

Optimization of synthesis conditions of nanosized SnO2 for gas sensors

E. Ovodok^a, M. Ivanovskaya^b, D. Kotsikau^a, I. Asarko^a

^aBelarusian State University, Minsk, Belarus, e-mail: ovodokea@gmail.com

^bResearch Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus

The influence of synthesis conditions on the structure of SnO_2 has been studied. Base hydrolysis of Sn(II) and Sn(IV) salts ($SnSO_4$ and $SnCl_4$) was carried out to obtain SnO_2 products. Thus generated precipitates were transformed to SnO_2 by two ways: 1) thermal dehydration of $Sn(OH)_2$ and $SnO_2 \cdot nH_2O$ hydroxides; 2) $sol \rightarrow gel \rightarrow xerogel$ transformation of the precipitate and further thermal dehydration. The precipitates were peptized with various chemical agents: HNO_3 , $NH_3 \cdot H_2O$, H_2SO_4 under ultrasonic treatment. The samples were heated at 500-800 °C in air and in oxygen flow. The structural features of the SnO_2 samples were studied by XRD, EM, ESR and IR-spectroscopy. The influence of the valence state of tin and the nature of the anion (SO_4^{2-}) on the structure of the samples, grain size and on concentration of point defects was revealed.