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On the Dynamics of the Mass Point with
Internal Degrees of Freedom

A .N.Tarakanov*
Minsk State High Radiotechnical College

An equation of motion of the mass point with internal degrees of freedom in scalar
potential U depending on relative coordinates and time, velocity and accelerations
is obtained both for non-relativistic and relativistic case. In non-relativistic case
a generalization of the energy conservation law follows, if OU/0t = 0 fulfilled. A
concept of work is generalized to relativistic case, leading to corresponding integral
of motion, if OU/97 = 0 fulfilled, where 7 is proper time of the point. In neglecting
an internal degrees of freedom and absence of interaction this integral of motion

gives a standard Special Relativity result.

1. Equation of Motion and the Energy Conservation

A long period of supremacy of quantum theories did not crush an interest in classical
description of quantum systems. In this connect some conclusions, following from the basic
equation of dynamics, the Second Newton’s Law, should be noted. As it is well known from the

Helmholtz epoch ( [1]), the Second Newton’s Law for conservative systems

dP

— _F I.1

o (L.1)
gives a force acting at the mass point in the form F = —VU = —0U/0R, where U = U(R)
is potential function of coordinate of the mass point. As a result, by applying of Eq.(I.1) to
definition of elementary work,

dP
dA = (F-dR) = (E -dR) = (V -dP) , (L.2)

we obtain a conservation of total mechanical energy

= +UR), (1.3)

where R and V = dR/dt are respectively radius vector and velocity of the mass point relative
to origin of coordinate system, coupled with absolute rest reference frame (r.f.).
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It is clear from the common considerations that a motion of mass point in the field of some
object should be determined by potential function depending not only on relative coordinates
R, but also at least on relative velocity V and accelerations, as well as on time, so that U =
Ut,R,V,W, W, .. W )), where W*) = @*W /dt* a time dependence being specified by
internal dynamics of the mentioned obJect[l] :

In this case corollaries F = —VU and (1.3) from equation of motion (I.1) should be changed
forasmuch as total differential of the function U is

oU U N ou
_ Y oU TW
dU 5 dt+(aR dR) + -dV) +k§0 TWE ). (1.4)

Indeed, definition of elementary work of the force (I.2) gives more general expression for

force, namely
F = —g—fU{ +[C x V], (L5)

where C is some pseudo-vector, associated not only with external forces, but probably inherent
in mass point. Additional term [C x V] has a sense of gyroscopic force. As far back as Helmholtz
in his work ”On the conservation of force” ( [1]; Addition 3) pointed out at formula (I1.6).

Furthermore, when interaction takes place the momentum vector P has a meaning of dy-
namical momentum. It can be written as a sum of kinematical momentum mV and some
addition A (a vector potential), connected both with internal structure of mass point, and with
interaction

P=mV+A. (1.6)
Then Eqgs.(1.2) and (1.6) give

mV?2

dA—(F-dR)—(V-d(mV+A))—d< +(A-V)) — (A-dV), (L7)

or

d(m;[ +(A-V)) (gTU{ dR) — (A - dV) =

2
=d (m;[ +(A-V)+U(t,R,V,W, W, ...,W<N>)> —

[1] Remember W.Weber ( [2]- [3]), who tried to explain electrical phenomena as a result of electric interaction
of elementary particles, so called electric atoms, depending both on their relative disposition R and on their
relative velocity V and acceleration W = dV /dt.
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oU U Noou
———dt — dV) — (A -dV) S AW®)Y =0 . .8
oGy V) - 2 (Gwm W) (L8)
Now, if one suppose
oU
A=— o+ [Sx W], (1.9)

where S is some pseudo-vector, coupled with both internal structure of the mass point considered
and its interaction, W is an acceleration of this point, then dynamical momentum (1.6) will get
an expression

oUu

Equation (I.8) reduces to

dE  0U N, oU
— = WD .11
where quantity
V2
E="Y L (V. [SxW]) — (V- aU)JrU(tRVWW W) (1.12)

oV
is a generalization of Eq.(I.3) for total mechanical energy. So, apart from standard kinetic and
potential energies an additional energy arises due to both internal degrees of freedom and a
dependence of potential energy on relative velocity.

Provided the condition

N

ou ou
— — - Wkt = .13
7+ 2 G W) (113
is fulfilled, the energy (I.12) will be an integral of motion. Condition dF/dt > 0 corresponds to
absorption of energy by a mass point, and dE/dt < 0 corresponds to radiation of energy.

