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On the Dynamics of the Mass Point with

Internal Degrees of Freedom

A.N.Tarakanov∗

Minsk State High Radiotechnical College

An equation of motion of the mass point with internal degrees of freedom in scalar
potential U depending on relative coordinates and time, velocity and accelerations
is obtained both for non-relativistic and relativistic case. In non-relativistic case
a generalization of the energy conservation law follows, if ∂U/∂t = 0 fulfilled. A
concept of work is generalized to relativistic case, leading to corresponding integral
of motion, if ∂U/∂τ = 0 fulfilled, where τ is proper time of the point. In neglecting
an internal degrees of freedom and absence of interaction this integral of motion
gives a standard Special Relativity result.

1. Equation of Motion and the Energy Conservation

A long period of supremacy of quantum theories did not crush an interest in classical

description of quantum systems. In this connect some conclusions, following from the basic

equation of dynamics, the Second Newton’s Law, should be noted. As it is well known from the

Helmholtz epoch ( [1]), the Second Newton’s Law for conservative systems

dP

dt
= F (I.1)

gives a force acting at the mass point in the form F = −∇U = −∂U/∂R, where U = U(R)

is potential function of coordinate of the mass point. As a result, by applying of Eq.(I.1) to

definition of elementary work,

dA = (F · dR) = (
dP

dt
· dR) = (V · dP) , (I.2)

we obtain a conservation of total mechanical energy

E =
mV2

2
+ U(R) , (I.3)

where R and V = dR/dt are respectively radius vector and velocity of the mass point relative

to origin of coordinate system, coupled with absolute rest reference frame (r.f.).
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It is clear from the common considerations that a motion of mass point in the field of some

object should be determined by potential function depending not only on relative coordinates

R, but also at least on relative velocity V and accelerations, as well as on time, so that U =

U(t,R,V,W,Ẇ, ...,W(N)), where W(k) = dkW/dtk, a time dependence being specified by

internal dynamics of the mentioned object[1] .

In this case corollaries F = −∇U and (I.3) from equation of motion (I.1) should be changed

forasmuch as total differential of the function U is

dU =
∂U

∂t
dt + (

∂U

∂R
· dR) + (

∂U

∂V
· dV) +

N∑

k=0

(
∂U

∂W(k)
· dW(k)) . (I.4)

Indeed, definition of elementary work of the force (I.2) gives more general expression for

force, namely

F = −∂U

∂R
+ [C×V] , (I.5)

where C is some pseudo-vector, associated not only with external forces, but probably inherent

in mass point. Additional term [C×V] has a sense of gyroscopic force. As far back as Helmholtz

in his work ”On the conservation of force” ( [1]; Addition 3) pointed out at formula (I.6).

Furthermore, when interaction takes place the momentum vector P has a meaning of dy-

namical momentum. It can be written as a sum of kinematical momentum mV and some

addition A (a vector potential), connected both with internal structure of mass point, and with

interaction

P = mV + A . (I.6)

Then Eqs.(I.2) and (I.6) give

dA = (F · dR) = (V · d(mV + A)) = d

(
mV2

2
+ (A ·V)

)
− (A · dV) , (I.7)

or

d

(
mV2

2
+ (A ·V)

)
+ (

∂U

∂R
· dR)− (A · dV) =

= d

(
mV2

2
+ (A ·V) + U(t,R,V,W,Ẇ, ...,W(N))

)
−

[1] Remember W.Weber ( [2]- [3]), who tried to explain electrical phenomena as a result of electric interaction
of elementary particles, so called electric atoms, depending both on their relative disposition R and on their
relative velocity V and acceleration W = dV/dt.
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−∂U

∂t
dt− (

∂U

∂V
· dV)− (A · dV)−

N∑

k=0

(
∂U

∂W(k)
· dW(k)) = 0 . (I.8)

Now, if one suppose

A = −∂U

∂V
+ [S×W] , (I.9)

where S is some pseudo-vector, coupled with both internal structure of the mass point considered

and its interaction, W is an acceleration of this point, then dynamical momentum (I.6) will get

an expression

P = mV − ∂U

∂V
+ [S×W] , (I.10)

Equation (I.8) reduces to

dE

dt
=

∂U

∂t
+

N∑

k=0

(
∂U

∂W(k)
·W(k+1)) , (I.11)

where quantity

E =
mV2

2
+ (V · [S×W])− (V · ∂U

∂V
) + U(t,R,V,W,Ẇ, ...,W(N)) (I.12)

is a generalization of Eq.(I.3) for total mechanical energy. So, apart from standard kinetic and

potential energies an additional energy arises due to both internal degrees of freedom and a

dependence of potential energy on relative velocity.

