circle S1, Toruńczyk and West made the
important observation that some bundles of orbit types are endowed with the struc-
ture of an Eilenberg-MacLain complex. Unfortunately, their Lemma 1 is wrong:
each map f : exp(S1) → (0, 1] such that inequality dH(A,B) < f(A) holds, where
dH is the Hausdorff metric, implies that the embedding (S1)B ⊂ (S1)A of stabi-
lizers is discontinuous at any point A with nontrivial stabilizer. This circumstance
destroys the most part of the paper. West communicated to us that, nevertheless,
some results can be saved (this is not true for Lemma 9), provided that suitable
changes in Lemma 1 are made. Later similar structures turned up in studies of the
topology of the Banach-Mazur compactum [9], [10] (we point out that the paper [11]
written at the same time contains a similar error in Lemma 5 as in [8]).

Are all these observations a curious demonstration of properties of concrete
spaces or embodiments of a general regularity? One aim of this paper is to give
an answer to this intriguing question. It turns out that it is precisely the abso-
lute isovariant extensors that are responsible for similar phenomena: for each
IsovS1 -AE-space W the orbit space WD of discrete orbit types is an Eilenberg-
MacLain complex K(Q, 2) (see Theorem 12.1).
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We return to [8] once more and note that in a forthcoming paper we will show
the universality (in the sense of Palais) of the S1-space exp(S1) (as well as the uni-
versality of the O(2)-space of convex bodies in R2). Hence all results of the paper
of Toruńczyk and West remain true in spite of the gaps that were revealed.

§ 2. Preliminary facts and results

In what follows we shall assume all spaces (all maps) to be metric (continuous,
respectively), if they do not arise as a result of some constructions or if the opposite
is not claimed; all acting groups are assumed to be compact Lie groups.

We present the basic notions of the theory of G-spaces [12]. An action of a com-
pact group G on a space X is a continuous map µ from the product G× X into X
satisfying the following properties:

• µ(g, µ(h, x)) = µ(g · h, x);
• µ(e, x) = x for all x ∈ X, g, h ∈ G (here e is the unity of the group G).

As a rule, µ(g, x) will be written as g · x or just gx. A space X with an action of
the group G is called a G-space. The map f : X→ Y of G-spaces is called a G-map
or an equivariant map if f(g · x) = g · f(x) for all x ∈ X, g ∈ G.

The subset {g · x | g ∈ G} = G · x is called the orbit G(x) of the point x ∈ X
which turns out to be closed. The natural map π = πX : X → X/G, x 7→ G(x),
of the space X into the space X/G of the quotient partition is said to be the
orbit projection. We call the space of the quotient partition, equipped with the
quotient topology induced by π, the orbit space. We will denote it by X 
 X/G,
provided that no confusion occurs. The subset A is called invariant or a G-subset
if π−1π(A) = G ·A.

For each point x ∈ X the subset Gx = {g ∈ G | g · x = x} is a closed subgroup
of G and is called a stabilizer of x. For each closed subgroup H < G let us consider
the following subsets of X:

XH = {x ∈ X | H · x = x} = {x ∈ X | H ⊂ Gx}

(the set of H-fixed points),

XH = {x ∈ X | H = Gx}, X(H) = {x ∈ X | H conjugates with Gx}.

Let F be a family of orbit types (that is, a subset of the set ConjG of conjugate
classes of closed subgroups of G). Then the set XF 
 {x | (Gx) ∈ F} ⊂ X is called
the F -orbit bundle of X. We say that a G-space X is of orbit type F or simply is
a G-F -space if X = XF .

Note that metric G-orbit spaces of the type F and G-maps between them form
a category, which is denoted by GF -TOP or EQUIVF -TOP, if it is clear which
group G we are talking about. We will freely use the symbol ‘G-’ or ‘Equiv-’
meaning equivariant. If ‘∗ ∗ ∗’ is any notion from nonequivariant topology, then
‘G-∗ ∗ ∗’ or ‘Equiv-∗ ∗ ∗’ means the corresponding equivariant analogue.

The equivariant map f : X → Y is called isovariant if f preserves stabilizers,
that is, Gx = Gf(x) for every x ∈ X. The following useful fact — the equimorphism
criterion — is well-known (see [12], p. 77, Proposition 10 and [5], 8.1.3).
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Theorem 2.1. The isovariant map f : X→ Y is an equimorphism if and only if f
induces a homeomorphism of orbit spaces X and Y .

The category formed by metric G-spaces of orbit type F and isovariant maps is
denoted by ISOVF -TOP (it is always clear about the group G in question).

We introduce several concepts related to extension of G-maps in the category C
coinciding with ISOVF -TOP or with EQUIVF -TOP. A space X with an action of
compact group G which is an object of the category C is called an absolute neigh-
bourhood C -extensor (denoted by X ∈ C -ANE) if for each morphism ϕ : A → X
from C , defined on a closed G-subset A ⊂ Z of a G-space Z and called a partial
C -morphism, can be extended into some G-neighbourhood U ⊂ Z of A to a mor-
phism ϕ̂ : U → X ∈ C . If it is always possible to make U equal to Z, then X is
called an absolute C -extensor, X ∈ C -AE. If the acting group G is trivial (that
is, all spaces are considered without actions), then this notion is transformed into
the notion of absolute [neighbourhood] extensors for metric spaces, A[N]E (see
[14], [15]).

If C coincides with the category EQUIV-TOP (ISOV-TOP), then absolute
[neighbourhood] C -extensors will be called equivariant [neighbourhood] extensors
(isovariant [neighbourhood] extensors) or briefly— Equiv-A[N]E- or EquivG-A[N]E-
spaces (briefly as Isov-A[N]E- or IsovG-A[N]E-spaces). In what follows we will
denote injective objects of the category EQUIVF -TOP (ISOVF -TOP) by EquivF -
A[N]E (IsovF -A[N]E).

A metric G-space X is called an equivariant absolute neighbourhood retract,
X ∈ G-ANR, if for each closed G-embedding X into a metric G-space Z there
exists a neighbourhood G-retraction r : U→ X, r ◦ r = r. If it is always possible to
choose a G-retraction r defined on U = Z, then X is called an equivariant absolute
retract, X ∈ G-AR. Since each metric G-space X can be closedly G-embedded into
a G-AE-space (see [13]), we have G-A[N]E ≡ G-A[N]R.

The slice map is, by definition, a G-map α : X → G/H, H < G, into a homo-
geneous space. The well-known Slice Theorem (see, for instance, [12]) asserts that
each orbit has a neighbourhood U which admits a slice map ϕ : U→ G/Gx ∼=G G(x)
which is the identity on this orbit. This fact is equivalent to the fact that each
homogeneous space G/H belongs to the class G-ANE.

If a C -homotopy H : X × [0, 1] → Y joins morphisms f, g : X → Y of the
category C , then it will be briefly written as f ≃Equiv g, provided that C =
EQUIV-TOP; f ≃Isov g, provided that C = ISOV-TOP. The theorem on exten-
sion of C -homotopy formulated below has a proof coinciding in outline with the
proof of the classic Borsuk Theorem on homotopy.

Theorem 2.2. Let X ∈ C -ANE and Z ∈ C . If a C -homotopy H : A × [0, 1] → X
joins partial C -maps f, g : A→ X, and f admits an extension to a C -map f̂ : Z→X,
then there exists an extension of the C -homotopy H to a C -homotopy Ĥ : Z ×
[0, 1]→ X connecting f̂ with some C -map ĝ : Z→ X.

A C -map f : X→ Y is called a C -homotopy equivalence if there exists a C -map
g : Y→ X such that g ◦ f and f ◦ g are C -homotopic to IdX and IdY, respectively.
It is easily seen that if f is an Isov-homotopy equivalence (an Equiv-homotopy
equivalence), then fH : XH → YH (fH : XH → YH) is a homotopy equivalence for
each subgroup H < G.
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Let R be the set of all irreducible orthogonal representations of G (including
the trivial representation), and Rϱ and Dϱ the space ϱ ∈ R of the representation
and its unit ball. An equivariant Hilbert cube Q for a compact metric group G is(∏
{Dϱ | ϱ ∈ R}

)ω. An equivariant Hilbert space L2 is{
(vϱ) ∈

(⊕
ϱ∈R

Rϱ
)ω ∣∣∣ Σ∥vϱ∥2 <∞

}
.

Let us consider two G-maps C g→ A f← B. We define the fibrewise product of
G-spaces C and B respectively of the maps g and f to be the G-subset {(c, b) |
g(c) = f(b)} ⊂ C×B and denote it by Cg ×f B. The projections D = Cg ×f B onto
the factors C and B generate the G-maps f̌ : D → C and ǧ : D → B. The map f̌
is called the map parallel to f , and ǧ is the map parallel to g. If the group G is
trivial, then the action in the fibrewise product is absent.

The most important example of the fibrewise product in the theory of topological
transformation groups is provided by isovariant maps. If πX : X → X is an orbit
projection and ϕ : Y → X is a continuous map into an orbit space, then the fibrewise
product Y 
 Yϕ ×πX X is endowed with the action of the group G in the natural
manner: g · (y, x) = (y, g ·x). It is customary to call the fibrewise product Y by the
G-space induced from X by the map ϕ : Y → X, and it is denoted by ϕ∗(X).

It is easily seen that the orbit space Y = ϕ∗(X) coincides with Y , the orbit
projection πY : Y → Y is parallel to πX and the map ϕ̌ : Y → X, which is parallel
to ϕ, is isovariant. It turns out that the converse fact (the proof of which easily
follows from the equimorphism criterion) also holds.