In view of stated above, the equation of motion (I.1) should be written down in the form
doUu oU

d

Let’s note here that derivatives of potential function with respect to accelerations W®*) do

(1.14)

not enter into an equation of motion. Therefore one can be restricted to dependence of potential
function only on acceleration W: U = U(t,R, V,W). Then the point obeying to equation of
motion (I.14) with condition (I.13) represents a Birkhoff’s dynamical system ( [4]).

We assume in general case that pseudo-vectors S and C are stipulated by both internal
structure and interaction of the mass point. Therefore they may be written as sums
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S =Sy 4 S, C=Cy+C, (L15)

where Sy and C, are connected exclusively with internal structure, whereas S* and C®* are
connected only with interaction. Sy and Cy may vary only in direction, rather than in lengths.
St and C** may depend on those variables as potential function does.

Equation (I.14) may be written in another form supposing

U=Uy— (R-[VxC])=Us—(R-[VxCg]) — (R-[V x C=]) . (1.16)
Then Eq.(I.14) reduces to

d o, oCeet
E(mv—i_[soXW}_[RXCO])__ﬁ_R—F(R[VX IR ])"‘
d (U, oCe! y .
£<a—\;—(R~[Vx 8V})—[St><VV]+[R><Ct]), (L.17)
where
acea:t B k la(cext)m
(R-[V x IR )i = erm RV TR (I.18)
acemt _ k: la(cewt)m

For free mass point (Uy = 0, S“* = 0, C*** = 0) Eq.(I.17) leads to a conservation of
momentum

P=mV +[Sy x W] —[R x Cy| = const . (1.20)

2. The equation of moments for a mass point with internal de-
grees of freedom

The equation (I.14) is insufficient for description of dynamics of physical system. There
is necessary in addition an equation of moments, which for structureless mass point looks like
dL/dt = M, where L = [R x P] = m[R x V] is angular momentum, M = [R x F] is total
moment of external forces, acting at the system. For individual mass point equation of moments
follows from the Eq.(I1.1).

For a mass point with internal degrees of freedom, describing by Eq.(I.1), in which force
and momentum are specified by equations (I.5) and (I1.10), respectively, we have the relation

%]:%[RXP]—[VX(—a—U+[SxW])]:—[Rxa—U]+[Rx[C><V]], (IL.1)

[R % oV R
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implying the following equation of moments

dL
Z—M<+T I1.2
o +T, (IL.2)
where
. ou
L:[RXP]:m[RxV]—[RxW]Jr[Rx[SxW]] (IL.3)
is a dynamical angular momentum,
. ou
M:[RXF]:—[RXE]%—[RX[CXV]] (IL.4)
is a moment of force, acting at the mass point,
. ou
T:[VXP]:—[an—V]+[Vx[SxW]] (IL.5)

is an additional twisting moment, or torque. In standard mechanics the concept "torque” is
applied to the moment of force (I1.4). Here we distinguish the moment of force (I1.4) and torque
(IL.5).

It should be noticed, that in the same way both equation dL/dt = M follows from Eq.(I.1)
for usual mass point and equation (I1.2) follows from Eq.(I.14) (i.e. Eq.(I.1), in which F and P
are specified by equations (I.5) and (1.10)) for a mass point with internal degrees of freedom.

Solution of equation (I.14) may be obtained in principle, if potential function U =
U(t,R,V,W) and time dependence of pseudo-vectors S C, coupled with internal structure
of mass point, are known. As it is known, one of internal property of particles is spin, associated
classically with proper angular momentum of particle. Therefore a temptation arises to connect
pseudo-vectors S and C with spin. However, having only definition (II.3) for angular momen-
tum it is impossible to define a concept of proper angular momentum. Therefore pseudo-vectors
S, C and their equations of motion should be either postulated here artificially or determined
starting from additional arguments. In particular, one may go by the same way as a solid body
in mechanics considered as a system of mass point. Then it is possible to define a concept of
particle with internal degrees of freedom as a system of the same mass points, whose proper
angular momentum is determined relative to center of inertia of particle. Such procedure will be
made elsewhere. Here it is reasonably to generalize equations and concepts above to relativistic
case.

3. Relativistic equation of motion

Relativistic generalization of the second Newton’s law for mass point is
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dP 1

¢
where P = {P*} = (P°,P), F = {F*} = (F°,F), n = 0,1,2, 3, are relativistic generalizations of
momentum and force, A is invariant parameter determined by the interval

(I11.1)

dS? = n,,dR*dR" = (dR")> — dR® = 0d)\?, o =+1, (I11.2)

where 7, = diag(1,—1,—1,—1). Thus, for ¢ = +1 parameter A\/c = 7 is a proper time of
”concomitant observer” K’ moving together with event defined by four-dimensional radius-
vector R = {R"} = (R°,R). For 0 = —1 parameter A = S coincides with length of arc of world
line of the event R.