Provided the condition

∂U

∂t
+

N∑

k=0

(
∂U

∂W(k)
·W(k+1)) = 0 (I.13)

is fulfilled, the energy (I.12) will be an integral of motion. Condition dE/dt > 0 corresponds to

absorption of energy by a mass point, and dE/dt < 0 corresponds to radiation of energy.

In view of stated above, the equation of motion (I.1) should be written down in the form

d

dt
(mV + [S×W])− [C×V] =

d

dt

∂U

∂V
− ∂U

∂R
. (I.14)

Let’s note here that derivatives of potential function with respect to accelerations W(k) do

not enter into an equation of motion. Therefore one can be restricted to dependence of potential

function only on acceleration W: U = U(t,R,V,W). Then the point obeying to equation of

motion (I.14) with condition (I.13) represents a Birkhoff’s dynamical system ( [4]).

We assume in general case that pseudo-vectors S and C are stipulated by both internal

structure and interaction of the mass point. Therefore they may be written as sums
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S = S0 + Sext , C = C0 + Cext , (I.15)

where S0 and C0 are connected exclusively with internal structure, whereas Sext and Cext are

connected only with interaction. S0 and C0 may vary only in direction, rather than in lengths.

Sext and Cext may depend on those variables as potential function does.

Equation (I.14) may be written in another form supposing

U = U0 − (R · [V ×C]) = U0 − (R · [V ×C0])− (R · [V ×Cext]) . (I.16)

Then Eq.(I.14) reduces to

d

dt
(mV + [S0 ×W]− [R×C0]) = −∂U0

∂R
+ (R · [V × ∂Cext

∂R
])+

+
d

dt

(
∂U0

∂V
− (R · [V × ∂Cext

∂V
])− [Sext ×W] + [R×Cext]

)
, (I.17)

where

(R · [V × ∂Cext

∂R
])i = εklmRkV l ∂(Cext)m

∂Ri
, (I.18)

(R · [V × ∂Cext

∂V
])i = εklmRkV l ∂(Cext)m

∂V i
. (I.19)

For free mass point (U0 = 0, Sext = 0, Cext = 0) Eq.(I.17) leads to a conservation of

momentum

P = mV + [S0 ×W]− [R×C0] = const . (I.20)

2. The equation of moments for a mass point with internal de-

grees of freedom

The equation (I.14) is insufficient for description of dynamics of physical system. There

is necessary in addition an equation of moments, which for structureless mass point looks like

dL/dt = M, where L = [R × P] = m[R × V] is angular momentum, M = [R × F] is total

moment of external forces, acting at the system. For individual mass point equation of moments

follows from the Eq.(I.1).

For a mass point with internal degrees of freedom, describing by Eq.(I.1), in which force

and momentum are specified by equations (I.5) and (I.10), respectively, we have the relation

[R× dP

dt
] =

d

dt
[R×P]− [V × (−∂U

∂V
+ [S×W])] = −[R× ∂U

∂R
] + [R× [C×V]] , (II.1)
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implying the following equation of moments

dL

dt
= M + T, (II.2)

where

L
.
= [R×P] = m[R×V]− [R× ∂U

∂V
] + [R× [S×W]] (II.3)

is a dynamical angular momentum,

M
.
= [R× F] = −[R× ∂U

∂R
] + [R× [C×V]] (II.4)

is a moment of force, acting at the mass point,

T
.
= [V ×P] = −[V × ∂U

∂V
] + [V × [S×W]] (II.5)

is an additional twisting moment, or torque. In standard mechanics the concept ”torque” is

applied to the moment of force (II.4). Here we distinguish the moment of force (II.4) and torque

(II.5).