Proposition 2.3. Let h : Y → X be an isovariant map, h̃ : Y → X the map of
orbit spaces generated by h. Then Y is the fibrewise product (h̃)∗(X) = Yh̃ ×πX X.
Moreover, h and h̃ and also the orbit projections πY and πX are parallel.

§ 3. The existence of isovariant absolute extensors

We say that a G-space X has an action complexity highly competitive with an
action complexity of a G-space Y (briefly, Y 6 X) if there exists an isovariant map
from Y into X. It is easy to establish that Y 6 X if and only if one of the following
properties holds: either Y admits a closed G-embedding into L × X where L is
a linear normed space, or the G-space Y is induced from X by some map f : Y → X
of its orbit spaces.

Definition 3.1. Each G-space X with the greatest action complexity (that is, each
G-space Y admits an isovariant map into X) is called an Isov-generating space.

An example of Isov-generating space is the countable power J 
 (Con T)ω of the
metric cone Con T over a discrete union T of all homogeneous spacesG/H ∈ G-ANE
(see [16]). The following theorem describes the Isov-AE-spaces among products of
G-spaces.

Theorem 3.2. Let Equiv-AE-space Xi be an Isov-generating space for all i > 1.
Then

∏
{Xi | i > 1} ∈ Isov-AE.



On Palais universal G-spaces 775

Since J is an Isov-generating space, and also is an Equiv-AE-space, and,
moreover, J ∼= Jω, it follows by Theorem 3.2 that J ∈ Isov-AE. We will prove Theo-
rem 3.2 in the following refined form, which enables us to endow the Isov-AE-spaces
with several additional properties.

Theorem 3.3. Let an Equiv-AE-space Xi be an Isov-generating space for every
i > 1. Then for each partial G-map Z ←↩ A ϕ→ X 


∏
{Xi | i > 1} there exists

a G-map ψ : Z→ X extending ϕ such that ψ �Z\A is an isovariant map (that is, ψ
is isovariant on the complement).

Proof. Since the class of the Equiv-AE-spaces is closed with respect to count-
able products, we have X ∈ Equiv-AE. Therefore there exists an equivariant
map ϕ̂ : Z → X extending ϕ. Consequently, for the proof it is sufficient to find
a G-map ψ : Z → X extending ϕ̂ �A such that ψ �Z\A is an isovariant map. Since
A ⊂ X is closed, it is possible to choose a sequence of invariant neighbourhoods
Z = U0 c U1 c · · · such that

⋂
{Ui | i > 0} = A.2 Let χi : Z → [0, 1], i > 1, be

G-functions such that χ−1
i (0) ⊃ Z \ Ui and χ−1

i (1) ⊃ Ui+1.
We represent the map ϕ̂ in the coordinate form

∏
ϕ̂i, where ϕ̂i : Z → Xi is an

equivariant map, and fix an isovariant map ei : Z → Xi (which exists since Xi is
an Isov-generating space). Let Hi : Z × I → Xi be an Equiv-homotopy joining ei
with ϕ̂i (which exists since Xi ∈ Equiv-AE). It is clear that for n > 1 the formula

ξn = ϕ̂1 × · · · × ϕ̂n−1 ×Hn(z, χn−1(z))× en+1 × · · ·

defines the map ξn : Z → X isovariant outside Un−1. Then the map ψn : Z → X,
coinciding with ξi on Ui−1 \Ui for i 6 n and coinciding with ϕ̂ = ϕ̂1× ϕ̂2× ϕ̂3×· · ·
on Un, is continuous and isovariant outside Un. Since the sequence {ψn} uniformly
converges, its limit ψ : Z → X is a continuous map coinciding with ϕ on A. Since
almost all the {ψi} outside Un coincide with ψn+1, the map ψ is isovariant on the
complement to A.

We fix a closed topological embedding j : X ↪→ L of the orbit space of an arbi-
trary G-space X into some linear normed space L [15]. Since J = (Con T)ω is an
Isov-generating space [16], there exists an isovariant map f : X → J. It is evident
that the product (j ◦ p) × f is a closed topological G-embedding of X into the
G-space Y 
 L × J, which is easily seen to belong to Isov-AE. Hence we have
proved the following result.

Theorem 3.4. Each G-space admits a closed G-embedding into an Isov-AE-space
L× J.

Other examples of Isov-AE-spaces are the equivariant Hilbert space L2 and the
space C(G,R1) of all continuous functions (with the metric of uniform convergence),
the regular representation of the group G.

Since L×J ∈ Equiv-AE, one can easily deduce by Theorem 3.3 and Theorem 3.4
the important relation between injective objects of isovariant and equivariant cat-
egories.

Theorem 3.5. For each Isov-A[N]E-space X Theorem 3.3 holds and therefore each
Isov-A[N]E-space is an Equiv-A[N]E-space.

2We shall say that the embedding A ⊂ B is strong and write A b B if Cl A ⊂ Int B.



776 S. M. Ageev

We say that a G-space X is locally Isov-contractible at a point x ∈ X if for each
ε > 0 there exists an equivariant homotopy H : U × [0, 1] → X of some neighbour-
hood U ∋ x such that

(1) Ht : U→ X is an isovariant map for all t < 1;
(2) H0 = Id and H1 maps U into the orbit G(x);
(3) diamH(x, [0, 1]) 6 ε.

If properties (1)–(2) hold for some point x ∈ XG and U = X, we say that theG-space
X is Isov-contractible; the G-space X is called locally Isov-contractible (briefly, X ∈
Isov-LC), if X is locally Isov-contractible at each point x ∈ X.

It easily follows by Theorem 3.3 that each Isov-AE-space is Isov-contractible.
The local variant of this fact is a little more complicated to establish.

Theorem 3.6. Each Isov-ANE-space Y is an Isov-LC-space.

Proof. Using the concrete form of the Isov-AE-space J it is easy to prove that
L×J ∈ Isov-LC for each linear normed spaces L. Next we should apply Theorem 3.4
and invoke the closedness of the class of Isov-LC-spaces under isovariant retracting.

If X ∈ Equiv-AE, then the orbit bundle X6(H) 
 {x ∈ X | Gx conjugates
with a subgroup from H} is not an AE-space in general. However, the isovariant
extensors have a completely different behaviour.

Theorem 3.7. If H < G is a subgroup of a metric compact group G, then X ∈
IsovG-A[N]E implies Y ∈ IsovH-A[N]E where Y coincides with X or with one of its
G-subspaces : X6(H) or X6H 
 {x ∈ X | Gx ⊂ H}.

Proof. Each partial H-isovariant map Z←↩ A ϕ→ Y generates the partial G-map

G×H Z←↩ G×H A Φ→ X, given by the formula Φ([g, a]) = g · ϕ(a).

In general, Φ is not an isovariant map since Hx = Gx∩H and the stabilizers Hx

and Gx are different. In view of Theorem 3.3, X ∈ IsovG-AE implies that there
exists a global G-extension Φ̂ : G×H Z→ X of the G-map Φ, which is G-isovariant
on the complement.

Next we will understand orbit considerations as the comparison of G-stabilizers
of points and their images under an isovariant map. Since the G-stabilizer of each
point u from {e} ×H (Z \ A) is preserved under Φ̂, we have GΦ̂(u) ⊂ H. Therefore

Φ̂(G×H (Z \ A)) ⊂ X6(H) and Φ̂({e} ×H (Z \ A)) ⊂ X6H .

It is evident that the restriction of Φ̂ to {e} ×H Z ∼=H Z is the desired global
H-isovariant extension ϕ̂ : Z→ Y onto Z of the map ϕ. Hence Y ∈ IsovH -AE. The
local variant of the theorem, X ∈ IsovH -ANE, is proved analogously.

It is easily established that the metric Isov-A[N]E-space X is a disjoint union
of A[N]E-spaces XH , H < G. It turns out that the family {XH | H < G} in the
aggregate also possesses an extensor property.
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Theorem 3.8. Let X be a metric Isov-A[N]E-space. Then :
(a) XH ∈ A[N]E for each subgroup H < G;
(b) the family {XH | H < G} possesses the property 3 equi-LAE, in particular,

it is equipotentionally locally contractible.

Proof. (a) For each partial map W ←↩ A ϕ→ XH we take into consideration the
partial G-map G/H ×W ←↩ G/H ×A Φ→ X given by the formula Φ(gH, a) = g · a.
If X ∈ Isov-AE, then there exists a global G-extension Φ̂ : G/H ×W → X of the
G-map Φ, which is G-isovariant on the complement. Then the restriction of Φ̂ to
(e ·H)×A is the desired extension of the map ϕ. It turns out that the local variant
is proved analogously.

(b) First we introduce a preliminary definition. We say that the partial map
W ←↩ A ϕ→ X into G-space X converges to x0 ∈ X, provided that there exists a point
w0 ∈ A such that W \ {w0} is the discrete union

∐
{Wi | i > 1} of clopen (in W )

subspaces {Wi} for which dist(w0,Wi) < 2−i, ϕ(Ai) ⊂ XHi
, where Ai 
 Wi ∩ A,

and ϕ(w0) = x0. It is clear that W is obtained from the discrete union
∐
{Wi} by

adding a point; it follows by continuity of ϕ that {ϕ(Ai)} → {x0}.
Assuming that the property equi-LAE fails at the point x0 ∈ X, we easily con-

struct a partial map W ←↩ A ϕ→ X converging to x0 which cannot be extended to
a neighbourhood U of the point w0 in such a manner that

(4) Wi ∩ U is transformed into XHi .
Let us consider an isovariant map ϕ′ : A×G→ X given by the formula ϕ′(a, g) =

g · ϕ(a), and also the equivalence relation on W ×G

(w1, g1) ≈ (w2, g2) ⇐⇒

{
w1 = w2 and g2 · g−1

1 lies in Hi if w1 ∈Wi,

g2 · g−1
1 lies in Gx0 if w1 = w2 = w0.

