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Isovariant extensors and the characterization

of equivariant homotopy equivalences

S. M. Ageev

Abstract. We extend the well-known theorem of James–Segal to the case

of an arbitrary family F of conjugacy classes of closed subgroups of a com-

pact Lie group G: a G-map f : X → Y of metric Equiv
F

-ANE-spaces is

a G-homotopy equivalence if and only if it is a weak G-F-homotopy equiv-

alence. The proof is based on the theory of isovariant extensors, which is

developed in this paper and enables us to endow F-classifying G-spaces

with an additional structure.

Keywords: classifying G-spaces, isovariant absolute extensor, weak equiv-

ariant homotopy equivalence.

§ 1. Introduction

Let G be a compact Lie group. We fix a family F of orbit types (which may be
regarded as a subset of the set ConjG of conjugacy classes of closed subgroups of G)
and consider the category EQUIVF -TOP of G-F-spaces (that is, G-spaces of orbit
type F). We shall study the identity problem for the classes of G-homotopy and
weakG-F-homotopy equivalences in EQUIVF -TOP between metricG-ANE-spaces.
The well-known theorem of James–Segal [1], [2] solves this problem for the maximal
family F = ConjG and may be used in the case when F is closed under intersections.
However, neither the method used by James–Segal nor other known methods can
give anything more since all their constructions are in poor agreement with orbit
types.

We note that interest in these questions is primarily motivated by the possibil-
ity of sending every G-space X functorially to a G-CW-complex S(X) = SF (X)
of orbit type F (S(X) ∈ GF -CW for short) which is weakly G-F-homotopy equiva-
lent to X. More precisely, one can find a functor SF from the category EQUIV-TOP
to GF -CW and a natural transformation P : SF → Id such that PX : SF (X)→ X is
a weak G-F-homotopy equivalence for every X [3], [4]. (It should be noted that [3]
mentions a gap in [4] and gives rather general hints as to how to fill it.) The orbit
space SF (X)/G, being a CW-complex, can be regarded as a homotopy-theoretical

orbit space of X induced by F . Its cohomology is an important equivariant homo-
topy invariant of X and generalizes Borel’s well-known construction corresponding
to the case when F is a single-element family (see [5], [6]).
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The significance of this construction is highlighted by the fact that SF (∗), where
∗ means a single-point space, is an F-classifying G-space in the sense of [7], [8]
(that is, for every G-space Z of orbit type F there is a G-map f : Z→ SF (∗) which
is unique up to G-homotopy). Bredon’s equivariant cohomology of SF (∗) may
naturally be regarded as generalized cohomology of G (see [9]–[11]).

Despite its significance, this construction does not lead to effective calculations
for non-trivial families F . In a series of papers we will develop a new approach
based on the theory of isovariant extensors in order to remedy this deficiency. It
turns out that F-classifying G-spaces can be endowed with an additional structure
of isovariant absolute extensors. As a result, we observe an effect of concentration

of F-classifying G-spaces: all such spaces are realized as F-orbit bundles of the
same isovariant absolute extensor. This observation opens up new possibilities for
the calculation of homotopy invariants of orbit spaces of F-classifying G-spaces. It
also yields important information on generalized cohomology of compact groups,
including its explicit calculation in particular cases. We shall develop the neces-
sary technique and use it to establish an analogue of the James–Segal theorem
in maximal generality.

In what follows we consider only the part of EQUIVF -TOP consisting of met-
ric G-F-spaces but preserve the same notation for it. We denote the class of
injective objects in the category EQUIVF -TOP by EquivF -A[N]E. The class
EquivF -AE is always non-empty by Theorems 3.1, 3.3, and it was established
in [12] that the class of Equiv-ANE-spaces having orbit type F coincides with
the class of EquivF -ANE-spaces (however, we shall not use this fact). Our gener-
alization of the James–Segal theorem is the following characterization of the weak
G-F-homotopy equivalence of EquivF -ANE-spaces.

Theorem 1.1. Let X, Y be EquivF -ANE-spaces in the category EQUIVF -TOP.
Then a G-map f : X → Y is a weak G-F-homotopy equivalence 1 if and only if f
is a G-homotopy equivalence.

Remark 1.2. Since every G-homotopy equivalence is easily seen to be a weak
G-homotopy equivalence, we need only prove the necessity part of Theorem 1.1.

We list some corollaries of Theorem 1.1. First, we characterize the weak G-F-
homotopy equivalence for arbitrary orbit types of X and Y.

Theorem 1.3. Let X, Y be Equiv-ANE-spaces. Then a G-map f : X → Y is

a weak G-F-homotopy equivalence if and only if f is G-F-homotopy soft.

Theorem 1.3 also has several corollaries. We define the F-equivariant envelope

of an Equiv-ANE-space Z to be the set of all G-spaces X ∈ EquivF -ANE admitting
a weak G-F-homotopy equivalence f : X → Z. It turns out that the F-homotopy
envelope of Z is non-empty (see Theorems 6.3, 6.5), and its equivariant homotopy
type is uniquely determined in view of the following fact.

1That is, the map fH : XH → YH of H-fixed point sets is a homotopy equivalence for each
(H) ∈ F and, moreover, XH 6= ∅ if and only if YH 6= ∅.
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Theorem 1.4. Suppose that X,Y∈ EquivF -ANE, Z∈ Equiv-ANE, and f : X→Z

and g : Y→ Z are weak G-F-homotopy equivalences. Then there is a G-homotopy

equivalence h : X→ Y such that g ◦ h ≃G f .

We shall deduce this result from Theorem 1.3, although it can also be deduced
from the following assertion, which will be proved elsewhere.

Theorem 1.5. Every EquivF -ANE-space has the G-homotopy type of a G-CW-

complex of orbit type F .

It is easy to see that the following three classes of G-spaces form a strictly
increasing sequence (with respect to inclusion): the class of EquivF -AE-spaces, the
class of F-classifying G-spaces, and the class of G-F-spaces whose H-fixed-point
sets are contractible for all (H) ∈ F . However, the intersections of these classes
with the class of Equiv-ANE-spaces form an identity sequence.

Theorem 1.6. Suppose that the G-F-space X is an Equiv-ANE-space and XH is

contractible for every (H) ∈ F . Then X ∈ EquivF -AE.

This theorem has a corollary concerning arbitrary G-spaces X. We denote the
family {(H) |XH is contractible} ⊂ Orb(X) by CX.

Theorem 1.7. If X is an Equiv-ANE-space, then every partial G-map Z ←֓
A

ϕ
−→ X, Orb(Z) ⊂ CX, admits a G-extension ϕ̂ : Z→ X.

There are several proofs of the James–Segal theorem for the maximal family F =
ConjG. One of them proceeds by finding a G-CW-complex that G-dominates the
original G-space [13], and another replaces the original equivariant map f by a map
of its cocylinder, which is G-homotopy equivalent to f and possesses a number of
other useful properties [2]. (Following [6] and [10], we call the resulting functor
the equivariant functor of gammafication.) However, both of these proofs operate
with intersections of orbit types of points of the original spaces. In the situation of
Theorem 1.1, this essentially increases F and invalidates the known arguments.

To give an example of such difficulties, we note that the equivariant functor
of gammafication essentially improves the extensor properties of G-F-spaces and
G-maps and preserves their equivariant homotopy classes. Such a transformation
makes the map f in Theorem 1.1 locally EquivF -soft and weakly EquivF -soft.
Then we might hope to complete the proof of Theorem 1.1 using the following
theorem, which extends Proposition 4.1 in [2] to the case of G-F-spaces. However,
G-F-spaces are not preserved under the equivariant functor of gammafication.

Theorem 1.8. If an equivariant map f : X → Y between G-F-spaces is locally

EquivF -soft 2 and weakly EquivF -soft at the same time, then f is EquivF -soft

and, therefore, is a G-homotopy equivalence.

We overcome all these difficulties by using a new approach which is based on
transferring the problem to the category ISOV-TOP whose objects and morphisms
are metric G-spaces and their isovariant maps.