Let us emphasize an important fact that standard Special Relativity with interval (III1.2)
is valid exceptionally for inertial reference frames (r.f.). Usually interval (II1.2) is considered
as a definition of distance between two points in the Minkowski space Elff3. Then coordinates
of a point in EE3, defined by radius-vector R, are quantities relative to origin, coinciding with
origin of the rest r.f. K, and have absolute character in the meaning of absolute time and
absolute space of Newton’s mechanics. Relative character in the meaning of Special Relativity
they acquire when interval (II1.2) is coupled with r.f. K’, moving relative to K with velocity
V = cdR/dR°. In this case radius-vector R is said to be an event R, whose world line is a
trajectory of the origin of K’, moving with velocity V in E1§3, i.e. in the space of the rest r.f. K.

For inertially moving K’ r.h.s. of Eq.(III.1) vanishes, and we obtain conservation of 4-
momentum, whence it follows conservation of

P? =, P'P” = (P°)? = P? = om}c? (I11.3)

if 4-momentum is defined as

P* = mocU" = mocdR* /d\ = modR" /dr . (IIL.4)

Relations (II1.3)-(II1.4) are standard relations of Special Relativity for kinematical mo-
mentum, which are extended on any asymptotically free physical systems without any reason.
Between other things one may consider an expression (I11.2) for relativistic interval as a corollary
from relations (II1.3), postulating connection between energy and momentum.

If some force be acting on moving K’, the latter is no longer inertial one. Then 4-momentum
in Eq.(II1.1) becomes dynamical momentum, whose definition ought to be analogous to Eq.(I1.6)

dRV
dA

where K* is some addition to kinematical 4-momentum (I11.4) due to interaction between moving
r.f. K’ and rest r.f. K.

P* = myc ycy (IIL.5)
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In Newton’s mechanics an interaction force (1.5) between K’ and K is determined by means
of elementary work (I.2) which may be written as dA = —n,; F*dR7. This work is a scalar under
Galilei transformations, i.e. it is the same in all non-relativistic inertial r.f., but it is not covariant
under Lorentz transformations.

Indeed, let L*, be matrix elements of the Lorentz transformation dR"" = L* dR", satisfying
to condition ny. LA, L", = 1, so that ( [5])

70_1

Ly =7 =1=By) " L =T,Vou/Vo, L'y =T, Vj/Vy, L', =06, — Tvoi%j :
0
(IIL.6)
where
Bo=Vg/c, Vo=|Vo|=1/V3, Bo=|Bo|=1/Bi=clj; (ITL.7)
L'y = Bgf)/d ) F+ = B07+ = BU(l - Bg)_l/z ) .= ’Y—/BO = (Bg o 1)_1/2 ) (1118)

Vy is velocity of K’ relative to K.
Then the Lorentz transformation takes form

Bg .
ARO = -, {d 20 M} , (IIL.9)
0
Vo - dR) BS
dR = dR. ,,—1(0——0610—0\7. I11.1
#on - L are| v, (11L.10)
Transformation law of relativistic force looks as
F'" = [* F¥ = LM F° + L' F (I11.11)
Be(F -V
FO =, [FO - M] , (I11.12)
0
>— 1(F-V ,BIFO
F = F+ {W 2/(2 o) _ 7 = }VO. (IT1.13)
0 0

Hence Eqgs.(I11.10) and (II1.13) give transformation law for elementary work

dA' = (F'-dR') = —n;; F"dR” = —n; L' I/ ,F*dR" =

V- Vo) r? W2 -1
—gasrrz 1= YV g Yo g ovar s 2L v (Vo Vedr, (L1
+ o |: CQBOBg ¢ BoBS( 0) + V% ( 0)( 0) ) ( )
whence it follows relativistic transformation of power N = cdA/dR® = (F - V)
dA’
N/:Cw: (F/V/):
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N+ LO L. FOV' + L0, L° JF' + LqiLQjFiVj +c[(L%)* — 1]F°
L%+ L%Vi/e
(V-Vo) rs a1
_ N + I [1 B c2301§8} F? = 557 (F - Vo) + %= (F - Vo) (V- Vo) (1IL15)
- [1 _ BS(‘\;'VO)}

0

Noncovariance of expression (I1.2) and force transformation law (II1.13) are inconsistent with
principle of relativity, whose successive application means that equations and quantities, such
as scalars, 4-vectors, tensors etc., ought to be covariant under Lorentz transformations in any
theory. Therefore definition (I.2) should be generalized in the form

dW = —n,, F*dR" = —F°dR" + dA = (—cF" + N)dt . (I11.16)