It is clear that this relation is preserved by the action of the group G, the quotient
space W 
 (W ×G)/≈ is a metric G-space and the quotient space A 
 (A×G)/≈
is a closed invariant space of W.

It is easily seen that the formula ψ([a, g]) = ϕ′(w, g) correctly defines the contin-

uous partial isovariant map W←↩ A ψ→ X. If X ∈ Isov-AE, then there exists a global
isovariant extension ψ̂ : W → X of ψ. Note that (W × {e})/≈ (here e is the unity
of the group) naturally lies in W and is homeomorphic to W . Since ψ̂ is isovariant,
we have ψ̂((Wi × {e})/≈) ⊂ XHi

. Restricting ψ̂ to (W × {e})/≈, we obtain the
continuous extension of ϕ onto the whole of W satisfying (4),— a contradiction.

The local variant of the theorem is proved analogously.

We cite without proof several examples indicating the degree of distinction of
these two classes:

(5) for each family F ⊂ OrbG there exists an Equiv-ANE-space with Orb(X) =
F and contractible XH for each (H) ∈ F ;

(6) the family F ⊂ OrbG is an orbit type of some Isov-ANE-space if and only
if F is closed in OrbG;

(7) if Con X ∈ Isov-AE and XG ∈ AE, then X ∈ Isov-AE.
3That is, for each neighbourhood U of the point x ∈ X there exists a neighbourhood V such

that for each partial map Z ←↩ A
ϕ→ V ∩ XH there exists its extension ϕ̂ : Z → U ∩ XH .
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§ 4. Isovariant extensors and twisted products

A G-space admitting a slice map is useful for representing in the form of a twisted
product. Recall the corresponding definitions: let G be a compact Lie group,
S a metric H-space where H < G. Consider the diagonal action of the group H
on the product G × S defined by the formula h · (g, y) 
 (g · h−1, h · y), and we
denote the element H ·(g, y) = {(g ·h−1, h ·y) | h ∈ H} of the orbit space (G×S)/H
by [g, y]. It turns out that by the formula g1 · [g, y] = [g1 · g, y], where g, g1 ∈ G
and y ∈ S the continuous action of the group G on the orbit space (G × S)/H is
correctly defined; it is called the twisted product and is denoted by G×H S.

If f : X → G/H is a slice map of the G-space, then X can be represented as
the twisted product G ×H S where S = f−1([H]) is an H-slice. For instance, this
and other properties of the twisted product are presented in [12]. We take a closer
examination of the interrelation of the isovariant extensor properties of the spaces X
and S mentioned above.

Theorem 4.1. If S ∈ IsovH-A[N]E, then G×H S ∈ IsovG-ANE.

Proof. We examine only the case S ∈ IsovH -AE, for which purpose we consider the
composite χ of the partial G-isovariant map Z ←↩ A ϕ→ G ×H S and the slice map
G×H S ψ→ G/H, ψ[g, s] = [g ·H]. Since G/H ∈ G-ANE, there exists an extension
of the composite χ = ψ ◦ ϕ to a G-map χ̂ : U→ G/H, defined on a neighbourhood
U ⊃ A.

The preimages U0 = χ̂−1[H] ⊃ A0 = χ−1[H] are H-spaces and, in view of the

condition S ∈ IsovH -AE, the partial H-map U0 ←↩ A0
ϕ
χ�→ {e} ×H S ∼=H S has

a global H-extension υ : U0 → S which is H-isovariant on the complement. Since
G×H U0 = U, the desired neighbourhood G-isovariant extension ϕ̂ : U→ G×H S is
constructed according to the formula ϕ̂([g, z]) = [g, υ(z)], where [g, z] is an arbitrary
point of U = G ×H U0. The correctness of ϕ̂ easily follows from the fact that υ is
equivariant. Therefore G×H S ∈ IsovG-ANE.

The local variant of the theorem (S ∈ IsovH -ANE) is established analogously.

We examine the inheritance of isovariant extensor properties when passing from
the twisted product G×H S to its slice S 
 f−1([H]).

Theorem 4.2. Let H be a closed subgroup of the compact Abelian Lie group G. If
G×H S ∈ IsovG-ANE, then the H-space S is an IsovH-ANE.

Proof. In parallel with the action of the group H on G we consider the right regular
action of H on G. Thus the continuous action of the Lie group H ×H on G given
by the formula (h, h′) · g = h · g · (h′)−1 occurs. Since H is the (H × H)-orbit of
the point e and H×H is a Lie group, H is an EquivH×H -ANE-space and therefore
there exists an (H × H)-retraction r : U → H of some (H × H)-neighbourhood
U ⊂ G. Hence r(h · g ·h′) = h · r(g) ·h′ for all h, h′ ∈ H. It is easy to check that the
(H ×H)-stabilizers of all points g ∈ G coincide with H. Therefore the retraction r
is (H ×H)-isovariant.

Since G×H S ∈ IsovG-ANE, we have by Theorem 3.7 that G×H S ∈ IsovH -ANE
and, for this reason, its open H-subset U ×H S is an IsovH -ANE.

Let us consider the twisted product R : U ×H S→ H ×H S ≡ S, [u, s] 7→ r(u) · s,
of the (H ×H)-isovariant retraction r and IdS, which is correctly defined and is an
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H-isovariant retraction of the H-space U×H S onto S. Since U×H S ∈ IsovH -ANE,
S ∈ IsovH -ANE as an image of an H-isovariant retraction.

Corollary 4.3. If the compact Abelian Lie group G acts on the space X ∈ IsovG-
ANE and ϕ : U→G/H is a slice at the point x, then Sϕ=ϕ−1([H])∈ IsovH-ANE.

Proof. Since U ∼=G G ×H Sϕ ∈ IsovG-ANE, we have Sϕ ∈ IsovH -ANE in view of
Theorem 4.2.

In completion of this section we examine preserving isovariant extensor properties
when passing to orbit spaces.

Theorem 4.4. If W ∈ IsovG-AE, H is a normal subgroup of G (this is written as
H ▹ G for short), then the G/H-space W/H ∈ IsovG/H-AE.

Since the proof of the theorem is based on the method of extending the action
of transformation groups, we briefly recall its essence (see [16]). A diagram D of

the form X p→ X
i
↪→ Y , in which the G-space X has an orbit type F ⊂ OrbG,

p : X → X is an orbit projection and i is a closed topological embedding of the
orbit space X into the metric space Y , is called F -admissible. We say that the
problem of extending the action (PEA for short) is solvable for an F -admissible
diagram D if there exists an equivariant embedding j : X ↪→ Y into the metric
G-space Y of orbit type F (called an F -solution of the problem of extending the
action for the given diagram) covering i, that is, the embedding j̃ : X ↪→ p(Y) of
orbit spaces inducing j exactly coincides with i (from the definition it follows that
the embedding j is closed and p(Y) = Y ). We say that the problem of extending the
action is F -solvable if there exists an F -solution of the PEA for each F -admissible
diagram D .

Let W be an Isov-AE-space. Then using the fact that WF ∈ IsovF -AE and the
line of reasoning from [16], we can prove that

(1) the problem of extending the action is F -solvable if and only if the orbit
space WF ∈ AE.

If the family of orbit types F coincides with OrbG, then in all definitions men-
tioned above the specification F is omitted. It was established in [16], [17] that
the problem of extending the action is solvable. Moreover,

(2) if H ▹ G, then for each diagram of the form X p→ X/H i
↪→ Z in which

p : X → X/H is an H-orbit projection and i a closed topological (G/H)-
embedding of the orbit space X/H into the metric (G/H)-space Z, there
exists a G-embedding j : X ↪→ Z into the metric G-space Z inducing i.

Proof of Theorem 4.4. Let us consider the partial (G/H)-map Z ←↩ A ϕ→ W/H.
Let ϕ∗(W) be a fibrewise product of the H-orbit projection π : W→W/H and the
H-map ϕ : A → W/H. In view of (2), there exists a G-embedding j : ϕ∗(W) ↪→Z
into the metric G-space Z inducing the embedding ϕ∗(W)/H ↪→ Z/H which
identically coincides with the embedding A ↪→ Z. The arising partial G-map
Z ←↩ ϕ∗(W)

ϕ̌→ W ∈ Isov-AE parallel to ϕ has a global G-extension χ : Z → W,
which is G-isovariant on the complement. It is easily seen that the (G/H)-map
ϕ̂ : Z = Z/H → W/H induced by χ (that is, ϕ̂(z) = H · χ(z′) where H · z′ = z) is
a (G/H)-extension of ϕ and is G-isovariant on the complement.



780 S. M. Ageev

§ 5. Homotopy dense embeddings

The equivariant embedding e : X0 ↪→ X is called G-homotopy dense if there
exists a G-homotopy H : X × I → X such that H0 = Id and ImHt ⊂ X0 for
every t > 0. It is easily seen that this definition is equivalent to the possibility of
extending the partial G-map X × I ←↩ X × {0} Id→ X to a G-map ϕ : U → X given
on a G-neighbourhood such that ϕ(U \ (X× {0})) ⊂ X0. Note that a G-homotopy
dense embedding is a G-homotopy equivalence.

Theorem 5.1. Let G be a compact Lie group, X ∈ IsovG-ANE. Then for each
subgroup H < G

(a) X6H = {x ∈ X | Gx ⊂ H} is H-homotopy densely contained in X6(H) =
{x ∈ X | Gx conjugates with a subgroup of H};

(b) the embedding XH ↪→ XH is homotopy dense.