2In [2] the term ‘G-ANE-space over Y’ was used instead of local Equiv-softness. This indicates
an intimate connection between the theories of absolute extensors and soft maps.
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The first (and principal) step in the proof of Theorem 1.1 is to study the injec-
tive objects in this category, isovariant absolute extensors (or Isov-AE-spaces).
Their importance stems from treating the orbit projections of objects in ISOV-TOP
(resp. those of Isov-AE-spaces) as generalized principal G-bundles (resp. universal
generalized principal G-bundles) in the sense of Palais [14], § 2.6. We mention
a result in [15] saying that the orbit space E of any Isov-AE-space E classifies
G-spaces in the sense of Palais [14]. Thus the category ISOV-TOP admits a homo-
topy representation that reduces many aspects of its study to the homotopical
properties of topological spaces.

Since ISOV-TOP is a natural extension of the category of principal G-bundles,
it is equally natural (and useful) to find analogues of other notions and facts in
the theory of principal G-bundles, such as universal bundles, characteristic classes
and so on. However, even the existence of Isov-AE-spaces has so far been known
only under certain restrictions on the dimension and orbit type [14], [16], [17]. The
following theorem is a definitive improvement of this situation.

Theorem 1.9. Suppose that every Xi, i>1, is an Isov-generating Equiv-AE-space.
Then

∏
{Xi | i > 1} ∈ Isov-AE.

A space X is said to be Isov-generating if for every metric G-space Z there is an
isovariant map η : Z→ X. Let Con T be the metric cone over the discrete union T of
all homogeneous spaces G/H ∈ G-ANE. Then the countable power J⇋ (Con T)ω

is Isov-generating [18]. Since J is also an Equiv-AE-space and J ∼= Jω, it follows
from Theorem 1.9 that J ∈ Isov-AE.

The second important step in the proof of Theorem 1.1 is to transform the
equivariant theory to the isovariant one. This is done by introducing Borel’s functor.
We fix an Isov-AE-space W and associate every G-space X with the G-F-subspace
EF (X) ⇋ {(w, x) | Gw ⊂ Gx, (Gw) ∈ F} ⊂ W × X, and every G-map f : X → Y

with an isovariant map Ef : EF (X) → EF (Y) defined by the formula Ef (w, x) =
(w, f(x)). The resulting functor EF from the equivariant category to the isovariant
one is called the Borel functor induced by F .

Note that the Borel functor transforms equivariant homotopy to isovariant
homotopy and, therefore, may be regarded as a functor from EQUIVF -HOMOT
to ISOVF -HOMOT. We shall prove in a future paper that this functor establishes
an equivalence between the equivariant homotopy category of Equiv-ANE-spaces
and the isovariant homotopy category of Isov-ANE-spaces. This reduces the study
of the G-homotopy type of Equiv-ANE-spaces to that of the isovariant homotopy
type of Isov-ANE-spaces. We can also obtain new information on the equivariant
homotopy type of Equiv-ANE-spaces by a deeper investigation of Isov-ANE-spaces.

The following observations describe the main steps of the transformation of the
equivariant problem into an isovariant one and thus provide a key to the proof of
Theorem 1.1. If X ∈ EquivF -ANE, then EF (X) ∈ IsovF -ANE (see property (∗)
in § 6). The G-map pX : EF (X) → X, pX(w, x) = x, is a G-homotopy equivalence
(see Theorem 6.5), whence pX is a weak G-homotopy. We similarly have EF (Y) ∈
IsovF -ANE and pY : EF (Y) → Y is a G-homotopy equivalence in the case when
Y ∈ EquivF -ANE. Since the isovariant map Ef : EF (X) → EF (Y) makes the
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corresponding diagram commutative (that is, f ◦ pX = pY ◦ Ef ), Theorem 1.1
reduces to a particular case involving isovariant maps.

Theorem 1.10. Suppose that X, Y ∈ IsovF -ANE. Then an isovariant map f :
X → Y is a G-homotopy equivalence if and only if f is a weak G-F-homotopy

equivalence.

Since the problem of approximating isovariant extensors by simpler objects (such
as G-CW-complexes) is unsolved in ISOV-TOP, we use other approaches available
in the isovariant category. The homotopy density of the embeddings XH →֒ XH

and YH →֒ YH , (H) ∈ F , for IsovF -ANE-spaces X and Y (see Theorem 6.6) yields
that the notions of weak G-F-homotopy equivalence and weak IsovF -homotopy
equivalence coincide for an isovariant map f : X→ Y.3 This reduces Theorem 1.10
to the following assertion.

Theorem 1.11. Suppose that X, Y ∈ IsovF -ANE. Then an isovariant map f :
X→ Y is an Isov-homotopy equivalence if and only if f is a weak IsovF -homotopy

equivalence.4

We shall prove Theorem 1.11 using an appropriate functor of isovariant gam-

mafication which is free from the defects of its equivariant analogue. It turns out
that after such a transformation the isovariant map f in Theorem 1.11 preserves
the isovariant homotopy class and satisfies the hypotheses of the following theorem.

Theorem 1.12. Let f : X → Y be an isovariant map between IsovF -ANE-spaces.
Suppose that f is locally IsovF -soft and weakly IsovF -soft.5 Then f is IsovF -soft.

Since an IsovF -soft map is an Isov-homotopy equivalence, this proves Theo-
rem 1.11 and hence Theorems 1.10, 1.1. In § 10 we state some problems and con-
jectures related to the contents of this paper.

§ 2. Preliminaries

Throughout the paper, all spaces are assumed to be metric and all maps con-
tinuous unless they are defined by certain constructions or unless otherwise stated.
All group actions are actions of compact Lie groups.

We describe the key notions of the theory of G-spaces [20]. An action of a com-
pact group G on a space X is a continuous map µ from the product G × X to X

with the following properties:
1) µ(g, µ(h, x)) = µ(g · h, x),
2) µ(e, x) = x for all x ∈ X, g, h ∈ G (here e is the identity of G).

As a rule, we write g ·x or simply gx instead of µ(g, x). A space X with an action
of G is called a G-space. A map f : X → Y of G-spaces is called a G-map or

3This is an infinite-dimensional analogue of the so-called ‘large gap’ condition [19] which enables
us to transform homotopically an equivariant homotopy equivalence between manifolds into an
isovariant one.

4That is, the map fH : XH → YH is a homotopy equivalence for each (H) ∈ F and, in addition,
XH 6= ∅ if and only if YH 6= ∅.

5We say that an isovariant G-map f : X → Y is weakly IsovF -soft if fH : XH → YH is soft for
each (H) ∈ F , YH 6= ∅.
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an equivariant map if f(g · x) = gf(x) for all x ∈ X, g ∈ G. An equivariant
homeomorphism is called an equimorphism.

Note that G-spaces and G-maps form a category, which is denoted by G-TOP
(or EQUIV-TOP if G is clear from the context). The equivariant analogue of
any notion ∗ of non-equivariant topology will often be denoted by G-∗ or Equiv-∗.
Conversely, every notion dealing with G-spaces yields a non-equivariant notion by
taking the group G to be trivial.

The orbit G(x) of a point x ∈ X is the subset {g · x | g ∈ G} = G · x, which
turns out to be closed. The natural map π = πX : X → X, x 7→ G(x), from X to
the quotient space is called the orbit projection. The quotient space X equipped
with the quotient topology (induced by π) is called the orbit space. Clearly, G ·A =
π−1π(A) for every subset A ⊂ X. If A ⊂ X coincides with G · A, then it inherits
a natural action of G and is called an invariant subset or a G-subset.

Every equivariant map f : X→ Y transforms the orbit of a point x to the orbit
of f(x). Hence we have an induced map of orbit spaces f̃ : X → Y , f̃(G(x)) =
G(f(x)), which is continuous because orbit projections are quotients and f is con-
tinuous.

For every x ∈ X, the subset Gx = {g ∈ G | g · x = x} is a closed subgroup of G.
It is called the stabilizer of x. For every closed subgroup H (H < G for short) we
consider the following subsets of X:

XH = {x ∈ X | H · x = x} = {x ∈ X | H ⊂ Gx}

(the set of H-fixed points),

XH = {x ∈ X | H = Gx}, X(H) = {x ∈ X | H is conjugate to Gx}.

Since an equivariant map f : X → Y commutes with the group action, we have
f(XH) ⊂ YH . We denote the restriction f ↾ : XH → YH by fH .

An equivariant map f : X→ Y is said to be isovariant if it preserves stabilizers,
that is, Gx = Gf(x) for all x ∈ X. Given an isovariant map f , we denote the
restriction f ↾ : XH → YH by fH . The category of G-spaces and isovariant maps
is denoted by ISOVG-TOP (or ISOV-TOP if G is clear from the context). The
following equimorphism criterion is well known. An isovariant map is an equimor-
phism if and only if the induced map of orbits is a homeomorphism (see [20], Ch. 1,
Exercise 10).