It should be noticed, that in the same way both equation dL/dt = M follows from Eq.(I.1)

for usual mass point and equation (II.2) follows from Eq.(I.14) (i.e. Eq.(I.1), in which F and P

are specified by equations (I.5) and (I.10)) for a mass point with internal degrees of freedom.

Solution of equation (I.14) may be obtained in principle, if potential function U =

U(t,R,V,W) and time dependence of pseudo-vectors S C, coupled with internal structure

of mass point, are known. As it is known, one of internal property of particles is spin, associated

classically with proper angular momentum of particle. Therefore a temptation arises to connect

pseudo-vectors S and C with spin. However, having only definition (II.3) for angular momen-

tum it is impossible to define a concept of proper angular momentum. Therefore pseudo-vectors

S, C and their equations of motion should be either postulated here artificially or determined

starting from additional arguments. In particular, one may go by the same way as a solid body

in mechanics considered as a system of mass point. Then it is possible to define a concept of

particle with internal degrees of freedom as a system of the same mass points, whose proper

angular momentum is determined relative to center of inertia of particle. Such procedure will be

made elsewhere. Here it is reasonably to generalize equations and concepts above to relativistic

case.

3. Relativistic equation of motion

Relativistic generalization of the second Newton’s law for mass point is
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dP

dλ
=

1

c
F (III.1)

where P = {P µ} = (P 0,P), F = {F µ} = (F 0,F), µ = 0, 1, 2, 3, are relativistic generalizations of

momentum and force, λ is invariant parameter determined by the interval

dS2 = ηµνdRµdRν = (dR0)2 − dR2 = σdλ2 , σ = ±1 , (III.2)

where ηµν = diag(1,−1,−1,−1). Thus, for σ = +1 parameter λ/c = τ is a proper time of

”concomitant observer” K′ moving together with event defined by four-dimensional radius-

vector R = {Rµ} = (R0,R). For σ = −1 parameter λ = S coincides with length of arc of world

line of the event R.

Let us emphasize an important fact that standard Special Relativity with interval (III.2)

is valid exceptionally for inertial reference frames (r.f.). Usually interval (III.2) is considered

as a definition of distance between two points in the Minkowski space ER
1,3. Then coordinates

of a point in ER
1,3, defined by radius-vector R, are quantities relative to origin, coinciding with

origin of the rest r.f. K, and have absolute character in the meaning of absolute time and

absolute space of Newton’s mechanics. Relative character in the meaning of Special Relativity

they acquire when interval (III.2) is coupled with r.f. K′, moving relative to K with velocity

V = cdR/dR0. In this case radius-vector R is said to be an event R, whose world line is a

trajectory of the origin of K′, moving with velocity V in ER
1,3, i.e. in the space of the rest r.f. K.

For inertially moving K′ r.h.s. of Eq.(III.1) vanishes, and we obtain conservation of 4-

momentum, whence it follows conservation of

P2 = ηµνP
µP ν = (P 0)2 −P2 = σm2

0c
2 , (III.3)

if 4-momentum is defined as

P µ = m0cU
µ = m0cdRµ/dλ = m0dRµ/dτ . (III.4)

Relations (III.3)-(III.4) are standard relations of Special Relativity for kinematical mo-

mentum, which are extended on any asymptotically free physical systems without any reason.

Between other things one may consider an expression (III.2) for relativistic interval as a corollary

from relations (III.3), postulating connection between energy and momentum.

If some force be acting on moving K′, the latter is no longer inertial one. Then 4-momentum

in Eq.(III.1) becomes dynamical momentum, whose definition ought to be analogous to Eq.(I.6)

P µ = m0c
dRµ

dλ
+ Kµ , (III.5)

where Kµ is some addition to kinematical 4-momentum (III.4) due to interaction between moving

r.f. K′ and rest r.f. K.
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In Newton’s mechanics an interaction force (I.5) between K′ and K is determined by means

of elementary work (I.2) which may be written as dA = −ηijF
idRj. This work is a scalar under

Galilei transformations, i.e. it is the same in all non-relativistic inertial r.f., but it is not covariant

under Lorentz transformations.