Proof. The partial H-map Z 
 A× I ←↩ A× {0} ϕ→ X6(H) and the map Z 
 A×
I ←↩ A×{0} ψ→ XH generate the partial G-map G×H Z←↩ G×H A Φ→ X6(H) given

by the formula Φ([g, a]) = g · ϕ(a), and the map G/H × Z ←↩ G/H × A Ψ→ X>(H)

given by the formula Ψ(gH, a) = g · ψ(a), respectively.
Since X∈ Isov-ANE, there exists a G-extension Φ̂ of the map Φ and a G-extension

Ψ̂ of the map Ψ onto some G-neighbourhoods U and V, respectively, which are
G-isovariant on the complement. As in the proof of Theorem 3.7, we apply orbit
considerations: since the G-stabilizer of each point from {e} ×H Z is contained
in H and the G-stabilizer of each point from eH × Z equals H, it follows that
Φ

(
(U \ A) ∩ ({e} ×H Z)

)
⊂ X6H and Ψ

(
(V \ A) ∩ (eH × Z)

)
⊂ XH . It is evident

that the restriction of Φ̂ to U∩ ({e}×H Z) and the restriction of Ψ̂ to V∩ (eH×Z)
are the desired neighbourhood extensions.

Theorem 5.2. Let G be a compact Lie group, X ∈ IsovG-ANE. Then the map
XK ↪→ XH is Z-embedding for each subgroup H < K .

Proof. In view of Theorem 5.1, (b) the composite of the embeddings XH ↪→ XH\XK
and XH \ XK ↪→ XH coincides with the homotopy dense embedding XH ↪→ XH .
Therefore the embedding XH \ XK ↪→ XH is homotopy dense.

§ 6. Extensors of the category ISOVFFFFFFF -TOP, FFFFFFF ⊂ ConjG
Let W be an Isov-AE-space. It follows from Theorem 3.5 that each partialG-map

Z←↩ A ϕ→WF given on a closed subset of the G-F -space Z can be extended onto
some G-neighbourhood U ⊂ Z of the set A to a G-map ϕ̂ : U → W isovariant on
the complement Z \ A. Therefore ϕ̂(U) ⊂WF , that is, WF ∈ EquivF -ANE.

It is established analogously to Theorem 3.4 that each G-space X ∈ IsovF -ANE
may be considered as a closed G-subset in the G-space L×WF where L is a linear
normed space. Therefore X is an isovariant neighbourhood retract of L ×WF ∈
EquivF -ANE, that is,

(1) each IsovF -ANE-space X is an EquivF -ANE-space.
Let us prove the fact, which together with (1) permits us to assert that
(2) IsovF -ANE ⊂ EquivF -ANE ⊂ Equiv-ANE.
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Theorem 6.1. If X is an EquivF -ANE-space, then X is an Equiv-ANE-space.

The proof of the theorem is established with the help of the so-called majorized
problem of extending the group action. Recall that the solution s : X ↪→ Y of
the PEA for an admissible diagram D = (X p→ X

i
↪→ Y ) majorizes the solution

s1 : X ↪→ Y1 of the PEA for D if there exists a G-map h : Y → Y1 such that
h ◦ s = s1, h �X = IdX and h̃ = IdY .

Let us take a (not necessarily F -) solution s : X ↪→ Y of the PEA for the
F -admissible diagram D (the existence of such a solution is established in [16]).
In [18] the key fact for establishing the relation EquivF -ANE ⊂ Equiv-ANE was
proved:

(3) if G is a compact Lie group, then there exists an F ′-solution s1 : X ↪→ Y of
the PEA for D majorized by s, s > s1 (here F ′ 
 F ∪ {(G)}).

Proof of Theorem 6.1. Assume that the G-space X ∈ EquivF -ANE is closedly con-
tained in a G-space Y. In view of (3), X is closedly contained in a G-space Y1 of
the orbit type F ′ = F ∪ {(G)}, for which there is a G-map h : Y → Y1 with
h �X = IdX. Since X is an EquivF -ANE-space, there exists a neighbourhood
G-retraction Y1 ↪→ V r→ X. Hence Y ←↩ U 
 h−1(V) r◦h−→ X is the desired
neighbourhood G-retraction, that is, X ∈ G-ANR ≡ G-ANE.

The following fact is proved analogously to the case F = ConjG (see Theorems
3.8 and 5.1).

Theorem 6.2. Let F ⊂ ConjG and H < G, (H) ∈ F . If
(a) X is an IsovF -AE-space, then XH is contractible and the family
{XH | (H) ∈ F} possesses the property equi-LAE;

(b) X ∈ IsovF -ANE, then the embedding e : XH ↪→ XH is homotopy dense.

Let W be an Isov-AE-space and F ⊂ C ⊂ OrbG. It is clear that the embedding
WF ↪→WC of orbit spaces is a homotopy equivalence, provided that the embedding
WF ↪→ WC is an equivariant homotopy equivalence. Let us find conditions when
the latter is possible.

Theorem 6.3. The following conditions are pairwisely equivalent :
(a) WF ↪→WC is an equivariant homotopy equivalence;
(b) WF ∈ EquivC -AE;
(c) for each G-C -space Z and its closed G-F -subspace Y ⊂ Z there exists

a G-map h : Z→ Z into a G-F -space Z which G-homeomorphically maps Y
onto a closed G-subspace Y ⊂ Z;

(d) there exists a G-map h : WC → Z into a G-F -space Z which G-homeomor-
phically maps WF onto a closed G-subspace Y ⊂ Z.

Proof. Since the implication (a)⇐ (b) is easy, we dwell on the inverse implication
(a) ⇒ (b). Let θ : WC → WF be a map G-homotopy inverse to the embedding
WF ↪→ WC . In what follows we consider the partial G-map Z ←↩ A ϕ→ WF ,
Orb Z ⊂ C , which, in view of WC ∈ IsovC -AE, has a G-extension χ : Z → WC

isovariant on the complement. Thus the composite η 
 θ ◦ χ : Z → WF is such
that η �A≃G ϕ. It follows by Theorem 2.2 (Borsuk Theorem on homotopy) that
the map ϕ has a G-extension ϕ̂ : Z→WF .
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The implication (b)⇒ (c). Consider a partial G-map

Z←↩ Y α→WF ∈ IsovF -AE,

where α is an isovariant map. Since WF ∈ EquivC -AE and Orb Z ⊂ C , there exists
an equivariant extension α̂ : Z → WF . It is possible to canonically represent the
map α̂ as the composite of h : Z→ Z and γ : Z→WF , where h is a G-map identical
on the orbit spaces and γ is an isovariant map. Since α is isovariant, h �Y : Y→ h(Y)
is a G-homeomorphism. It follows that Y is naturally contained in Z.

Since the implication (c) ⇒ (d) is trivial, we examine the remaining implica-
tion (d) ⇒ (b). Consider a partial G-map WC ←↩ WF

Id→ WF . By hypothesis
there exists a G-map h : WC → Z into a G-F -space Z which G-homeomorphically
maps WF onto a closed G-subspace Y ⊂ Z.

Since WC ∈ IsovC -AE, the partial G-map Z ←↩ Y h−1

−→WF ↪→ WC admits
an equivariant extension g : Z → WC isovariant on the complement Z \ Y. Since
Orb Z ⊂ F , it follows by orbit considerations that g(Z \ Y) ⊂WF . Therefore the
composite WC

h→ Z g→WF is the desired G-retraction.

Now we examine in more detail the important special case of F = (H) and
C = {(K) | K < H}. We say that a closed G-subspace Y ⊂ X is a strong isovariant
deformation G-retract of X if there exists an equivariant homotopyH : X×[0, 1]→ X
such that H = Id on Y× [0, 1]∪X×{0}; Ht is an isovariant map for t < 1, and H1

is a G-retraction of X onto Y.

Theorem 6.4. Let H ▹ G be a normal subgroup of a compact Lie group and W ∈
IsovG-AE. Then the G-embedding WH ↪→W6H is a strong isovariant deformation
G-retraction.

Proof. We consider the closed G-embedding W(H) ↪→ W6(H)/H and an H-orbit
projection, the G-map h : W6(H) → W6(H)/H. Since h on W(H) is identical,
condition (d) holds. In view of Theorem 6.3, W(H) ∈ Equiv6(H)-AE, which implies
the G-retraction r : W6(H) →W(H).

We now construct a strong isovariant G-deformation F̂ of W6(H) onto W(H). To
do this, we consider the partial G-map

W6(H) × [0, 1]←↩ W6(H) × {0, 1} ∪W(H) × [0, 1] F→W6(H)

where the G-map F coincides with r on W6(H) × {1} and with the identity map
on the remaining part. Since W ∈ Isov-AE, the G-map F has a global G-extension
F̂ : X6(H) × I → W isovariant on the complement. We again invoke the orbit
considerations and obtain that the target space of F̂ is contained in W6(H).

The remark that the equalities W(H) = WH and W6(H) = W6H hold for a nor-
mal subgroup H ▹ G completes the proof.

If H ▹ G and (H)∈F ⊂C ⊂{(K) | K<H}, then the embedding i : WF ↪→WC

is not in general a strong isovariant deformation G-retraction. However, we can
assert that

(4) i : WF ↪→WC is an equivariant homotopy equivalence.
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To establish this, we consider the G-retraction r : W6(H) → W(H) constructed
in Theorem 6.4. It follows from this theorem that the restriction r �WC : WC →WF

and the embedding WF ↪→ WC are equivariantly homotopy reciprocally inverse.
From (4) and Theorem 6.3 it follows that in this case WF ∈ EquivC -AE.

By Theorem 6.4 it follows that for each normal subgroup H ▹ G the embedding
WH ↪→W6H is a G-homotopy equivalence, and therefore the corresponding embed-
ding of orbit spaces is a homotopy equivalence. In this connection there arises the
very plausible conjecture that in general this is the case.

