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Solutions’ matching method for simulation of

power and dynamical characteristics of diode

pumped Er-Yb laser

L.I. Burov,∗ L. G. Krylova, and G. G. Krylov

Physics Department, Belarusan State University,
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Possibility of the usage of matching solutions’ method for simulation of spatially
distributed models of diode pumped Er-Yb laser has been analyzed. The stability
analysis near local equilibrium has proved the possibility of adiabatic elimination
of the population densities variables as fast variables in the system. The results
obtained have been compared to that known from other approaches.

1. Introduction

The solid-state erbium lasers radiate in region of 1.5 µm. This spectral range is eye -save

and finds wide technical and technological applications. The configurations of such lasers are

rather different, one should mention short length resonators (of about 100 µm) [1–5], fiber optical

amplifiers of different lengths (from few cm up to several meters) [6–15]; different variants of

glass lasers [2-5,7,10,12-14] and crystal active media lasers[16–19], which use the scheme of end

[2,6,10–12,14] and transverse [2] pumping scheme, also variants of laser diode pump [5,14] or

pump by Ti: sapphire laser [19].

Nowadays, the most popular system of this type is a diode pumped laser system on glass

which is co-doped with erbium and ytterbium ions [5,14].

The process of laser generation is described from the point of two models. In the case of

short resonator or dynamic characteristics description, concentrated model is used [5,13,21,22].

It is presumed that all principal lasers values (active medium population density and pump

radiation density) are constant along the active medium and they are determined as medium

averages.

In the case of long active medium (for example, fiber laser), longitudinal pump and for pump

characteristic solving are used usually quasi-one-dimension distributed laser model [3,8,11,14,23].

As we will demonstrate the concentrated model is good only for high-quality resonator and

when the energy distribution in the resonator is nearly uniform.
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In the case of high optically density of active medium on pump wavelength profiles of lasing

variables distribution are very non-uniform. It leads to impossibility of application of variables

averaged over active medium to describe laser system.

Therefore one can consider space-dependent generation models. It worth to mention that

usually the one dimension models are considered. And the evolution of variables is studied

just along -one-dimension space, co-directed with resonator axes. Most complex models, e.g.,

considering 3D distributions, are very seldom and used only in the context of temperature’s

influence effects simulation [24].

The attempts of usage of these distributed models for dynamics processes analysis encounter

with considerable difficulties that have primarily mathematical character. That, in the first place

binds with high stiffness of the mathematical model of Er-Yb laser system .

At numerically simulation (with using any methods, including special methods for stiff

systems of differential equations) the oscillations arise in the moment of realization the condition

of generation’s beginning. They account by the high stiffness pf the system. They are exclusively

artificially and do not correspond with real physic process.

So, in this report we analyze the space distributed model for quasi-steady state time de-

pendence generation regimes .

2. Theoretical model.

We use one-dimensional laser model (fig.1a), when active medium is a glass matrix of

codoped Er and Yb ions. We use the four-level schema for the descriptions of the dynamics of

populations Yb+ and Er+ ions (fig.1b) [3,4].

(a) (b)

FIG. 1. The simplified level scheme of Er-Yb system used in the laser model (a). Scheme of the pump
and generation waves propagation in an active medium (b).

In the context of this schema, the energy of resonance stimulation of Yb+ ions in the region

980 nm give to short-living state 4I11/2 of Er+ ions due to cross-relaxation process. Then it

transits to state 4I13/2 (the level 4 on fig. 1b), that is a main laser level.
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We neglect inverse cross-relaxation processes and up-conversion processes in consequence

of fast relaxations of the state 4I11/2. These processes influence on heating of an active medium

[24], but not on generations efficiency.

So, the dynamics equations for population levels densities ni normalized to concentrations

of respective ions, can be presented in the form:

∂n2(x, t)

dt
= α1Ip(x, t) (1− n2(x, t))−Ip(x, t)α3n2(x, t)−β1n2(x, t)−γ1n2(x, t) (1− n4(x, t)) (1)

∂n4(x, t)

dt
= (−α2n4(x, t)+α4(1−n4(x, t))) (f+(x, t) + f−(x, t))−β2n4(x, t)+γ2n2(x, t) (1− n4(x, t))

(2)

n1 = 1− n2, n3 = 1− n4, (3)

where the time is normalizes on resonator round-trip time;

the dimensionless intensities of generation’s waves f±( going in positive (+) and in negative