We introduce several concepts related to the extension of G-maps in a category C

which is either ISOV-TOP or EQUIV-TOP. A space X acted on by a compact
group G is called an absolute neighbourhood C-extensor (and we write X ∈ C-ANE)
if every C-morphism ϕ : A→ X defined on a closed G-subset A ⊂ Z of a G-space Z

(and called a partial C-morphism) can be extended to a C-morphism ϕ̂ : U→ X of
some G-neighbourhood U ⊂ Z of A. If U can always be taken equal to Z, then X

is called an absolute C-extensor, X ∈ C-AE. When G is trivial (that is, we are
considering spaces without an action), this notion reduces to that of an absolute
[neighbourhood] extensor for metric spaces, A[N]E [21].
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If C is the category EQUIV-TOP, then the absolute [neighbourhood] C-extensors
are referred to as equivariant [neighbourhood] extensors (or, briefly, Equiv-A[N]E-
spaces). If C = ISOV-TOP, then the absolute [neighbourhood] C-extensors are
referred to as isovariant [neighbourhood] extensors (or, briefly, Isov-A[N]E-spaces).
Any Isov-AE-space is a universal G-space in the sense of Palais [14], and its orbit
space classifies G-spaces.

If two C-morphisms f, g : X → Y can be connected by a C-homotopy H :
X × [0, 1] → Y, then we write f ≃C g. This notation takes the form f ≃G g or
f ≃Equiv g for C = EQUIV, and f ≃Isov g for C = ISOV. We call a C-map
f : X→ Y a C-homotopy equivalence if there is a C-map g : Y→ X such that g ◦ f
and f ◦g are C-homotopic to IdX and IdY respectively. It is easily seen that if f is an
Isov-homotopy equivalence (an Equiv-homotopy equivalence), then fH : XH → YH
(fH : XH → YH) is a homotopy equivalence for every subgroup H < G.

Suppose that F ⊂ ConjG. Then the set XF ⇋ {x | (Gx) ∈ F} ⊂ X is
called the F-orbit bundle of X. We say that a G-space X is of orbit type F (or
is a G-F-space) if X = XF . A G-F-space X is called a CF -A[N]E-space if every
partial C-morphism ϕ : A→ X defined on a closed subset of a G-F-space Z can be
extended to a C-morphism ϕ̂ : Z → X on the whole of Z [on a G-neighbourhood
U ⊂ Z of A]. This yields the definitions of EquivF -A[N]E- and IsovF -A[N]E-spaces.
The following theorem on the extension of C-homotopy is established by a modifi-
cation of the standard Borsuk procedure.

Theorem 2.1. Suppose that X ∈ CF -ANE and H : A× [0, 1]→ X is a C-homotopy

connecting partial C-maps f, g : A→ X such that f extends to a C-map f̂ : Z→ X,
Orb(Z) ⊂ F . Then the C-homotopy H extends to a C-homotopy Ĥ : Z× [0, 1]→ X

connecting f̂ with a C-map ĝ : Z→ X.

Proof. We consider an invariant subsetM(X,A)⇋ (X×{0})∪(A×I) of the C-space
X× I. Defining a map ξ : M(X,A)→ Z by the formula

ξ(x, t) =

{
f(x) if (x, t) ∈ X× {0},

H(x, t) if (x, t) ∈ A× I,

we easily see that ξ is a continuous C-map. Since Z ∈ CF -ANE by hypothesis and
M(X,A) ⊂ X× I is a closed G-subspace of the C-space X× I, there is a neighbour-
hood V of the set M(X,A) ⊂ X×I such that ξ admits a neighbourhood C-extension
ξ̂ : V→ Z.

Let U be an invariant neighbourhood of A in X such that U × I ⊂ V, and let
β : X → I be the Urysohn invariant function such that β ↾A≡ 1 and β ↾X\U≡ 0.
Defining a map α : X × I → X × I by the formula α(x, t) = (x, β(x) · t), we easily
see that it is continuous and α(X× I) ⊂ V.

We claim that the formula Ĥ(x, t) = ξ̂(α(x, t)) gives the desired C-homotopy
Ĥ : X× I → Z. Indeed, for every x ∈ X we have

Ĥ0(x) = Ĥ(x, 0) = ξ̂(α(x, 0)) = ξ̂(x, 0) = ξ(x, 0) = f(x).
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Moreover, for every point (a, t) ∈ A× I,

Ĥ(a, t) = ξ̂(α(a, t)) = ξ(α(a, t)) = ξ(a, t) = H(a, t). 2

Equivariant homotopy equivalence is closely related to the notion of G-homotopy
softness. We say that an equivariant map f : X→ Y is G-homotopy soft if for every
G-homotopy commutative diagram

A = Cl A
ϕ

//

∩

X

f

��

Z
ψ

// Y

in the category EQUIV-TOP there is a G-map ϕ̂ : Z→ X extending ϕ and satisfying
f ◦ ϕ̂ ≃G ψ. If a G-map ϕ̂ : Z → X with the required properties exists under the
additional condition Orb(Z) ⊂ F , where F ⊂ ConjG, then we get the notion of
a G-F-homotopy soft map.

It is easily checked that every G-F-homotopy soft G-map f : X → Y is a weak
G-F-homotopy equivalence. It is also clear that if f : X → Y is G-homotopy soft,
then it is an Equiv-homotopy equivalence. The converse holds under the following
additional condition.

(∗) If X ∈ EquivF -ANE, then every Equiv-homotopy equivalence f : X → Y is
G-F-homotopy soft.

To prove (∗), we consider a G-map g : Y→ X which is G-homotopy inverse to f .
Since the G-maps ϕ : A → X and g ◦ (f ◦ ϕ) = g ◦ ψ ↾A : A → X are G-homotopic,
Theorem 2.1 on the extension of G-homotopy yields a G-map ϕ̂ : Z → X which
extends ϕ and is G-homotopic to g ◦ ψ. Hence we have f ◦ ϕ̂ ≃G (f ◦ g) ◦ ψ ≃G ψ.

Combining this with Theorem 2.1, we get the following proposition.

Proposition 2.2. If X, Y ∈ EquivF -ANE have the same equivariant homotopy

type, then X ∈ EquivF -AE if and only if Y ∈ EquivF -AE.

Proof. If f : X→ Y is an Equiv-homotopy equivalence, then f is G-homotopy soft
by property (∗). Therefore given a partial G-map Z ←֓ A

ϕ
−→ Y, Orb(Z) ⊂ F ,

there is a G-map ψ : Z → X such that ϕ ≃G f ◦ ψ. Since X ∈ EquivF -AE, there
is a G-extension ψ̂ : Z → X of ψ. Hence we have ϕ ≃G f ◦ ψ, and f ◦ ψ has
a G-extension f ◦ ψ̂ to the whole of Z. By Theorem 2.1, ϕ has a G-extension f ◦ ψ̂
to the whole of Z. 2

Let C
g
−→ A

f
←− B be two G-maps. We define the fibrewise product of the

G-spaces C and B with respect to g and f to be the G-subset {(c, b) | g(c) =
f(b)} ⊂ C × B and denote it by Cg ×f B. The projections of D = Cg ×f B onto
the factors C and B generate G-maps f̌ : D → C and ǧ : D → B. We say that f̌
(resp. ǧ) is parallel to f (resp. g) and write f̌‖f and ǧ‖g. It is known that for any
commutative G-diagram

E
α

//

β

��

C

g

��

B
f

// A
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there is a unique G-map h : E→ D that splits the corresponding diagram into two
commutative triangles, ǧ ◦ h = β and f̌ ◦ h = α.

Note that the G-map f ◦ ǧ = g ◦ f̌ : D→ A is the product of the G-maps g and f
in the category G-TOPA of G-spaces over A. The most important examples of
fibrewise products in the theory of topological transformation groups are provided
by isovariant maps.

Proposition 2.3. Let h : Y → X be an isovariant map and h̃: Y → X the map

of orbit spaces induced by h. Then Y is a fibrewise product Yh̃ ×πX
X, h is parallel

to h̃, and the orbit projection πY is parallel to πX (we regard the orbit spaces as

having the trivial action of G).