Conjecture 6.5. The embedding W(H) ↪→ W6(H) of orbit spaces is a homotopy
equivalence for each subgroup H < G.

Unfortunately, this hypothesis fails, generally speaking, for subgroups which are
not normal. But Theorem 6.4 admits the following generalization.

Theorem 6.6. Let W ∈ IsovG-AE, N(H) < G be a normalizer of a subgroup
H < G of the compact Lie group G. Then the embedding ϕ : WH ↪→ W6H is
a strong isovariant N(H)-deformation retraction, and the embedding4 W(H) ↪→
G×N(H) W6H is a strong isovariant G-deformation retraction.

Proof. In view of Theorem 3.7, W is an IsovN(H)-AE-space. Since the subgroup
H < G is normal in N(H), the required property of the embedding ϕ easily follows
from Theorem 6.4 applied for N(H). Since W(H) coincides with G×N(H) WH , the
required property of the embedding W(H) ↪→ G×N(H) W6H easily follows.

From the above theorem it follows that the G-embedding W(H) ↪→ W6(H)

and the natural G-map G ×N(H) W6H → W6(H) are equivalent in the category
EQUIVF -HOMOT. Consequently, Conjecture 6.5 is equivalent to the hypothesis
that the map W6H/N(H)→W6(H) of orbit spaces is a homotopy equivalence.

Now we shall show that Conjecture 6.5 fails for some dihedral subgroup
Dn < G 
 O(2):

(5) if W ∈ IsovO(2)-AE, then the spaces W(Dn) and W6(Dn) are not homotopy
equivalent.

First we note that Dn coincides with its Weyl group, and therefore WDn
∼=WDn

.
Since WDn

∈ AE, we obtain, assuming the opposite to (4), W6(Dn) ∈ AE for
each n. Hence W<(G) is an AE-space as a growing sequence of open subsets
W6(D1) ⊂ W6(D2) ⊂ · · · ⊂ W . However, this orbit space by Theorem 13.1 is
not contractible — a contradiction.

§ 7. Universal principal bundles and isovariant extensors

Let W be an Isov-AE-space. We show that the orbit space W turns out to
be partitioned into classifying spaces W(H), (H) ∈ OrbG, for appropriate principal
bundles.

Consider the free W(H)-space WH , where W(H) = N(H)/H is the Weyl group,
which is an AE-space in view of Theorem 3.8. Therefore the restriction of the

4Recall that W(H) is naturally identified with G×N(H) WH .
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orbit projection p � : WH → W(H) is a universal principal W(H)-bundle. Next we
consider the exact sequence of homotopy groups corresponding to p �:

· · · → πi+1(WH)
p∗→ πi+1(W(H))

∂→ πi(W(H)) e∗→ πi(WH)→ · · · .

Since all πi(WH) are equal to 0,
(1) πi+1(W(H)) = πi(W(H)) for all i > 1 and π1(W(H)) = 0 for the connected

space W(H).
If H < G is a normal subgroup, then the Weyl group W(H) coincides with G/H,

WH=W(H) is a free G/H-space, and therefore the orbit projection p : W(H)→W(H)

is a universal principal G/H-bundle with πi+1(W(H)) = πi(G/H) for all i > 1 and
π1(W(H)) = 0 for the connected space G/H.

Consider a further example of a universal principal bundle generated by the
Isov-AE-space W. In view of Theorem 3.7, W6H , H < G, is an IsovH -AE-space
and hence it is an H-contractible space. Therefore the orbit space W6H/H is also
contractible. If H ▹ G is a normal subgroup, then W6H/H is a free G/H-space,
and therefore

(2) the G/H-orbit projection p : W6H/H → W6H represents a universal prin-
cipal G/H-bundle.

Examining the exact sequence of homotopy groups corresponding to this bundle,
we come to the conclusion that

(3) πi+1(W6H) = πi(G/H) for all i > 1 and π1(W6H) = 0 if G/H is connected.
Now let K ▹G and let H ▹G be normal subgroups and W an IsovG-AE-space as

before. If K<H, then one can consider the natural G-embedding e : W6K ↪→W6H

of G-spaces and the induced embedding ẽ : W6K ↪→W6H of orbit spaces.

Theorem 7.1. The homomorphism

ei+1 : πi+1(W6K)→ πi+1(W6H)

of homotopy groups generated by ẽ is naturally isomorphic to the homomorphism
pi : πi(G/K) → πi(G/H) of homotopy groups generated by the quotient map
p : G/K → G/H .

Proof. The embedding e : W6K ↪→ W6H generates in natural manner the map
α : W6K/K →W6H/H of free G/K- and G/H-spaces, which in its turn generates
a morphism of universal principal bundles:

W6K/K

��

α // W6H/H

��
W6K

� � e // W6H .

Write down the morphism of exact sequences of homotopy groups of bundles gen-
erated by α:

· · · //

��

πi+1(W6K/K) //

αi+1

��

πi+1(W6K) //

ei+1

��

πi(G/K) //

pi

��

πi(W6K/K) //

αi

��

· · ·

��
· · · // πi+1(W6H/H) // πi+1(W6H) // πi(G/H) // πi(W6H/H) // · · ·
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In the part of this diagram presented above only the four central groups are
nontrivial. Therefore the homomorphism ei+1 is isomorphic to the homomor-
phism pi : πi(G/K)→ πi(G/H) of homotopy groups generated by the natural map
p : G/K → G/H.

§ 8. Equivalence of isovariant and equivariant homotopy equivalences

It is evident that each isovariant homotopy equivalence is an equivariant homo-
topy equivalence. The converse is not true since spaces of the same equivariant
homotopy type may possess distinct orbit types. However, the inverse of the impli-
cation is still possible under some additional conditions, and it is the content of the
following important theorem.

Theorem 8.1. Let X and Y be Isov-ANE-spaces. If the isovariant map f : X→ Y
is an equivariant homotopy equivalence, then f is an isovariant homotopy equiva-
lence.

It follows that two Isov-ANE-spaces have the same equivariant homotopy type
if and only if they have the same isovariant homotopy type.

The proof of the above result will be based on Theorem 8.4 which in its turn
needs some preliminary facts. First we establish the theorem on isovariant extension
of G-homotopy, which is an essential complement of Theorem 2.2 on extension of
C -homotopies.

Theorem 8.2. Let X be an Isov-ANE-space and H : A× [0, 1]→ X an equivariant

ε-homotopy that joins the partial G-maps Z←↩ A f,g−→ X, and suppose that f has an
extension to the G-map f̂ : Z→ X (here ε ∈ cov X). Then there exists a G-extension
of the homotopy H to an ε-homotopy Ĥ : Cyl Z 
 Z × [0, 1] → X isovariant on
the complement Cyl Z \M(Z,A) = (Z \A)× (0, 1] and joining f̂ with some G-map
Ĥ(z, 1) (here M(Z,A) 
 Z× {0} ∪ A× [0, 1]).

Proof. It is easily seen that the map Φ: M(Z,A)→ X given by the formula

Φ(z, t) =

{
f(z) if (z, t) ∈ Z× {0},
H(z, t) if (z, t) ∈ A× I,

is a continuous G-map. Since by hypothesis X ∈ Isov-ANE and M(Z,A) ⊂ Z× I—
a closed G-subspace, there exists a neighbourhood G-extension Φ̂ : V → X of the
map Φ which is isovariant on the complement to M(Z,A).

It is easy to construct a continuous G-function β : Z→ (0, 1] for which
(1) β = 1 on the set A;
(2) {(z, t) | 0 6 t 6 β(z)} ⊂ V;
(3) {Φ̂(z, [0, β(z)]) | z ∈ Z} ≺ ε.

The desired G-extension Ĥ : Z × [0, 1] → X of the homotopy H is defined by the
formula Ĥ(z, t) = Φ̂(z, t · β(z)).

Let us apply the established fact to approximation of equivariant maps by iso-
variant ones.
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Theorem 8.3. Let X be an Isov-ANE-space and ϕ : Z → X a G-map. Then for
each closed subset A ⊂ Z and each cover ε ∈ cov X there exists a G-map ψ : Z→ X
isovariant on the complement to A such that ϕ = ψ on A and dist(ϕ,ψ) ≺ ε.

Proof. We consider the partial G-map

Cyl Z←↩ M(Z,A) Φ→ X,

given as Φ = ϕ on Z × {0} and Φt = ϕ, t ∈ I, on A × {t}. Since X ∈ Isov-ANE,
it follows in view of Theorem 8.2 that the map Φ admits a G-extension to an
ε-homotopy Φ̂ : Cyl Z→ X which is isovariant on the complement Cyl Z \M(Z,A).
Then Φ̂(z, 1) : Z→ X is the desired G-map.

Putting in Theorem 8.3 A = ∅, we obtain that

(4) each G-map ϕ : Z→ X ∈ Isov-ANE is joined by a G-homotopy F : Z×I → X
with an isovariant map ψ : Z → X such that the homotopy F is isovariant
on Z× (0, 1).

Putting in Theorem 8.3 A = P× {0, 1}, we obtain the following result.

Theorem 8.4. Let X be an Isov-ANE-space. If the G-homotopy ϕ : Z = P×I → X
joins two isovariant maps f : P→ X and h : P→ X, then f and h are isovariantly
homotopic.

Proof of Theorem 8.1. Let us suppose that h : Y→ X is G-homotopy inverse to f .
In view of (4), one can consider that h is an isovariant map. In what follows one
must apply Theorem 8.4.