Indeed, let Lµ
. ν be matrix elements of the Lorentz transformation dR′µ = Lµ

. νdRν , satisfying

to condition ηλκL
λ
. µL

κ
. ν = ηµν , so that ( [5])

L0
. 0 = γσ = (1−B2σ

0 )−1/2 , L0
. i = ΓσV0i/V0 , Li

. 0 = −ΓσV
i
0 /V0 , Li

. j = δi
. j −

γσ − 1

V2
0

V i
0 V0j ,

(III.6)

where

B0 = V0/c , V0 = |V0| =
√

V2
0 , B0 = |B0| =

√
B2

0 = cV0 ; (III.7)

Γσ = Bσ
0γσ , Γ+ = B0γ+ = B0(1−B2

0)
−1/2 , Γ− = γ−/B0 = (B2

0 − 1)−1/2 , (III.8)

V0 is velocity of K′ relative to K.

Then the Lorentz transformation takes form

dR′0 = γσ

[
dR0 − Bσ

0 (V0 · dR)

V0

]
, (III.9)

dR′ = dR +

[
(γσ − 1)

(V0 · dR)

cBσ
0B0

− γσdR0

]
Bσ

0

cB0

V0 . (III.10)

Transformation law of relativistic force looks as

F ′µ = Lµ
. νF

ν = Lµ
. 0F

0 + Lµ
. iF

i , (III.11)

F ′0 = γσ

[
F 0 − Bσ

0 (F ·V0)

V0

]
, (III.12)

F′ = F +

[
(γσ − 1)(F ·V0)

V2
0

− γσBσ
0F

0

V0

]
V0 . (III.13)

Hence Eqs.(III.10) and (III.13) give transformation law for elementary work

dA′ = (F′ · dR′) = −ηijF
′idR′j = −ηijL

i
. µL

j
. νF

µdRν =

= dA + Γ2
σ

[
1− (V ·V0)

c2B0Bσ
0

]
cF 0dt− Γ2

σ

B0Bσ
0

(F ·V0)dt +
γ2

σ − 1

V2
0

(F ·V0)(V ·V0)dt , (III.14)

whence it follows relativistic transformation of power N = cdA/dR0 = (F ·V)

N ′ = c
dA′

dR′0 = (F′ ·V′) =
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=
N + L0

. 0L
0
. iF

0V i + cL0
. iL

0
. 0F

i + L0
. iL

0
. jF

iV j + c[(L0
. 0)

2 − 1]F 0

L0
. 0 + L0

. iV
i/c

=

=
N + cΓ2

σ

[
1− (V·V0)

c2B0Bσ
0

]
F 0 − Γ2

σ

B0Bσ
0
(F ·V0) + γ2

σ−1

V2
0

(F ·V0)(V ·V0)

γσ

[
1− Bσ

0 (V·V0)

V0

] . (III.15)

Noncovariance of expression (I.2) and force transformation law (III.13) are inconsistent with

principle of relativity, whose successive application means that equations and quantities, such

as scalars, 4-vectors, tensors etc., ought to be covariant under Lorentz transformations in any

theory. Therefore definition (I.2) should be generalized in the form

dW = −ηµνF
µdRν = −F 0dR0 + dA = (−cF 0 + N)dt . (III.16)

In standard Special Relativity, dealing with interval (III.2), F 0 is defined from Eq.(III.1),

where P 0 = m0cdR0/dτ = m0c
2γ = m0c

2(1 − V2/c2)−1/2, V is absolute velocity of the mass

point acquiring acceleration W = dV/dt under action of the force F. Then taking into account

the relation

dγ

dt
=

γ3

c2
(V ·W) , (III.17)

we obtain

F =
dP

dτ
= γ

d(m0γV)

dt
= m0γ

2

[
W +

γ2

c2
(V ·W)V

]
, (III.18)

(F ·V) = m0γ
4(V ·W) , (III.19)

F 0 =
dP 0

dτ
= m0c

dγ

dτ
= m0cγ

dγ

dt
=

m0γ
4

c
(V ·W) =

1

c
(F ·V) =

N

c
. (III.20)