Proof. This follows easily from the equimorphism criterion stated above (see [20],
Ch. 1, Exercise 10). 2

§ 3. Isovariant absolute extensors

The isovariant absolute extensors in the class of products of G-spaces are
described by Theorem 1.9. We shall use the following refined form.

Theorem 3.1. Let Xi be an Isov-generating Equiv-AE-space for every i> 1. Then

for every partial G-map Z ←֓ A
ϕ
−→ X⇋

∏
{Xi | i > 1} there is a G-map ψ : Z→ X

which extends ϕ and is isovariant on the complement (that is, ψ ↾Z\A is isovariant).

Proof. Since A ⊂ X is closed, we can choose a sequence of neighbourhoods Z =
U0 ⋑ U1 ⋑ · · · and G-functions χi : Z → [0, 1], i > 1, such that

⋂
Ui = A,

χ−1
i (0) ⊃ Z \ Ui and χ−1

i (1) ⊃ Ui+1. (We recall that an inclusion A ⊂ B is said to
be strong and is written as A ⋐ B if ClA ⊂ IntB.)

Since X ∈ Equiv-AE, there is an equivariant extension ϕ̂ : Z→X of the map ϕ.
Now, starting with ϕ̂, we seek a G-map ψ : Z→ X extending ϕ = ϕ̂ ↾A in such a way
that ψ ↾Z\A is isovariant. We write ϕ̂ in the form

∏
ϕ̂i, where each map ϕ̂i : Z→ Xi

is equivariant, and fix an isovariant map ei : Z → Xi (which exists since Xi is
Isov-generating). Let Hi : Z× I → Xi be an Equiv-homotopy connecting ei with ϕ̂i
(which exists since Xi ∈ Equiv-AE). Then the desired map ψ is given by the
formula

ψ ↾A= ϕ̂ ↾A= ϕ,
(
ψ ↾Ui\Ui+1

)
(z) = ϕ̂1 × · · · × ϕ̂i−1 ×Hi

(
z, χi(z)

)
× ei+1 × · · · , i > 0.

It is easy to verify that ψ is continuous and also isovariant on the complement. 2

We fix a closed topological embedding j : X →֒ L of the orbit space of an arbi-
trary G-space X in a normed vector space L [22]. Since the countable power J of
the metric cone Con T over T = ⊔{G/H | G/H ∈ G-ANE} is Isov-generating [18],
there is an isovariant map f : X → J. Clearly, the product (j ◦ p) × f is a closed
topological G-embedding of X in the G-space Y ⇋ L × J, which is easily seen to
be Isov-AE. This proves the following result.

Theorem 3.2. Every G-space admits a closed G-embedding in the Isov-AE-space

L× J.
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Let R be the set of all irreducible orthogonal representations of G (including the
trivial representation), R̺ the space of a representation ̺ ∈ R, and D̺ its unit ball.
By definition, the equivariant Hilbert space L2 is the product

{
(v̺) ∈

(⊕

̺∈R

R̺

)ω ∣∣∣∣
∑
‖v̺‖

2 <∞

}
,

and the equivariant Hilbert cube Q (only for compact metric groups G) is
( ∏
{D̺ |

̺ ∈ R}
)ω

.

We note without proof that the equivariant Hilbert space L2 and equivariant
Hilbert cube Q are Isov-AE-spaces. The product of any compact Isov-AE-space X

and the Hilbert cube Q is equimorphic to the equivariant Hilbert cube Q. Another
example of an Isov-AE-space is the space C(G,L) (with the uniform metric) of all
continuous maps f : G → L to the Hilbert space L of weight w(G) endowed with
the (continuous) action of the group G by the formula

(g · f)(h) = f(g−1 · h), f ∈ C(G,L), g, h ∈ G.

These and other results of the theory of isovariant extensors will be published
elsewhere.

By Theorem 3.2, every Isov-A[N]E-space X admits a closed G-embedding in the
G-space L×J satisfying the conclusion of Theorem 3.1. Since X ∈ Isov-A[N]E, there
is an isovariant retraction r : L× J → X [a neighbourhood isovariant retraction
r : U→ X]. Hence Theorem 3.1 yields an important relation between the injective
objects in the isovariant and equivariant categories.

Theorem 3.3. Every Isov-A[N]E-space X satisfies the conclusion of Theorem 3.1
and, therefore, every Isov-A[N]E-space is an Equiv-A[N]E-space.

It is easy to give an example of an Equiv-AE-space Z 6∈ Isov-ANE. The following
results describe the difference between these two classes. If X ∈ Equiv-ANE, then
{XH | H < G} ∈ equi-LAE. If X ∈ Isov-ANE, then {XH | H < G} ∈ equi-LAE.
If Con X ∈ Isov-AE and XG ∈ AE, then X ∈ Isov-AE.

§ 4. Soft maps

Throughout this section, D stands for a commutative diagram

A = Cl A
ϕ

//

∩

X

f

��

Z
ψ

// Y

in a category C which is either EQUIV-TOP or ISOV-TOP, and D̃ stands for the
commutative diagram of orbit spaces generated by D.

The morphism ϕ is called a partial lifting of the morphism ψ with respect to f .
We say that the problem of extending the partial lifting for D is globally (locally)
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soluble if there is a morphism ϕ̂ : Z→ X (ϕ̂ : U→ X, where U ⊂ Z is a neighbour-
hood of A) extending ϕ and satisfying f ◦ ϕ̂ = ψ (resp. f ◦ ϕ̂ = ψ ↾U). We also say
that ϕ̂ : Z → X (ϕ̂ : U → X) is a global (local) lifting of ψ, or ϕ̂ is a global (local)
splitting of the commutative diagram D.

If Z = Y, then the problem of the global extension of a partial lifting for D is
transformed into the problem of the global extension of a partial section of f .

Definition 4.1. Suppose that F ⊂ ConjG. A morphism f : X → Y in the cate-
gory C is said to be (locally) CF -soft if for every commutative square diagram D
in C with a G-F-space Z, the problem of extending the partial lifting is (locally)
globally soluble.6

Note that these notions may be interpreted as giving the injective objects of
the corresponding category of morphisms. We give the simplest examples of C-soft
maps. If Z ∈ Equiv-AE, then pr: Y × Z → Y is an Equiv-soft map, and the
isovariant map ε ⇋ pr ↾ : E(Y,Z) ⇋ {(y, z) | Gy ⊂ Gz} → Y is an Isov-soft map.

Another example of a soft morphism arises from the construction of the space of
paths YI⇋C([0, 1],Y). We define a G-map p : YI→Y by the formula p(λ)= λ(0).
The following fact is an easy reformulation of Theorem 2.1 on the extension of
equivariant homotopy. It is proved in the same way as Proposition 7.1.

Proposition 4.2. If Y is Equiv-ANE, then the map p : YI → Y is Equiv-soft.

We easily see that every C-soft map f : X→ Y is a G-homotopy equivalence and
a Hurewicz C-bundle. The latter means that for every commutative square

A× [0, 1] ∪ Z× {0}
Φ

//

∩

X

f

��

Z× [0, 1]
Ψ

// Y

in the category C, where A ⊂ Z is a closed C-subspace, there is a C-map Φ̂:
Z × [0, 1] → X extending Φ and satisfying f ◦ Φ̂ = Ψ. The converse also holds.

Theorem 4.3. A map f : X→ Y is C-soft if and only if f is a Hurewicz C-bundle

and a C-homotopy equivalence.

Proof. The proof of sufficiency is based on the following two lemmas which are
known for trivial actions (see [23]). 2

Lemma 4.4. If f : X→ Y is a Hurewicz C-bundle and a C-homotopy equivalence,
then f is fibrewise C-contractible, that is, there exists a C-homotopy H : X×I → X

such that H0 = Id, f ◦Ht = f and H1 = s ◦ f for some C-section s : Y→ X.

Proof. Let g : Y → X be a C-map such that f ◦ g
F
≃C IdY and IdX

H
≃C g ◦ f .