§ 9. Properties of softness and the Borel functor

To define the Borel functor EF : EQUIV-TOP→ ISOVF -TOP, we fix a family
F ⊂ConjG and an Isov-AE-space W. We set EF (X)
{(w, x) | Gw⊂Gx, (Gw)∈F}
and associate with the G-map f : X→ Y an isovariant map Ef : EF (X)→ EF (Y)
defined by the formula5 Ef (w, x) = (w, f(x)). In the case of F = ConjG, let us
denote for brevity by E(X) the set EF (X) = {(w, x) | Gw ⊂ Gx} and by E the
Borel functor.

One of the basic properties of the Borel functor deals with its softness, for which
purpose we first give the necessary definitions. We consider the square commutative
diagram D

A
ϕ //

∩
X
f

��
Z

ψ // Y

in the category C coinciding with the category ISOVF -TOP or with EQUIVF -
TOP. We say that the morphism ϕ is a partial lifting of the morphism ψ with
respect to f .

5A similar construction for the single-element family F = {e} was suggested by A. Borel.
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We say that the problem of extending the partial lifting for D is globally [locally]
solvable if there exists a morphism ϕ̂ : Z → X [ϕ̂ : U → X, where U ⊂ Z is
a neighbourhood of A] extending ϕ and such that f ◦ ϕ̂ = ψ [f ◦ ϕ̂ = ψ �U].
Following the terminology chosen above we say that ϕ̂ : Z → X [ϕ̂ : U → X] is
a global [local] lifting of ψ with respect to f .

Definition 9.1. The morphism f : X → Y of the category C is called: C -soft
[locally C -soft ] if for each square commutative diagram D in the category C the
problem of extension of the partial lifting is globally [locally] solvable; the C -
Hurewiczs bundle if for each square commutative diagram D in the category C ,
where Z = Cyl P and A = M(P,Q), the problem of extension of the partial lifting
is globally solvable.

From the result formulated below it follows that the natural projection p =
pX : EF (X)→ X, p(w, x) = x, is an equivariant homotopy equivalence under some
conditions.

Theorem 9.2. If X is a G-F -space, then p : EF (X)→ X is an EquivF -soft map.

Proof. Consider an admissible (for verification of EquivF -softness of the map p)
square commutative diagram in the category EQUIVF -TOP

A
ϕ //

∩

EF (X)

p

��
Z

ψ // Y.

Since W ∈ IsovF -AE, the partial map Z ←↩ A χ→ W, where χ 
 q ◦ϕ and
q = qW : EF (X)→W is the projection onto the first factor, admits a G-extension
χ̂ : Z → W isovariant on the complement. For this reason, we have Gχ̂(z) = Gz ⊂
Gψ(z) for all z ̸∈ A. Taking into consideration this remark, it is easy to check that
the desired equivariant map ϕ̂ : Z → EF (X) is correctly defined by the formula
ϕ̂(z) = (χ̂(z), ψ(z)).

It follows that EF (X) ∈ EquivF -ANE, provided that the space X is6 EquivF -
ANE. However, the considerably more precise fact is true.

Theorem 9.3. If the space X is EquivF -ANE, then
(a) the isovariant map q = qX : EF (X) → WF , q(w, z) = w, is simultaneously

locally IsovF -soft and the Hurewicz IsovF -bundle;
(b) EF (X) ∈ IsovF -ANE.

Proof. Consider an admissible (for verification of isovariant local softness of q)
square commutative diagram in the category ISOVF -TOP

A
ϕ //

∩

EF (X)

p

��
Z

ψ // WF .

6It follows from Theorem 6.1 that EF (X) ∈ Equiv-ANE.
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Since X ∈ EquivF -ANE and Orb Z ⊂ F , the partial map Z←↩ A χ→ X, where χ 

pX ◦ϕ and pX : E(X)→ X is the natural projection, admits aG-extension χ̂ : Z→ X.
Since ψ is isovariant, Gψ(z) = Gz ⊂ Gχ̂(z) for all z ∈ Z. The desired equivariant
map ϕ̂ : Z→ EF (X) is correctly defined by the formula ϕ̂(z) = (ψ(z), χ̂(z)). Similar
reasoning with the use of Borsuk’s Theorem 2.2 on extension of equivariant homo-
topy shows that q is the Hurewicz IsovF -bundle —property (a) is established.

Since WF ∈ IsovF -ANE, it easily follows from (a) that EF (X) ∈ IsovF -ANE.

Theorem 9.4. If X is EquivF -ANE, then the induced map q̃ : (EF (X))/G→WF

of orbit spaces is locally soft and simultaneously the Hurewicz bundle, and the preim-
age q̃−1([w]) is homeomorphic to XH , where H = Gw.

This theorem follows from Theorem 9.3 and the fact established below.

Theorem 9.5. If an isovariant map f : X → Y is isovariantly locally soft (is the
Hurewicz Isov-bundle), then the map f̃ : X → Y of orbit spaces induced by f is
locally soft (is the Hurewicz Isov-bundle).

Proof. Consider the admissible (for verification of necessary softness of f) square
commutative diagram in the category TOP placed at the left and the corresponding
commutative square in the category ISOV -TOP placed at the right:

A
ϕ //

∩
X

f̃
��

Z
ψ // Y,

ϕ∗(X)
ϕ̌ //

∩

X
f

��
ψ∗(Y)

ψ̌ // Y.

If f is isovariantly soft, then there exists an isovariant extension χ : ψ∗(Y) → X
of the map ϕ̌ such that f ◦ χ = ψ̌. Going over to the orbit spaces, we obtain the
desired extension χ̃ : Z → X. Analogously one can examine all the remaining cases.

§ 10. The equivalence of equivariant
and isovariant homotopy categories

Consider the category EQUIV-HOMOT whose objects are Equiv-ANE-spaces
and whose morphisms areG-homotopy classes of equivariant maps, and the category
ISOV-HOMOT whose objects are Isov-ANE-spaces and whose morphisms are iso-
variant homotopy classes of isovariant maps. Since the Borel functor EF transforms
the equivariant homotopy ft : X→ Y into an isovariant one Eft : EF (X)→ EF (Y),
it can be considered as a homotopy Borel functor [EF ] from the category EQUIV-
HOMOT into the category ISOVF -HOMOT, which is the full subcategory of
ISOV-HOMOT generated by IsovF -ANE-spaces. As an evident remark we point
out that the composite of the homotopy Borel functor

[E] : EQUIV -HOMOT→ ISOV-HOMOT

and the isovariant functor

[RF ] : ISOV-HOMOT→ ISOVF -HOMOT
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of transition to the bundle of F -orbits coincides with the homotopy Borel functor
[EF ] : EQUIV -HOMOT→ ISOVF -HOMOT.

Let us show that the homotopy Borel functor realizes the equivalence of the cat-
egories EQUIV-HOMOT and ISOV-HOMOT. Therefore the investigation of the
G-homotopy type of Equiv-ANE-spaces will be completely reduced to the inves-
tigation of the isovariant homotopy type of Isov-ANE-spaces. In its turn this
enables us to obtain the new information on the equivariant homotopy type of
Equiv-ANE-spaces by means of a deeper examination of Isov-ANE-spaces.

Consider the full subcategory

EQUIVF -HOMOT ⊂ EQUIV-HOMOT,

generated by the EquivF -ANE-spaces. Since by Theorem 6.1 IsovF -ANE ⊂ Equiv-
ANE, the forgetful functor F : ISOVF -HOMOT → EQUIVF -HOMOT can be
correctly introduced into consideration.

Theorem 10.1. The categories EQUIV-HOMOT and ISOV-HOMOT are equiva-
lent, and the homotopy Borel functor

[E] : EQUIV-HOMOT→ ISOV-HOMOT

is an equivalence. Moreover, for each F ⊂ ConjG the homotopy Borel functor
[EF ] : EQUIVF -HOMOT→ ISOVF -HOMOT generated by F ⊂ ConjG is also an
equivalence of categories, the inverse to which is the forgetful functor F : ISOVF -
HOMOT→ EQUIVF -HOMOT.

Proof. By definition of an equivalence of categories [19] it is necessary to construct
a morphism (or a natural transformation) of the functor F ◦ [EF ] into the identity
functor

Id: EQUIVF -HOMOT→ EQUIVF -HOMOT

and a morphism of the functor [EF ] ◦ F into the identity functor

Id: ISOVF -HOMOT→ ISOVF -HOMOT,

components of which consist of G-homotopy and isovariant homotopy equivalences,
respectively.

The first morphism is given by a collection of maps pX : EF (X)→ X, which are
G-homotopy equivalences by Theorem 9.2. It is clear that all corresponding square
diagrams are exactly commutative:

EF (X)

Ef

��

pX // X
f

��
EF (X)

pY // Y.

The second morphism of the functors is given by a collection of isovariant homo-
topy equivalences ψ(X) : EF (X) → X, for which all corresponding square dia-
grams D are commutative in the category ISOVF -HOMOT. For this it is sufficient
to set ψ(X) equal to an isovariant map from EF (X) into X which is equivariantly
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homotopic to pX : EF (X)→ X (such a map exists in view of Theorem 8.3 because X
and EF (X) are IsovF -ANE-spaces). Since pX is an equivariant homotopy equiv-
alence, ψ(X) is an isovariant homotopy equivalence. In view of Theorem 8.4, the
following square diagram

EF (X)

Ef

��

ψ(X) // X
f

��
EF (X)

ψ(Y) // Y

is commutative in the category ISOVF -HOMOT.