(-) direction along X axis) and the pump Ip are normalized on pump intensity on input of

resonator; αi, βi and γi are dimensionless probabilities of stimulated, spontaneous emissions and

cross-relaxation transitions respectively:

α1 =
σ12Inakξ · Lreznref

h ν1c
α3 =

σ21Inakξ · Lreznref

h ν1c
;

α2 =
σ43Inakξ · Lreznref

h ν2c
; α4 =

σ34Inakξ · Lreznref

h ν2c
;

β1 =
A21Lreznref

c
; ; β2 =

A43Lreznref

c

γ1 =
C24 NEr Lrez nref

c
; γ2 =

C24 NY b Lrez nref

c
;

lp = NY b · σ12; ξ =
1− e−Lrez ·lp

Lrez · lp .

We suppose, that the reflected pump wave is absent. Then the equation for the evolution

of dimensionless intensities can be presented as:

∂f±(x, t)

∂t
± ∂f±(x, t)

∂x
= (kg1n4(x, t)− kg2(1− n4(x, t))) ·f±(x, t)−kl ·f±(x, t)+R·

lumn4(x, t) (4)

∂Ip(x, t)

∂t
− ∂Ip(x, t)

∂x
= −α1Ip(x, t) (1− n2(x, t)) + Ipα3n2(x, t), (5)

Proceedings of the F&ANS-2010 Conference-School, 2010



Solutions’ matching method for simulation of . . . 117

where the values of space coordinate x is normalized on resonator length Lrez; α1, α3 are the

dimensionless probabilities of stimulations transitions between itterbium ions; kg1, kg2 are the

dimensionless gain coefficients for transitions 2 → 3 and 3 → 2; kl is the dimensionless coefficient

of internal losses; Rlum is the dimensionless luminescence factor. So

kg1 = σ43NErLrez; kg2 = σ34NErLrez;

kl = −ln (1− ρ) ; Rlum =
δ A43 NEr hPlank ν2 Lrez

Inak · ξ
The equations system (1) - (3) should be accomplished with boundary conditions:

f+(0, t) = r1 · f−(0, t); f−(1, t) = r2 · f+(1, t) (6)

The parameters entered into the equations (1) - (3), for Er-Yb system have been chosen as

in [3,4] and are shown in the table 1.

L,

m
r2 r1

C24,

m−3/c

A21,
−1

A43,

c−1
nref

λpump,

nm

λout,

nm

NY b,

m−3

0.02 0.7 0.999 5 · 1021 660 90.9 1.5 980 1550 6.25 · 1026

NEr,

m−3

σ43,

m2

σ34,

m2

σ12,

m2

σ21,

m2
δ ρ d, m

5 · 1025 5.7 · 10−25 6.6 · 10−25 2.0 · 10−25 5.0 · 10−25 3 · 10−2 0.05 2.16 · 10−6

Table 1. Laser system’s parameters

The correctness of the formulated model has been tested on the basis of data of papers [3-5].

So, we obtain the good results coincidence for time, power, and threshold dependencies.

3. The analysis of systems stability.

First, we perform the stability analysis of the concentrated system for populations n2, n4

and for total generations intensity U = f++f−. The dependencies of the roots λ of characteristic

equation for linearized system in the vicinity of steady state versus dimensionless pump are

presented on fig. 2 The vertical line corresponds to generations threshold. Red line - an imaginary

part of λ, dark blue - the real one.

As one can see, λ1 is real and negative after the threshold, then the respective direction

(eigenvector v1 ) is stabile. Two remainder eigenvalues λ2 and λ3 are imaginary and complex
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FIG. 2. The eigenvalues of linearized system versus dimensionless pump I0

conjugated in the region, interesting for us. They describe periodic solutions in linearized system.

Thus, in the region after the threshold the generation start as oscillations regime.

Then we determine eigenvalues and eigenvectors for our system near the threshold for the

dimensionless pump power I0 = 40. In this case the eigenvalues are:

( - 8.09788 10 - 6, - 2.25171 10 - 8 - 0.0000343939 i, - 2.25171 10 - 8 + 0.0000343939 i).