We claim that there is no loss of generality in assuming that the C-homotopy F
is constant, that is, f ◦ g = IdY. Indeed, the C-homotopy F partially lifts with

6If C = EQUIV-TOP, we get the notion of an EquivF -soft map. If C = ISOV-TOP, we get
the notion of an IsovF -soft map.
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respect to f : f ◦ g = F0. Since f is a Hurewicz C-bundle, F lifts to a C-homotopy
F̃ : Y × [0, 1] → X with respect to f such that F̃0 = g. Clearly, f ◦ g′ = IdY and

g′ ◦ f ≃C F̃0 ◦ f = g ◦ f ≃C IdX for the C-map g′ = F̃1.

Therefore we can assume without loss of generality that f ◦ g = IdY and

IdX

H
≃C g ◦ f . We consider the C-homotopy

G⇋ H ∪ (g ◦ f ◦H−1) : X× [0, 2]→ X

connecting IdX with g ◦ f and define a constant C-homotopy K : X× [0, 2]→ Y by
the formula Kt = f for all t ∈ [0, 2].

Since f ◦ H = f ◦ (g ◦ f ◦ H), we easily see that f ◦G : X × [0, 2] → Y and
K : X × [0, 2] → Y are connected by a C-homotopy which is constant on A =
X×{0, 2}. Since f is a Hurewicz C-bundle, there is a C-homotopy T : X× [0, 2]→ X

such that T0 = G0 = IdX, T2 = G2 = g ◦ f and f ◦ T = f . Thus T is fibrewise
C-contractible. 2

Lemma 4.5. If f : X → Y is a fibrewise C-contractible Hurewicz C-bundle, then

f is C-soft.

Proof. Consider a commutative square D in the category C and let H : X× I → X

be a C-homotopy such that H1 = Id, f ◦Ht = f and H0 = s ◦ f for some C-section

s : Y→ X. Then we define C-maps Φ: A×[0, 1]∪Z×{0} → X and Ψ: Z×[0, 1]→ Y

by the formulae Φ(a, t) = H(ϕ(a), t), Φ(z, 0) = s ◦ ψ(z) and Ψ(z, t) = ψ(z). Since

f ◦Φ = Ψ ↾A×[0,1]∪Z×{0}, by hypothesis there is a C-map Φ̂ : Z× [0, 1]→ X extend-

ing Φ and satisfying f ◦ Φ̂ = Ψ. Clearly, Φ̂1 is the desired C-extension of ϕ. 2

We say that a G-map f : X→ Y is weakly EquivF -soft if the map fH: XH→ YH

is soft for every (H) ∈ F with YH 6= ∅.

Proposition 4.6. If f : X → Y is an EquivF -soft G-map, then f is weakly

EquivF -soft.

Remark 4.7. One can similarly prove that every IsovF -soft map f : X→ Y is weakly
IsovF -soft.

Proof of Proposition 4.6. For every partial map W ←֓ A
ϕ
−→ XH , (H) ∈ F ,

we define a partial G-map G/H × W ←֓ G/H × A
Φ
−→ X by the formula

Φ(gH, a) = g · a. Assume that f ◦ ϕ admits an extension ψ : W → YH . Then

Θ⇋ f ◦ Φ: G/H ×A → Y admits a G-extension Ψ: G/H ×W → Y by the for-

mula Ψ(gH,w) = g ·w. Since f is EquivF -soft, there is a G-map Θ̂: G/H ×W → X

that extends Θ and covers Ψ. The restriction of Θ̂ to (e · H) ×W is easily seen

to be the desired extension of ϕ. 2

Let us examine the interrelation between the soft morphisms in different cate-
gories.

Theorem 4.8. Let f : X → Y be an isovariant map. If f is (locally) Isov-soft,
then it is (locally) Equiv-soft.
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Proof. Consider a commutative square

A = Cl A
ϕ

//

∩

X

f

��

Z
ψ

// Y

(4.1)

in the category EQUIV-TOP. Clearly, the formula ‘z1 ≈ z2 if and only if z1, z2
lie on the same orbit and ψ(z1) = ψ(z2)’ determines an equivalence relation on Z.
The natural map h : Z → Z′ ⇋ Z/ ≈ is a perfect G-map and induces the identity
map of the orbit spaces. Hence Z′ is a metric G-space, and A′ = A/≈ is a closed
G-subspace of Z′.

We easily see that theG-maps ϕ and ψ factor through isovariant maps ϕ′ : A′→X

and ψ′ : Z′ → Y, that is, ϕ = ϕ′ ◦ h and ψ = ψ′ ◦ h. If f is Isov-soft, then we get
a commutative square

A′ = Cl A′
ϕ′

//

∩

X

f

��

Z′
ψ′

// Y

in the category ISOV-TOP. It admits an isovariant splitting ϕ̂ ′: Z′ → X. We easily
see that ϕ̂ ′ ◦ h : Z→ X is the desired G-splitting of the commutative square (4.1).

The local variant of the theorem is proved in a similar way. 2

Clearly, the restriction of an Isov-soft map to the pre-image of an invariant
subset is again Isov-soft. The following two results are concerned with the reverse
situation.

Theorem 4.9. Let f : X → Y be an isovariant map. If f is locally Isov-soft and

fG : XG → YG and g ⇋ f ↾ : X \ XG → Y \ YG are Isov-soft, then f is Isov-soft.

Proof. Since X admits a closed G-embedding i : X →֒W in an Isov-AE-space W

(Theorem 3.2), f : X→ Y is the restriction of the isovariant projection

ε : Z⇋ {(y,w) ∈ Y×W | Gy < Gw} → Y, ε(y,w) = y,

to the image of X under the diagonal embedding X →֒ Z, x 7→ (f(x), i(x)).

The isovariant map ε is Isov-soft by Theorem 6.1 (see below). To show that
f is Isov-soft, it suffices to prove the existence of a fibrewise isovariant retraction
R : Z → X (that is, ε = f ◦ R). Since fG is Isov-soft and XG ⊂ ZG is closed, we
can assume without loss of generality that XG coincides with ZG. Since f is locally
Isov-soft, we can also assume that there is a neighbourhood fibrewise isovariant
retraction r : U→ X. Therefore r(Bd(U)) ⊂ X \ XG.

Since g = f ↾X\XG
is Isov-soft, the commutative diagram

Bd(U)
r↾

//

∩

X \ XG

g

��

Z \ U
ε◦r

// Y \ YG
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splits. This enables us to construct a fibrewise isovariant extension r1 : Z \ U →
X \ XG. The maps r and r1 together determine the desired fibrewise isovariant
retraction R : Z→ X, R = r on U and R = r1 on Z \ U. 2

The following theorem is obtained by an easy modification of the argument in [2],
§ 3.1. We omit the proof.

Theorem 4.10. An isovariant map f : X→ Y is Isov-soft in each of the following

cases.
1) There is an infinite increasing sequence Y1 ⊂ Y2 ⊂ Y3 ⊂ · · · , Yn ⊂ Int Yn+1,

of closed G-subsets of Y such that f is Isov-soft over each Yn.

2) There is an open G-covering {Uλ} ∈ cov(Y) such that f is Isov-soft over

each Uλ.

§ 5. Isovariant extensors and twisted products

We consider a compact group G and a metric H-space S, where H < G. The
diagonal action of H on the product G× S is defined by the formula

h · (g, y)⇋ (g · h−1, h · y).

This action is free. Let [g, y] stand for the element

H · (g, y) = {(g · h−1, h · y) | h ∈ H}

of the orbit space (G × S)/H. It turns out that the formula g1 · [g, y] = [g1 · g, y],
where g, g1 ∈ G, y ∈ S, determines a well-defined continuous action of the whole
group G on the orbit space (G × S)/H, which is called the twisted product and is
denoted by G×H S.

Any G-map α : X→ G/H to a homogeneous space with H < G is called a slice

map of X. It is known that each orbit G(x) ⊂ X has a neighbourhood U admitting
a slice map ϕ : U→ G/Gx ∼=G G(x) which is equal to the identity on this orbit [20].
The notion of a twisted product arises naturally in the study of G-spaces with slice
maps because the following conditions are equivalent:

1) X ∼=G G×H S;
2) there is a slice map ϕ : X→ G/H, ϕ−1([H]) = S.

Other properties of twisted products (including their functorial properties) are
described in detail, for example, in [20].

We say that an isovariant map f : X→ Y admits a (non-trivial) tube structure if
there are slice maps ϕ : X→ G/H and ψ : Y→ G/H, H 6= G, such that ϕ = ψ ◦ f .
In this case we consider the isovariant H-map

g ⇋ f ↾ : S⇋ ϕ−1[H]→ T⇋ ψ−1[H].