§ 11. The equivariant homotopy functor
of transition to an FFFFFFF -orbit bundle

The homotopy Borel functor

[EF ] : EQUIV-HOMOT→ ISOVF -HOMOT

can be involved in the composite of three functors

EQUIV-HOMOT E−→ ISOV-HOMOT RF−−→ ISOVF -HOMOT
[E]−1

F =F
−−−−−→ EQUIVF -HOMOT,

among which the first and the last functors are equivalences. It is clear that the aris-
ing functor RF : EQUIV-HOMOT→ EQUIVF -HOMOT is conjugated to the iso-
variant functor RF in the sense of the category theory and, for this reason, it
is reasonable to perceive the functor RF as an equivariant homotopy functor of
transition to an orbit bundle of the given type F ⊂ ConjG.

Note that there is a morphism Ψ of the functor RF into the identity functor
Id: EQUIV-HOMOT → EQUIV-HOMOT, the components {ψ(X) : RF (X) → X}
of which are the maps pX : EF (X) → X. In view of Theorem 9.2, they are
EquivF -soft maps and therefore weak EquivF -homotopy equivalences.7

It turns out that this property of the functor RF is characteristic. We give
a formally more general definition of an equivariant homotopy functor of transition
to an orbit bundle of given type and show that this functor reduces to RF .

Definition 11.1. We say that a functor

R′
F : EQUIV-HOMOT→ EQUIVF -HOMOT

is an equivariant homotopy functor of transition to an F -orbit bundle if there exists
a morphism Ψ′ of the functor R′

F into the identity functor

Id: EQUIV-HOMOT→ EQUIV-HOMOT,

the components {ψ′(X) : R′
F (X)→ X} of which are weak EquivF -homotopy equiv-

alences.
7A G-map f : X→ Y is called a weak EquivF -homotopy equivalence if the map fH : XH → YH

of H-fixed point sets is a homotopy equivalence for each (H) ∈ F with XH ̸= ∅.



On Palais universal G-spaces 791

Theorem 11.2. Let

RF : EQUIV-HOMOT→ EQUIVF -HOMOT,
R′

F : EQUIV-HOMOT→ EQUIVF -HOMOT

be equivariant homotopy functors of transition to an F -orbit bundle. Then there
exists a morphism Θ of the functor R′

F into the functor RF possessing the following
properties :

(a) all its components {θ(X) : R′
F (X) → RF (X)} are Equiv-homotopy equiva-

lences ;
(b) Ψ ◦Θ = Ψ′.

We begin the proof of the theorem by several necessary definitions and facts.
In [20] the following characterization of weak EquivF -homotopy equivalences was
found: a G-map f : X→ Y of Equiv-ANE-spaces is a weak G-F -homotopy equiv-
alence if and only if f is homotopy EQUIVF -soft, that is, for each square commu-
tative diagram

A
ϕ //

∩
X
f

��
Z

ψ // Y,

where Z and its closed subset A are objects of the category EQUIVF -TOP, there
exists a G-map ϕ̂ : Z → X such that ϕ̂ = ext(ϕ) and f ◦ ϕ̂ ≃G ψ. It easily follows
that

(1) if f is a weak G-F -homotopy equivalence, then for each G-F -space Z the
G-map f induces a bijection of equivariant homotopy classes of maps [Z,X]
and [Z,Y].

In [20] it was also found that a G-morphism f : X → Y of EquivF -ANE-spaces
is a G-homotopy equivalence if and only if f is homotopy EQUIVF -soft.

Proof of Theorem 11.2. In view of the theorem on characterization of weak EquivF -
homotopy equivalences, there exists a G-map θ(X) : R′

F (X) → RF (X) for which
ψ(X) ◦ θ(X) = ψ′(X). Since θ(X) is a weak EquivF -homotopy equivalence of
EquivF -ANE-spaces, θ(X) is an Equiv-homotopy equivalence by [20].

We now verify that the collection {θ(X)} defines a morphism of the functor R′
F

into the functor RF . To do this, it is necessary to establish the homotopy commu-
tativity of the central square diagram

X

f

��

R′
F (X)

ψ′(X)oo

R′(f)

��

θ(X) // RF (X)
ψ(X) //

R(f)

��

X,

f

��
Y R′

F (Y)
ψ′(Y)oo θ(Y) // RF (Y)

ψ(Y) // Y,

that is, to show that α 
 R(f) ◦ θ(X) and β 
 θ(Y) ◦ R′(f) are G-homotopic.
For this purpose, first we prove that ψ(Y) ◦ α ≃G ψ(Y) ◦ β, and since by (1)
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ψ(Y) is a homotopy EQUIVF -soft map (one can also use the EQUIVF -softness of
ψ(Y) = pX), we have α ≃G β. In view of commutativity of the right square, we
have

ψ(Y) ◦ α = ψ(Y) ◦R(f) ◦ θ(X) ≃G f ◦
(
ψ(X) ◦ θ(X)

)
,

and in view of Theorem 11.2, (b), we have

ψ(Y)◦β = ψ(Y)◦θ(Y)◦R′(f) ≃G ψ′(Y)◦R′(f), f ◦(ψ(X)◦θ(X)) ≃G f ◦ψ′(X).

Finally, by the commutativity of the left square, we have ψ′(Y) ◦ R′(f) ≃G
f ◦ ψ′(X): the equality α 
 R(f) ◦ θ(X) ≃G β 
 θ(Y) ◦R′(f) is proved.

§ 12. The structure of the Eilenberg-MacLane
complex in the orbit space of an IsovS1-AE-space

Recall that all proper closed subgroups of the group G = SO(2) = {eiϕ | ϕ ∈ R1}
are cyclic subgroups Zn, n > 1. It is clear that the following assertions hold for
Dn 
 {H < G | H < Zn}:
• Dn ⊂ Dm if and only if Zn < Zm (or m is divided by n);
• D 


⋃
{Dn | n > 1} consists of all discrete subgroups of SO(2).

If W ∈ IsovG-AE, then Wn 
 WDn = W6Zn ∈ IsovZn -AE by Theorem 3.7.
From the results of § 7 it follows that p : Wn/Zn → Wn 
 Wn/G is a princi-
pal SO(2)/Zn-bundle. If Dn ⊂ Dm, then by Theorem 7.1 the homomorphisms
(enm)∗ : πi+1(Wn) → πi+1(Wm) of homotopy groups generated by the natural
embedding ẽnm : Wn ↪→Wm of orbit spaces are isomorphic to the homomorphisms
πi(SO(2)/Zn)→ πi(SO(2)/Zm) of homotopy groups generated by the natural map
SO(2)/Zn → SO(2)/Zm. Therefore the homomorphism (enm)2 : π2(Wn) = Z →
π2(Wm) = Z is multiplication by integer m/n, all the remaining homomorphisms
(enm)k are zero.

We calculate the homotopy groups of the space W<SO(2) coinciding with⋃
{Wn | n > 1}. For this purpose, let us partially order the set of natural numbers

with the help of divisibility. Further for each k > 1 we consider an inductive sys-
tem indexed by elements of this ordered set consisting of groups Γks = πk(Ws) and
homomorphisms Γks → Γkt which are multiplications by integer t/s. The equality
for direct limits of groups is known (see, for instance, [21]):

lim−→{Γ
k
s | s} =

{
Q is the group of rationals if k = 2,
0 if k ̸= 2.

Since each Wn is open in W<SO(2) and the k-dimensional sphere is compact, it
follows that

πk(W<SO(2)) = πk

(⋃
{Wn | n > 1}

)
coincides with lim−→{Γ

k
s | s}.

From the above calculations it follows that πk(W<SO(2)) = Q only for k = 2, in
all other cases it is zero. Consequently, we establish

Theorem 12.1. Let W be an IsovS1-AE-space and let the family D consist of
all discrete orbit types of the group S1. Then the orbit space WD is an Eilenberg-
MacLane complex K(Q, 2) and the Čech cohomology ring Ȟ∗(WD ; Q) coincides with
the polynomial ring Q[x] of the variable x of degree 2.
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The latter assertion of the theorem follows from [21], Ch. 2: the cohomology ring
Ȟ∗(K(Q, 2); Q) coincides with Q[x],deg x = 2.

§ 13. The orbit space of an IsovO(2)-AE-space

First we note that the family of discrete subgroups of the orthogonal group O(2)
consists of the cyclic subgroups Zn < SO(2), n > 2, and the dihedral subgroups
Dn < O(2), n > 2. We shall equally denote by D the family of all discrete orbit
types in the group G 
 O(2) as well as in its subgroup SO(2).

Restricting the group action from the O(2)-space W ∈ IsovO(2)-AE to the sub-
group SO(2), we obtain an SO(2)-space which will be denoted by V. In view
of Theorem 3.7, the SO(2)-space V is an Isov-AESO(2)-space and the Zn-space
Vn 
 V6Zn

an IsovZn
-AE-space. Since VD ≡WD and SO(2) is a normal subgroup

of O(2), it follows that
(1) the orbit spaces VD/SO(2) and WD/ SO(2) coincide, and, for this reason,

VD/ SO(2) is naturally endowed with action of the group

Z2 = O(2)/ SO(2) : (g · SO(2)) · (SO(2) · w) = SO(2) · (g · w).

We consider on V a new action of the group SO(2) given by the formula
eiϕ ∗ w = e−iϕ · w, eiϕ ∈ SO(2), and denote the arising SO(2)-space by V∗.
Since for each v ∈ V and H < SO(2) the orbits H · v and H ∗ v coincide, the
orbit space V/H is naturally identified with the orbit space V∗/H. In particular,
V∗D/SO(2) ≡ VD/ SO(2).

Note that for an improper motion s ∈ O(2)\SO(2) the equality s·(eiϕ ·v) = e−iϕ ·
(s·v) is valid for all eiϕ ∈ SO(2), v ∈W. Therefore the map σ : V→ V∗, σ(v) = s·v,
is an SO(2)-homeomorphism. Since V and V∗ are equimorphic, V∗ ∈ IsovSO(2)-AE.