The eigenvectors is (4.48306·10−7, −3.26166·10−7, 1.0) for the first eigenvalue and it directed

at axis U. It means that U variable can be considered as a slow one (and stable). The variables n2

and n4 are fast in this system because of the real part of two residuary eigenvalues are practically

zero. As has shown more a detailed analysis, the same situation occurs and for points in a phase

space of the system relevant to transient regimes (but is higher than a threshold). It enables

one to eliminate adiabatically variables of population densities from the set of equations with

preservation of the phenomenon description accuracy for conditions, close to stationary. One

should also remark, that singular points of the system are preserved as original ones at such a

procedure.
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4. The numerically schema and adiabatic elimination

. Direct numerically solution of the system (1)-(3) with the standard mathematical packages

turned out to be impossible because of high stiffness of the system. So, it was necessary find

special methods , which overcome this feature. The peculiarity of the system (1-3) is a relation

between typical times scale for system. So, the length of the resonator is L = 0.02 m and the

round trip time is τ ∼ 0.1 ns. At the same time, the life times for excited states Yb and Er

(2 and 4) are ∼ 0.1 s. Therefore the formation of spatial profiles of population densities and

lasing densities becomes on times considerably smaller that the life times of the states. It leads

in necessity of use of the algorithms maintaining prescribed accuracy, at numerical simulation

of a system on very long time intervals.

This following numerical schema provides such accuracy: the equations of generation are

solved with the usage of explicit two-layer schema for hyperbolic equations [.., ..]; the integration

of the populations equations are performed with the modified Euler’s method up to the moment

of generation start given by the formula : kGain1n4(x, t)− kGain2(1− n4(x, t)) = kLoss.

At the moment of generation start the intensity of generation starts to grow up sharply then

trends to decrease and so on - that is there is a transient regime corresponding to relaxation

oscillation. In this moment the solving algorithm should be modified. Any standard scheme

in this situation leads to artificial oscillation shown in fig.2a. Nevertheless,it worth to mention

that transient oscillation in fact could be really observable in some laser system for strong excess

of pumping above a threshold. It is also interesting that the problem of sharp change of a

variables (and oscillations) exists only for generation intensity, dynamic behavior of population

levels densities remains to be regular.

(a) (b)

FIG. 3. Simulations of transient characteristics of a laser: (a) - without adiabatic elimination, (b) -
with adiabatic elimination.

Proceedings of the F&ANS-2010 Conference-School, 2010



120 L.I. Burov et al.

For a solution of this problem the method of adiabatic elimination of fast variables is pro-

posed. The equations for densities of population of states n2, n4 are written in a quasistationary

approximation. Then the obtained system is solved to find n2, n4 at a given value of the total

intensity of generation U = f+ + f−. Two various solutions are gained, only one of which has

physical sense (in view of a normalization: ni ∈ [0, 1]). Thus, for n4 the relation is gained:

n4(U) =
1

2(2Uα2 + β2)γ1

{2Uα1α2 + 2Uα2β1 + α1β2 + β1β2 + 3Uα2γ1 + β2γ1 + α1γ2 −
√

(β2 (β1 + γ1) + Uα2 (2α1 + 2β1 + γ1) + α1 (β2 − γ2))
2 + 4α1 (α1 + β1) (2Uα2 + β2) γ2} (7)

Then the scheme of a numerical solution can be reorganized as follows: up to the moment

of making of inverted population of the laser level the numerical scheme remains the previous.

At the moment of realization of a requirement of the beginning of generation - intensities are

still computed with use of the explicit two-layer plan, and the value n4 which is included in it is

calculated with the use of the equation (5). The dynamic characteristics of the scheme proposed

gives the results compared with previous one shown in fig.2b.

The basic drawback of a method of isentropic elimination is inexact modeling of the transient

regime. Nevertheless, this method allows to estimate simultaneously power as well as dynamic

characteristics of a laser system.

We summarize the obtained results. The Yb:Er laser system within the considered dis-

tributed model is extremely stiff, that makes impossible its solution with use standard math-

ematical packages. Necessity of calculation dynamic characteristics of a system on long times

superimposes an additional requirement of the precision of used numerical algorithm. It has

been shown, that the satisfactory solution is possible with the use of the method of adiabatic

elimination of fast variables which for our system appeared populations of states. As a results

it is possible to obtain satisfactory solutions for a quasistationary condition of the distributed

laser system. A principal shortage of a method is flattening at exposition of transient.
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