Then f can be represented in terms of the twisted product as follows:

f = Id×f ′ : G×H S = X→ G×H T = Y, [g, s] 7→ [g, f ′(s)] = [g, f(s)].

We now study the interrelation between the softness properties of f and g.
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Theorem 5.1. If f is (locally) IsovG-soft, then g is (locally) IsovH-soft.

Proof. We only examine the case when f is IsovG-soft. Consider a commutative
square

A = Cl A
ϕ

//

∩

S

g

��

Z
ψ

// T

(5.1)

in the category ISOVH -TOP. The twisted product functor transforms it into the
commutative square

G×H A
Id×ϕ

//

∩

G×H S

f

��

G×H Z
Id×ψ

// G×H T

(5.2)

in the category ISOVG-TOP. By hypothesis, one can G-split the commutative
square (5.2) by a map ϕ̂ : G×H Z → G×H S. If ϕ̂[e, z] = [g, s], where e ∈ G is
the identity, then we have [e, ψ(z)] = [g, f(s)] since the diagram is commutative.
Therefore g ∈ H and ϕ̂[e, z] = [e, g−1s], that is, ϕ̂(Z) ⊂ S. Hence the restriction
of ϕ̂ to Z ⊂ G×H Z is the desired H-splitting of the commutative square (5.1) into
two triangular diagrams.

The local variant of the theorem is proved in a similar way. 2

Theorem 5.2. If g is (locally) IsovH -soft, then f is (locally) IsovG-soft.

Proof. We only examine the case when g is IsovH -soft. Consider a commutative
square

A = Cl A
α

//

∩

X

f

��

≡ G×H S
ϕ

//

Id×g

��

G/H

Id

Z
β

// Y ≡ G×H T
ψ

// G/H

(5.3)

in the category ISOVG-TOP. Writing Z and A as G×H Z and G×H Ā respectively,
where Ā ⇋ (ϕ ◦ α)−1([H]) = α−1(S) and Z ⇋ (ψ ◦ β)−1([H]) = β−1(T) are
H-spaces, we naturally get a commutative square

Ā = Cl Ā
α↾

//

∩

S

g

��

Z
β↾

// T

in the category ISOVH -TOP. By hypothesis it admits an H-splitting χ : Z → S.
Applying the twisted product functor, we obtain the desired G-splitting Id×Hχ:
G×H Z→ G×H S = X of the commutative square (5.3).

The local variant of the theorem is proved in a similar way. 2
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§ 6. The Borel construction

We define a multi-valued map E : Y  X by the formula E(y) = XGy . Its
graph E(Y,X) ⇋ {(y, x) | Gy ⊂ Gx} is an invariant subset of Y × X. Since
G(y,x) = Gy ∩ Gx = Gy, the natural projection ε : E(Y,X) → Y is an isovariant
map.

Theorem 6.1. The space X is Equiv-AE (resp. Equiv-ANE) if and only if the

isovariant map ε : E(Y,X)→ Y is isovariantly soft (resp. isovariantly locally soft)
for every G-space Y.

Remark 6.2. One can similarly prove that if X ∈ EquivF -ANE, then the map
ε : E(Y,X)→ Y is locally IsovF -soft for every G-space Y.

Proof of Theorem 6.1. To prove the necessity, we consider an admissible commu-
tative diagram

A = Cl A
ϕ

//

∩

E(Y,X)

ε

��

Z
ψ

// Y

in the isovariant category. Since X ∈ Equiv-AE, there is an equivariant extension
ϕ′ : Z → X coinciding with prX ◦ϕ on A, where prX : E(Y,X) → X is the natural
projection. We easily see that ψ × ϕ′ is the desired map ϕ̂. The sufficiency is not
used in this paper, and therefore we omit its proof (hint: apply Theorem 1.1). 2

Applying Theorems 6.1, 4.8 in turn to an Equiv-ANE-space X, we see that the
map ε : E(Y,X)→ Y is isovariantly locally soft and also locally Equiv-soft.

Suppose that F ⊂ ConjG. In what follows, an IsovF -A[N]E-space will mean

a G-F-space X such that every partial G-map Z ←֓ A
ϕ
−→ X given on a closed

subset of the G-F-space Z can be extended to the whole of Z [to a G-neighbourhood
U⊂Z of A] to a G-map isovariant on the complement of A (note that this definition
differs somewhat from that given in § 2). By Theorem 3.1 we have WF ⇋ {w ∈W |
(Gw) ∈ F} ∈ IsovF -AE for every Isov-AE-space W.

Theorem 6.3. If X ∈ EquivF -A[N]E and Y ∈ IsovF -A[N]E, then E(Y,X) ∈
IsovF -A[N]E.

Proof. Consider a partial G-map

Z ←֓ A
ϕ
−→ E(Y,X), Orb(Z) ⊂ F .

If Y ∈ IsovF -AE, then ε ◦ ϕ admits a G-extension ψ : Z → Y isovariant on the
complement Z \ A. If X ∈ EquivF -AE, then there is a G-extension χ : Z → X

of the composite A
ε
−→ E(Y,X)

pr2−−→ X. Then the image of the diagonal G-map
ψ × χ : Z → Y× X is contained in E(Y,X) and, therefore, ψ × χ determines
a G-extension of ϕ. The local variant of the theorem is proved in a similar way. 2

We fix a G-space W ∈ Isov-AE and a family F ⊂ ConjG. They determine a Borel
functor

EF : EQUIV-TOP→ ISOVF -TOP, EF (X)⇋ {(w, x) | Gw ⊂ Gx, (Gw) ∈ F},



Isovariant extensors 17

which sends every G-map f : X → Y to an isovariant map Ef : EF (X) → EF (Y)
defined by the formula Ef (w, x) = (w, f(x)). (Borel suggested a similar con-
struction for the single-element family F = {e}.) Since WF ∈ IsovF -AE and
EF (X) = E(WF ,X), Theorem 6.3 yields the following assertion.

(∗) EF (X) ∈ IsovF -ANE whenever X ∈ EquivF -ANE.

Let us show that the natural projection p : EF (X) → X, p(w, x) = x, is a weak
G-homotopy equivalence under certain conditions.

Theorem 6.4. The map p : EF (X)→ X is EquivF -soft for every G-space X.

Proof. Consider an admissible (for checking the EquivF -softness of p) commutative
square

A = Cl A
ϕ

//

∩

EF (X)

p

��

Z
ψ

// X

in the category EQUIVF -TOP. Since W ∈ Isov-AE, the partial map Z ←֓ A
χ
−→W,

where χ ⇋ prW ◦ϕ and prW : EF (X) → W is the natural projection, admits
a G-extension χ̂ : Z→W isovariant on the complement. Therefore we have Gbχ(z) =
Gz ⊂ Gψ(z) and (Gbχ(z)) ∈ F for all z 6∈ A. This enables us to verify that

the formula ϕ̂(z) = (χ̂(z), ψ(z)) yields the desired well-defined equivariant map
ϕ̂ : Z→ EF (X). 2

Combining this and Proposition 4.6, we get the following theorem.

Theorem 6.5. Let X be a G-space. Then the G-map p : EF (X)→ X is :

1) a weak G-F-homotopy equivalence,

2) a G-homotopy equivalence provided that X is a G-F-space.

An embedding e : X0 →֒ X is said to be homotopy dense if there is a homotopy
H : X × I → X such that H0 = Id and ImHt ⊂ X0 for all t > 0. The following
assertion is easily verified.

(∗∗) An embedding e is homotopy dense if every partial map Z ←֓ A
f
−→ X can be

extended to a map f̂ : U → X0 on a neighbourhood U ⊃ A such that f̂(U \A) ⊂ X0.

Clearly, every homotopy dense embedding is a homotopy equivalence.

Let e be a homotopy dense embedding. Using the criterion for ANE-spaces in
terms of small homotopies (see [22]), one can prove that X0 ∈ ANE if and only
if X ∈ ANE. The following result, which is an infinite-dimensional analogue of the
so-called ‘large gap’ condition [19], highlights extensors in the isovariant category.

Theorem 6.6. Suppose that F ⊂ ConjG and (H) ∈ F . If X ∈ IsovF -ANE, then

the embedding e : XH →֒ XH is homotopy dense.