It is easily seen that the induced map

σ̃ : VD/ SO(2)→ V∗D/SO(2)

of orbit spaces represents the involution, which specifies the action of the group Z2

on VD/ SO(2) introduced above in (1). It is clear that (
⋃
{WDn | n > 2})/SO(2)

will be the fixed point set of this involution. In the proof of the following assertion
we repeat the reasoning from [10].

Theorem 13.1. The group Ȟ4(WD ; Q) of (Čech) cohomologies of the orbit spaces
WD = WD/O(2) with coefficients in the field Q of rational numbers is nontrivial,
and therefore WD is not contractible.

Proof. In view of Theorem 12.1, Y 
 VD/ SO(2) is K(Q, 2) and its cohomology
ring Ȟ∗(Y ; Q) is Q[x],deg x = 2.

By Smith theory [12] it is known that the images of the homomorphisms

Id +σ̃∗ : Ȟ∗(Y ; Q)→ Ȟ∗(Y ; Q) and p∗ : Ȟ∗(Y/Z2; Q)→ Ȟ∗(Y ; Q)

coincide (here p : Y = VD/ SO(2) → Y/Z2 = VD/O(2) is an orbit projection
and σ̃∗ : Ȟ∗(Y ; Q) → Ȟ∗(Y ; Q) is a homomorphism of cohomologies induced by
σ̃ : Y → Y ). Let us show that for the generating x ∈ Ȟ2(Y ; Q) = Q the element
x2+(σ̃)∗(x2) ∈ Ȟ4(Y ; Q) is nonzero, and therefore the ring Ȟ4(WD ; Q) is nontrivial.
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Indeed, if (σ̃)∗(x) = µ · x, where µ ∈ Q, then (σ̃∗(x))2 = µ2 · x2. In view of
the commutativity of multiplication in cohomologies with the induced homomor-
phism σ̃∗, we have also

(σ̃)∗(x2) = (σ̃∗(x))2 = µ2 · x2 and therefore x2 + (σ̃)∗(x2) = (1 + µ2) · x2 ̸= 0.

We strengthen this result and show that in fact Ȟ∗(WD ; Q) is the ring of the poly-
nomials Q[y] of the variable y of degree 4. In view of Theorem 3.7, the SO(2)-space
Vn
V6Zn is an IsovZn -AE-space, and the orbit projection p : Vn/Zn→Vn/ SO(2)
is by the property (2) from § 7 a universal principal SO(2)/Zn-bundle.

The restriction of the SO(2)-homeomorphism σ � : V → V∗
 V∗6Zn
generates

the SO(2)/Zn-map σn : Vn/Zn → V∗n/Zn and induces the map σ̃n : Vn/ SO(2) →
V∗n/ SO(2) of orbit spaces. Since Vn/H = V∗n/H for each subgroup H < SO(2),
further we will look at the homeomorphisms σn and σ̃n as autohomeomorphisms.

We consider the left square commutative diagram

Vn/Zn
σn //

p

��

Vn/Zn
p

��
Vn/ SO(2)

σ̃n // Vn/SO(2),

Vn/ SO(2)
σ̃n //

enm

��

Vn/ SO(2)

enm

��
Vm/SO(2)

σ̃m // Vm/ SO(2),

in which p : Vn/Zn → Vn/ SO(2) is an automorphism of the locally trivial bundle,
and write the morphism of exact sequences of homotopy groups of bundles generated
by σn and σ̃n. Note that the homomorphism ϕ : πi(SO(2)/Zn) → πi(SO(2)/Zn)
induced by the map of the fibres π−1(∗) and π−1(σ̃n(∗)) is nontrivial only in dimen-
sion i = 1, where it coincides with − Id : Z→ Z. Since the spaces Vn/Zn and V∗n/Zn
are contractible, we come to the conclusion by applying further the reasoning from
the proof of Theorem 7.1 that the induced homomorphism

(σ̃n)∗ : πi(Vn/SO(2))→ πi(Vn/ SO(2))

is nontrivial only in dimension i = 2, where it is multiplication of Z by −1.
If Zn < Zm, then the induced homomorphism

(enm)2 : π2

(
Vn/SO(2)

)
= Z→ π2

(
Vm/ SO(2)

)
= Z

generated by the natural embedding ẽnm : Vn/ SO(2)) ↪→ Vm/ SO(2) of orbit spaces
is multiplication by integer m/n (see § 12). Since the right diagram given above is
also commutative, the homomorphism (enm)2 commutes with the induced homo-
morphisms (σ̃n)2 : π2(Vn/ SO(2)) → π2(Vn/ SO(2)) and (σ̃m)2 : π2(Vn/ SO(2)) →
π2(Vn/SO(2)). With the help of this fact it is established analogously to Theo-
rem 12.1 that the homomorphism

(σ̃)2 : π2

(
VD/SO(2)

)
= Q→ π2

(
V∗D/ SO(2)

)
= Q

induced by the involution σ̃ is multiplication of Q by −1.
By the Hurewicz theorem [22] it follows that H2(VD/ SO(2); Z) = Q and the

induced homomorphism (σ̃)2 : H2(VD/ SO(2); Z) = Q→ H2(V∗D/ SO(2); Z) = Q of
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homology groups is multiplication by −1. Further making use of the formula of
universal coefficients, we obtain that

Ȟ2
(
VD/ SO(2); Q

)
= Hom

(
H2(VD/ SO(2); Z); Q

)
= Q

and the induced homomorphism

(σ̃)2 : Ȟ2
(
VD/ SO(2); Q

)
= Q→ Ȟ2

(
V∗D/ SO(2); Q

)
= Q

also is multiplication by −1.
Recall that the cohomology ring Ȟ∗(VD/ SO(2); Q) coincides with the polynom-

ial ring Q[x] of the variable x of degree 2. In view of commutativity of multiplication
in cohomologies and the induced homomorphism σ̃∗, we conclude that (σ̃)4k is the
identity map of Q, and (σ̃)4k+2 is multiplication of Q by −1. Therefore the homo-
morphism

Id +σ̃∗ : Ȟ∗(VD/ SO(2); Q
)
→ Ȟ∗(VD/ SO(2); Q

)
is an isomorphism only in dimensions 4k.

In view of the Smith theory [12], the image Im(p∗) of the homomorphism induced
by the orbit projection p : VD/SO(2)→ VD/O(2) coincides with the fixed elements
(Ȟ∗(Y ; Q))Z2 of the homomorphism σ̃∗ : Ȟ∗(Y ; Q) → Ȟ∗(Y ; Q), and the arising
homomorphism p∗ : Ȟ∗(VD/O(2); Q)→ (Ȟ∗(Y ; Q))Z2 is an isomorphism. In view
of the calculations made above, the group (Ȟi(Y ; Q))Z2 is isomorphic to Q for
i = 4k; in all the remaining cases (Ȟi(Y ; Q))Z2 = 0. Therefore the cohomology
ring (Ȟi(Y ; Q))Z2 is the polynomial ring Q[y] of the variable y of degree 4, and
therefore we establish

Theorem 13.2. The homomorphism p∗ : Ȟ∗(VD/O(2); Q) → (Ȟ∗(Y ; Q))Z2 is
a ring isomorphism, and Ȟ∗(WD ; Q) is the polynomial ring Q[y] of the variable y
of degree 4.

§ 14. Epilogue

We list a few problems and questions which are of interest in connection with the
investigation of Isov-AE-spaces. For this purpose we fix a G-space W ∈ Isov-AE
and a family F ⊂ ConjG.

Investigation of homotopy type of IsovF -AE-spaces. In connection with
the investigation of fundamental classes of G-spaces one must define (calculate) the
homotopy type of the F -orbit bundle WF and its orbit space WF/G. In partic-
ular, of special interest is the so-called ring of locking cohomology of the group G,
that is, the ring Ȟ∗(W<G/G; Q) of the orbit spaces of nontrivial orbit types. The
last two sections of the paper were devoted to the calculation of the ring of locking
cohomology for the groups SO(2) and O(2). In connection with the investigation
of the topology of the Banach-Mazur compactum the locking cohomology of the
orthogonal group O(n), n > 3, is of interest (see [9]). In connection with Theo-
rem 13.2 there arises the question of whether WD is an Eilenberg-MacLane complex
K(Q, 4) for the IsovO(2)-AE-space W.

In the context of Theorem 6.3 it is of particular interest to find all families
F ⊂ C ⊂ OrbG, for which WF ↪→ WC is a homotopy equivalence, WF ∈ AE
(which is equivalent to the solvability of the PEA for F ).
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Investigation of the topological type of the IsovFFFFFFF -AE-spaces. When is WF

topologically complete; locally compact; strongly universal; infinite-dimensional
manifold modelled by (which) standard universal space? Is it true that an arbi-
trary Isov-AE-space closedly contains an arbitrary compact G-space? When will
a compact Isov-AE-space X be equimorphic to the equivariant Hilbert cube?

Is it true that each free action of the integer p-adic numbers Ap on Hilbert space
is a free Isov-AE-space? Is it true that for each IsovF -AE-space X there exists an
Isov-AE-space W such that WF = X?

All G-isovariant extensors for nontrivial groups G known by now are infinite-
dimensional. The following questions arising in connection with this observation
are of definite interest in the Hilbert-Smith Conjecture [23]: if the acting group G
is nontrivial and X ∈ Isov-ANE, then dim X =∞? dimX =∞?

Many constructions of topology and analysis lead to Isov-AE-spaces. It seems
likely that among such constructions are the space C(G,R1) of regular represen-
tation of the group G, the exponential space expG, the space of convex bodies of
Euclidean space Rn, the space of linear isomorphisms of a HilbertG-space and many
others. Of special interest is to find further constructions leading to Isov-AE-spaces.
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