In standard Special Relativity, dealing with interval (I11.2), FY is defined from Eq.(ITI.1),

where P° = mocdR®/dr = moc?y = moc?(1 — V2/c?)~Y/2 V is absolute velocity of the mass

point acquiring acceleration W = dV /dt under action of the force F. Then taking into account
the relation

dy 7
i g(v W), (I11.17)
we obtain
dP d(moyV V2

(F-V)=mn*(V-W), (I11.19)

dpP° dy dy  moy? 1 N

0__ _ ar _ o7 ) — 2(F- =
F° = o = MoC = Moy (V-W) C(F V) o (I11.20)

Comparison of Eq.(I11.16) with Eq.(II1.20) shows that scalar dWW is identically zero in
all inertial r.f. However, should moving r.f. K’ be coupled with considered mass point, the
latter ceases to be inertial one. Then in such r.f. an expression (II1.2) for length of arc of
the world line of the mass point and relations (II1.18)-(I11.20) become invalid. It means that
scalar dW = = —n,, F*dR" = —n,, F""dR" does not equal to zero, conserving its covariant
expression in all inertial r.f. Relativistic force, acting at rest mass point in K’, may be expressed in
terms of potential function U = U (A, R*, U*, WH, WH, ... (WIN)H) by analogy with (I.5) in non-
relativistic mechanics, where R*, U*, W* = dU*/d\, (W) = d¥W* /d\F are relative radius-
vector, 4-velocity and 4-accelerations of K’ relative to K. Forasmuch as relation 7, U*U" = o
following from (II1.2) becomes invalid, arguments of potential function should considered as
independent variables, so that total differential of U equals

dU = —d\ + ——dR" + (W k) (I11.21)

oU oU oU Nooou
m
o R gV T ;; D
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Formulae (I.10) and (I.5) should be considered as non-relativistic limits of 4-momentum
and 4-force

oU 1
P = mocl" — " s+ S e S W (I11.22)
1
Ft = —nt aa](%]l/ + 77 eyAKpCA“Up (I11.23)

respectively, where S, and C), are some antisymmetric tensors, characterizing internal structure
of the mass point.

Substitution of Eqgs.(II1.22)-(II1.23) into equation (III.1) gives next equation of motion

d 1 1 1 d oU ou
Il o _m/y AKX P __p,uy ARTTp . — v | o 111.24
N mocU +277 € AfepS W 2677 5)\an U 077 |:d)\8UV 8R”} ( )
Substitution of Egs.(II1.22)-(II1.23) into equation (III.16) gives
dP*
anWdR” = cn UMdPY =1, F'dRY = 1, U'FYd\ (TI1.25)
or
d c d oU ou
. w_ 277V = . ARTIP | — T _ I~ . 111.2
MU 35 [0 UY + S eung WP | = UM o UM (I11.26)
Hence we obtain equation
dE U <~ OU
o _Y9Y (WD k I11.2
P +§ gy V" (111.27)
where quantity
2 2
_ e 1 LTIV QAR M8U _ mypce
E = N UHU" +2€WMU Wvs* +U —-U Ur 3 o (I11.28)
is an integral of motion provided a condition
U < U
— (W = 111.29
5t ; 8(W(k))”( ) (111.29)

is satisfied.

Neglecting internal structure of mass point and its interaction, U = 0, from (II1.28) we
obtain 7, U*U" = o and expression (I1I1.2) for interval of standard Special Relativity. In general
case quantity o does not equal to +1 or —1. Specifically, an account of internal structure of free
mass point gives
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1 erero SMUTWY
moc N, UPU?

1
NuwdRFARY + EEWMSWRMU” = {1 +
0

] NuwdR'dR" = od)\* , (I11.30)
i.e. the Minkowski space-time EE3 effectively extends to 8-dimensional phase space with interval
(IT1.30) and degenerate metric, which is equivalent to 4-dimensional conformally flat space with
metric

1 AT TT w
Exer S UV ]mu, (I11.31)

v — 1+
I [ moc  1,,UPU°

coordinate dependence of which may be determined, as soon as solution of equation of motion
(I11.24) for U = 0 is found.

The paper above is connected with the problem of motion of spinning particle in external
fields, including both description of spin motion and the spin influence on the particle trajectory.
Although this problem is about one hundred years, there are many obscure questions, particularly
concerning of the spin influence (see, e.g., [6]). We hope that a consideration of this problem
ab ovo, as it partially done in this paper, will made possible to clarify some of them.
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