Comparison of Eq.(III.16) with Eq.(III.20) shows that scalar dW is identically zero in

all inertial r.f. However, should moving r.f. K′ be coupled with considered mass point, the

latter ceases to be inertial one. Then in such r.f. an expression (III.2) for length of arc of

the world line of the mass point and relations (III.18)-(III.20) become invalid. It means that

scalar dW = = −ηµνF
µdRν = −ηµνF

′µdR′ν does not equal to zero, conserving its covariant

expression in all inertial r.f. Relativistic force, acting at rest mass point in K′, may be expressed in

terms of potential function U = U(λ,Rµ, Uµ,W µ, Ẇ µ, ..., (W (N))µ) by analogy with (I.5) in non-

relativistic mechanics, where Rµ, Uµ, W µ = dUµ/dλ, (W (k))µ = dkW µ/dλk are relative radius-

vector, 4-velocity and 4-accelerations of K′ relative to K. Forasmuch as relation ηµνU
µU ν = σ

following from (III.2) becomes invalid, arguments of potential function should considered as

independent variables, so that total differential of U equals

dU =
∂U

∂λ
dλ +

∂U

∂Rµ
dRµ +

∂U

∂Uµ
dUµ +

N∑

k=0

∂U

∂(W (k))µ
d(W (k))µ . (III.21)
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Formulae (I.10) and (I.5) should be considered as non-relativistic limits of 4-momentum

and 4-force

P µ = m0cU
µ − ηµν ∂U

c∂U ν
+

1

2
ηµνενλκρS

λκW ρ , (III.22)

F µ = −ηµν ∂U

∂Rν
+

1

2
ηµνενλκρC

λκUρ, (III.23)

respectively, where Sλκ and Cλκ are some antisymmetric tensors, characterizing internal structure

of the mass point.

Substitution of Eqs.(III.22)-(III.23) into equation (III.1) gives next equation of motion

d

dλ

[
m0cU

µ +
1

2
ηµνενλκρS

λκW ρ

]
− 1

2c
ηµνενλκρC

λκUρ =
1

c
ηµν

[
d

dλ

∂U

∂U ν
− ∂U

∂Rν

]
. (III.24)

Substitution of Eqs.(III.22)-(III.23) into equation (III.16) gives

cηµν
dP µ

dλ
dRν = cηµνU

µdP ν = ηµνF
µdRν = ηµνU

µF νdλ , (III.25)

or

ηµνU
µ d

dλ

[
m0c

2U ν +
c

2
ηµνενλκρS

λκW ρ
]

= Uµ d

dλ

∂U

∂Uµ
− Uµ ∂U

∂Rµ
. (III.26)

Hence we obtain equation

dE

dλ
=

∂U

∂λ
+

N∑

k=0

∂U

∂(W (k))µ
(W (k+1))µ , (III.27)

where quantity

E =
m0c

2

2
ηµνU

µUν +
c

2
εµνλκU

µW νSλκ + U − Uµ ∂U

∂Uµ
=

m0c
2

2
σ (III.28)

is an integral of motion provided a condition

∂U

∂λ
+

N∑

k=0

∂U

∂(W (k))µ
(W (k+1))µ = 0 (III.29)

is satisfied.

Neglecting internal structure of mass point and its interaction, U = 0, from (III.28) we

obtain ηµνU
µU ν = σ and expression (III.2) for interval of standard Special Relativity. In general

case quantity σ does not equal to +1 or −1. Specifically, an account of internal structure of free

mass point gives
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ηµνdRµdRν +
1

m0

εµνλκS
λκdRµdUν =

[
1 +

1

m0c

ελκτωSλκU τW ω

ηρσUρUσ

]
ηµνdRµdRν = σdλ2 , (III.30)

i.e. the Minkowski space-time ER
1,3 effectively extends to 8-dimensional phase space with interval

(III.30) and degenerate metric, which is equivalent to 4-dimensional conformally flat space with

metric

gµν =

[
1 +

1

m0c

ελκτωSλκU τW ω

ηρσUρUσ

]
ηµν , (III.31)

coordinate dependence of which may be determined, as soon as solution of equation of motion

(III.24) for U = 0 is found.

The paper above is connected with the problem of motion of spinning particle in external

fields, including both description of spin motion and the spin influence on the particle trajectory.

Although this problem is about one hundred years, there are many obscure questions, particularly

concerning of the spin influence (see, e.g., [6]). We hope that a consideration of this problem

ab ovo, as it partially done in this paper, will made possible to clarify some of them.
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