Biocompatible calcium phosphate coatings on titanium substrate

<u>S. Ulasevich</u>^a, A. Kulak^a, S. Poznyak^b, S. Karpushenkov^b, O. Musskaya^a, L. Lesnikovich^a, V. Krutko^a ^aInstitute of General and Inorganic Chemistry, NAS, Minsk, Belarus, e-mail: musskaya@ igic.bas-net.by ^bResearch Institute for Physical Problem, Belarusian State University, Minsk, Belarus, e-mail: poznyak@ bsu.by

Three different methods have been compared for preparing bioactive coatings on a titanium substrate – electrochemical deposition from electrolytes containing calcium nitrate and ammonium dihydrophosphate under cathodic polarization of titanium, plasma-electrolytic oxidation of titanium in solutions containing calcium citrate and ammonium dihydrophosphate and chemical modification of mesoporous anodic TiO₂ films by calcium phosphate nanoparticles. The coatings prepared by cathodic electrodeposition demonstrate a low adhesion to the Ti substrate and consist of 30–80 % brushite, 20–70 % tricalcium phosphate and 5–22 % hydroxyapatite. Plasma-electrolytic oxidation leads to the formation of rather hard amorphous TiO₂ films containing calcium pyrophosphate. Fairly good adhesion and excellent biocompatibility has been revealed for mesoporous anodic TiO₂ films chemically modified with hydroxyapatite nanoparticles.