Proof. Property (∗∗) reduces the proof of the homotopy density of the embedding

XH →֒ XH to the extension of any partial map Z ←֓ A
f
−→ XH to a map f̂ : U → XH

on a neighbourhood U ⊃ A such that f̂(U \A) ⊂ XH .

Since X ∈ IsovF -ANE, the partial G-map Z × G/H ←֓ A × G/H
Φ
−→ X,

Φ(a, g[H]) = gf(a), can be G-extended to a G-map Φ̂ : U × G/H → X on
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a G-neighbourhood U×G/H ⊃ A×G/H such that Φ̂ is isovariant on (U \A)×G/H.
Since the G-stabilizer of every point of U × eH coincides with H, it follows that
the restriction Φ̂ to U × eH is the desired extension of f . 2

The following proposition is proved in the same way as Theorem 6.6.

Proposition 6.7. Suppose that X is an IsovF -AE-space and (H) ∈ F . Then XH
is an absolute extensor and, therefore, is contractible.

§ 7. The functor of isovariant gammafication

In this section we use the method of reduction of isovariant homotopy problems
to purely topological ones. To do this, we introduce the isovariant space of paths

YIIsov ⇋ {λ : [0, 1]→ Y | Imλ ⊂ YH , where H = Gλ(0)} ⊂ YI = C(I,Y)

and define a G-map p : YIIsov → Y by the formula p(λ) = λ(0). Since the stabilizer
of λ ∈ YIIsov equals

⋂
{Gλ(t) | t ∈ I} and therefore coincides with Gλ(0), p is an

isovariant surjection.

The following result is an easy corollary of Theorem 2.1.

Proposition 7.1. If Y is IsovF -ANE, then p is an Isov-soft map (and, therefore,
YIIsov ∈ IsovF -ANE).

Proof. Consider an admissible (for checking the IsovF -softness of p) commutative
square D

A = Cl A
ϕ

//

∩

YIIsov

p

��

Z
ψ

// Y

in the category ISOV-TOP. The isovariant map ϕ is naturally represented as an
isovariant map Φ: A× [0, 1]→ Y. Together with ψ, it determines an isovariant map
χ : Z×{0} ∪A× [0, 1]→ Y. Since ψ is isovariant, it follows that Z is a G-F-space.
Since Y ∈ IsovF -ANE, χ admits an isovariant extension χ̂ : Z× [0, 1]→ Y by The-
orem 2.1. The resulting map χ̂ naturally induces an isovariant map ϕ̂ : Z→ YIIsov,
which extends ϕ and covers ψ. 2

Let f : X → Y be an isovariant map between IsovF - ANE-spaces X and Y.
Clearly, the fibrewise product ΓfX⇋ Xf×pY

I
Isov coincides with {(x, λ) ∈ X×YIIsov |

λ(0) = f(x)}. If there is no group action, then all constructions reduce to the
cocylinder of a continuous map [24]. It follows from Proposition 7.1 that the map
p̌ : ΓfX → X parallel to p is isovariantly soft and, therefore, ΓfX ∈ IsovF -ANE.
It is straightforward to see that the space (ΓfX)H coincides with ΓfH

(XH) and
the following assertion holds.

(∗) The maps (Γf )H : (ΓfX)H → YH and ΓfH
: ΓfH

(XH)→ YH coincide.

We also define an isovariant map Γf : ΓfX→ Y by the formula Γf (x, λ) = λ(1).
One can regard Γf as a functor on an appropriate category (the functor of isovariant

gammafication).
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The isovariant map Γf : ΓfX → Y is Isov-homotopy equivalent to the original
isovariant map f . This can be deduced from the existence of an isovariant embed-
ding e : X →֒ ΓfX, e(x) = (x, δf(x)), where δf(x) is the constant path, along with
an isovariant map θ : ΓfX → X, θ(x, λ) = x, which is Isov-homotopy inverse to e.
Combining this with property (∗), we get the following proposition.

Proposition 7.2. The map f is a (weak) Isov-homotopy equivalence if and only

if Γf : ΓfX→ Y is a (weak) Isov-homotopy equivalence.

The isovariant map Γf : ΓfX→ Y is usually simpler than the isovariant map f .
For example, it can be shown (but this will not be used here) that Γf is a Hurewicz
IsovF -bundle if X,Y ∈ IsovF -ANE.

Theorem 7.3. Let X and Y be IsovF -A[N]E-spaces. Then the map Γf : ΓfX→ Y

is (locally) IsovF -soft.

Proof. Consider a commutative diagram

A = Cl A
ϕ

//

∩

ΓfX

Γf

��

Z
ψ

// Y

in the category ISOVF -TOP. The map ϕ : A→ ΓfX is represented as the diagonal
product (ϕ1, ϕ2) of isovariant maps ϕ1 : A→ X and ϕ2 : A→ YIIsov. In its turn, ϕ2

is naturally represented as an isovariant map Φ: A× [0, 1]→ Y.

If X ∈ IsovF -AE, then ϕ1 admits an isovariant extension ϕ̂1 : Z → X. The
maps f ◦ ϕ̂1, Φ and ψ together determine an isovariant map χ : Z × {0} ∪
A × [0, 1] ∪ Z × {1} → Y. If Y ∈ IsovF -AE, then χ admits an isovariant exten-
sion χ̂ : Z × [0, 1] → Y. The resulting map χ̂ naturally induces an isovariant map
ϕ̂2 : Z→ YIIsov. We easily see that the map (ϕ̂1, ϕ̂2) is the desired map ϕ̂ : Z→ ΓfX.

The local variant of the theorem (when X,Y ∈ Isov-ANE) is proved in a similar
way. 2

The topological properties of Γf can be further improved by imposing additional
homotopy conditions on f . For example, the following important fact holds in
the case of trivial group action (see [23] and [2]).

Theorem 7.4. Suppose that X , Y ∈ ANE. If f : X → Y is a homotopy equiva-

lence (not necessarily equivariant), then the map Γf : ΓfX → Y is soft.

§ 8. Proof of Theorem 1.1

Theorem 1.1 has already been reduced to simpler assertions (see the introduc-
tion). We now proceed to prove them.

Reduction of Theorem 1.11 to Theorem 1.12. Consider an isovariant map f : X→ Y

between IsovF -ANE-spaces X and Y which is a weak IsovF -homotopy equivalence.
By Proposition 7.2 and Theorem 4.3, to prove that f is an Isov-homotopy equiva-
lence, it suffices to establish that the map Γf : ΓfX→ Y is Isov-soft.
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Since Γf is locally Isov-soft (Theorem 7.3), Theorem 1.12 yields the following
assertion.

Lemma 8.1. If the map (Γf )H : (ΓfX)H → YH is soft for every subgroup H < G,
(H) ∈ F , then Γf is Isov-soft.

By hypothesis, the map fH : XH→YH is a homotopy equivalence of ANE-spaces.
Hence Theorem 7.4 shows that the map ΓfH

: ΓfH
(XH)→ YH is a Hurewicz bundle

and simultaneously a homotopy equivalence. Therefore it follows from Theorem 4.3
that the map ΓfH

is soft. However, the maps (Γf )H and ΓfH
coincide (see prop-

erty (∗) in § 7) and, therefore, the map Γf : ΓfX→ Y is Isov-soft by Lemma 8.1. 2

Reduction of Theorem 1.8 to Theorem 1.12. Consider a commutative diagram

EF (X)
Ef

//

pX

��

EF (Y)

pY

��

X
f

// Y

where X and Y are G-F-spaces. By Theorem 6.4, pX and pY are EquivF -soft maps.

Proposition 8.2. The map f is (locally) EquivF -soft if and only if the map Ef
is (locally) Isov-soft.

Proof. We consider the left commutative square

A = Cl A
ϕ

//

∩

EF (X)
pr

X
//

Ef

��

X

f

��

Z
ψ

// EF (Y)
pr

Y
// Y

in ISOV-TOP and complement it with the right commutative square. Since EF (Y)
is a G-F-space and ψ is isovariant, Z is also a G-F-space.

If f is EquivF -soft, then the G-map ϕ2 ⇋ prX ◦ϕ extends equivariantly to
a map ϕ̂2 : Z → X which is a lifting of the map ψ2 ⇋ prY ◦ψ with respect to f .
Consider the diagonal product ψ1 × ϕ̂2 : Z → W × Y of the isovariant map ψ1 ⇋

prW ◦ψ : Z→W and ϕ̂2. Clearly, it is an isovariant map sending Z to EF (Y). Hence
we get an isovariant map ψ1 × ϕ̂2 : Z → EF (Y) which extends ϕ and is a lifting
of ψ with respect to Ef . The local variant of the necessity part is established in
a similar way.

