Copper electroplating and corrosion of aluminium in pyrophosphate electrolyte containing SnO₂ nanoparticles

D. I. Nasonova^a, T. N. Vorobyova^a, O. N. Vrublevskaya^b, P. P. Strokash^c,

N. P. Yalovaya^c, S. T. Basov^c, A. P. Golovach^c

^a Belarusian State University, Minsk,

^b Research Institute for Physical Chemical Problems, Belarusian State University, Minsk,

Belarus, e-mail: <u>vrublevskaya.olga@gmail.com</u>

^c Brest State Universit, Brest, Belarus

Conditions of electrochemical deposition of Cu-SnO₂ composite coatings on aluminium have been revealed without the intermediate layer usage. The coatings were electroplated from the slightly alkaline pyrophosphate electrolyte containing 1 g/l of nanocrystalline SnO₂ with particles 10-50 nm in size (the XRD determined clystallite diameter 6 nm) that are stable in the electrolyte. Cyclic voltammetry studies has shown that introduction of SnO₂ nanoparticles into this electrolyte diminishes the anodic current density and the quantity of electricity expended for aluminium oxidation thus retarding aluminium corrosion in the electrolyte under study. The increase in corrosion stability of aluminium in pyrophosphate electrolyte containing SnO₂ nanoparticles was also confirmed by the gravimetric experiment on the Al behavior in this electrolyte as a corrositive media. As a result the deposited Cu-SnO₂ coatings despite very small SnO₂ content (less than 1 %) are characterized by good adhesion to aluminium substrate and fine-grained nonporous microstrusture.