To establish the sufficiency, we consider the commutative square

A = Cl A
ϕ

//

∩

X

f

��

Z
ψ

// Y

in the category EQUIVF -TOP. Consider a G-lifting ϕ̃ : A → EF (X) of ϕ with
respect to the EquivF -soft map pX : EF (X) → X. If the map Ef is Isov-soft,
then it is Equiv-soft by Theorem 4.8, whence f ◦ pX = pY ◦ Ef is also Equiv-soft,
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being the composite of two Equiv-soft maps. Since the map ϕ̃ is a partial G-lifting
of ψ with respect to f ◦ pX, it follows that there is a G-lifting χ : Z→ EF (X) of ψ
with respect to f ◦ pX and χ is an extension of ϕ̃. The map pX ◦ χ is the desired
G-extension of ϕ which lifts ψ with respect to f . The local variant of the sufficiency
part is established in a similar way. 2

Note that (Ef (X))H = WH × XH and (Ef (Y))H = WH × YH while (Ef )H
is naturally equivalent to the product Id×fH : WH × XH → WH × YH . There-
fore (Ef )H is soft if and only if fH is soft. It follows from Proposition 8.2 that
Theorems 1.8, 1.12 are equivalent, but the latter is easier to prove.

Proof of Theorem 1.12. If |G| = 1, then f is a homeomorphism. Suppose that the
theorem has already been proved for every proper subgroup H < G. We claim that
it holds for every isovariant G-map f : X → Y. By the following lemma it suffices
to consider G-spaces X without G-fixed points.

Lemma 8.3. If Theorem 1.12 holds for all locally Isov-soft and simultaneously

weakly Isov-soft maps f : X → Y of G-spaces without G-fixed points, then it also

holds for all locally Isov-soft and simultaneously weakly Isov-soft maps f .

Proof. If Theorem 1.12 holds for the map f ↾: X \ XG → Y \ YG, then this map
is Isov-soft. Since fG : XG → YG is also Isov-soft, the lemma follows from Theo-
rem 4.9. 2

We first consider the case when f has non-trivial tube structure, that is, there
are slice maps ψ : Y→ G/H, H 6= G, and ϕ = ψ ◦ f : X→ G/H.

Lemma 8.4. If f : X→ Y is an isovariant G-map with non-trivial tube structure,
then Theorem 1.12 holds for f .

Proof. Consider the isovariant H-map g ⇋ f ↾: S ⇋ ϕ−1[H] → T ⇋ ψ−1[H]. By
Theorem 5.1, the H-isovariant map g between H-spaces is locally IsovH -soft. It is
also easy to see that gK : SK → TK is soft for every TK 6= ∅, K < H, that is,
g is weakly IsovH -soft. Since H < G is a proper subgroup, g is IsovH -soft by the
inductive assumption. Then f is Isov-soft by Theorem 5.2. 2

We now turn to the proof of the remaining case of the theorem (when XG =
YG = ∅). By the Slice Theorem [20] it follows that every orbit G(y) ⊂ Y has
an invariant neighbourhood with non-trivial tube structure. Hence the following
lemma holds.

Lemma 8.5. There is an open G-covering {Uλ} ∈ cov(Y) such that f is an

Isov-soft map over every Uλ.

An application of Theorem 4.10, (2) completes the proof. 2

§ 9. Proofs of Theorems 1.3, 1.4, 1.6, 1.7

Proof of Theorem 1.3. Since every G-F-homotopy soft map is a weak G-homotopy
equivalence, we need only prove the necessity part of the theorem. Consider
a G-homotopy commutative diagram in the definition of the G-F-homotopy soft-
ness of f : X→ Y. The G-maps pX : EF (X)→ X and pY : EF (Y)→ Y are G-F-soft
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by Theorem 6.4. Therefore EF (X) and EF (Y) are EquivF -ANE-spaces. Since
Orb(Z) ⊂ F , there are G-maps ϕ̃ : A → EF (X) and ψ̃ : Z → EF (Y) such that
ϕ = pX ◦ ϕ̃ and ψ = pY ◦ ψ̃.

The G-maps pX and pY are weak G-F-homotopy equivalences by Theorem 6.5.
Hence the map Ef : EF (X) → EF (Y) is a weak G-F-homotopy equivalence of
EquivF -ANE-spaces and, consequently, it is a G-homotopy equivalence by Theo-
rem 1.1. Therefore Ef is a G-homotopy soft map (see property (∗) in § 2) and, con-

sequently, there is a G-map χ : Z→ EF (X) extending ϕ̃ and satisfying Ef ◦χ ≃G ψ̃.
We easily see that the map pX ◦ χ is the desired G-extension ϕ̂ : Z→ X of ϕ. 2

Proof of Theorem 1.4. By Theorem 1.3 there is a G-map h : X → Y such that
g ◦ h ≃G f . Since the G-maps f and g are weak G-F-homotopy equivalences, the
map h is a weak G-F-homotopy equivalence of EquivF -ANE-spaces. By Theo-
rem 1.1, h is a G-homotopy equivalence. 2

Proof of Theorem 1.6. It suffices to consider an isovariant map f : X → W to
an Isov-AE-space W. Since f(X) ⊂ WF ⇋ {w ∈ W | (Gw) ∈ F} ∈ IsovF -AE
and WH

F is contractible for every subgroup H < G with (H) ∈ F (Theorem 6.6),
the map f : X→WF is a weak EquivF -homotopy equivalence.

Since IsovF -ANE ⊂ EquivF -ANE, WF ∈ EquivF -ANE. Thus Theorem 1.1
applies and shows that the map f : X → WF is a G-homotopy equivalence, and
the spaces X ∈ EquivF -ANE and WF ∈ EquivF -ANE have the same equivariant
homotopy type. Using Proposition 2.2, we obtain that X ∈ EquivF -AE. 2

Proof of Theorem 1.7. Since the G-map p : EC(X) → X is EquivC-soft by The-
orem 6.4, it follows from Proposition 4.6 that pH : (EC(X))H → XH is soft for
all (H) ∈ C. Since XH ∈ AE by hypothesis, it follows that (EC(X))H ∈ AE for all
(H) ∈ C. By Theorem 1.6 we have EC(X) ∈ EquivC-AE.

Since p is EquivC-soft and EC(X) ∈ EquivC-AE, we have a G-lifting ψ : A →
EC(X) of ϕ and a G-extension ψ̂ : Z → EC(X) of ψ. The map p ◦ ψ̂ : Z → X is the
desired extension of ϕ. 2

§ 10. Conclusion

An important problem in equivariant algebraic topology is to find (calculate) the
homotopy type of F-classifying G-spaces. This problem is very difficult even for
sufficiently small groups G and non-trivial families F . The effect of concentrating
F-classifying G-spaces (saying that each F-orbit bundle WF of an Isov-AE-space W

belongs to the class of IsovF -AE-spaces) provides additional possibilities for effec-
tive calculations (see [12]).

Another important problem is to detect isovariant extensors. In this paper we
have obtained an Isov-AE-space as a product of appropriate G-spaces. However,
such spaces arise from many other constructions in topology, geometry and analysis.
Examples include the space C(G,R) of the regular representation of G, the expo-
nential space expG, the space of convex bodies in the Euclidean space Rn, the
space of linear isomorphisms of a Hilbert G-space, and many others.
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It would be interesting to prove Theorems 1.8 and 1.12 for arbitrary compact
groups G. One might also develop the theory of shapes for the category ISOV-TOP
and give a topological characterization of equivariant shape equivalences and equiv-
ariant fine homotopy equivalences in terms of the corresponding properties of maps
of fixed-point sets. Moreover, there is the general problem of describing equivariant
notions using topological properties of fixed-point sets; see [8], § 8.1.

Let f : X → Y be locally soft. Then is it true that f is soft if and only if
f ↾ : f−1(U)→ U is a homotopy equivalence for every open set U ⊂ Y ?

The following question is interesting in connection with the Hilbert–Smith con-
jecture. Is it true that if the acting group G is non-trivial and X ∈ Isov-AE,
then dimX =∞ ?
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