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Various possibilities to define analogs of the uniform magnetic field in the

Lobachevsky space are considered, using different coordinate systems in this space.

Quantum mechanical problem of motion in the defined fields is also discussed.

1. Introduction

Since Schrödinger [1] first solved quantum mechanical Kepler - Coulomb problem on a three-

dimensional sphere, a great number of authors have studied different aspects of this problem in

spaces of constant, positive and negative, curvature (see a concise historical review in [2]). Solu-

tions of this problem have been used to describe bound states in nuclear physics and nanophysics

[3, 4].

Much less is known about motion of particles in other configurations of electromagnetic

fields in such spaces. We mention here paper [5], where static solutions of Maxwell equations

on a three-sphere were found and applied to the study of Stark and Zeeman effects. Static

fields introduced in [5] do not allow to solve exactly the problem of motion of particles in these

fields. Recently, a simple generalization of the uniform magnetic field to the three-dimensional

Lobachevsky space has been proposed, and corresponding quantum mechanical and classical

problems have been solved [6, 7]. The generalization is based on a certain choice of solutions of

Maxwell equations which give the uniform magnetic field in the limit of zero curvature.

In this paper, we consider some alternative possibilities to define analogs of the uniform

magnetic field in the Lobachevsky space, using different coordinate systems in this space. The

quantum mechanical problem of motion in the defined fields is also discussed, and for some cases

exact solutions of Schrödinger equation are obtained.
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2. Analogs of the uniform magnetic field in the Lobachevsky

space

The first generalization of the uniform magnetic field to the Lobachevsky space was done

in the paper [6]. The magnetic field in this paper was found as a solution of Maxwell equations

in the Robertson – Walker metrics with Lobachevsky space as spatial part

dS2 = c2dt2 − dl2, dl2 = ρ2[cosh2 z1(dr2
1 + sinh2 r1dφ2

1) + dz2
1 ]. (1)

The coordinates z1, r1, φ1 of the Lobachevsky space are defined by relations

u0 = ρ cosh z1 cosh r1, u1 = ρ cosh z1 sinh r1 cos φ1,

u2 = ρ cosh z1 sinh r1 sin φ1, u3 = ρ sinh z1, (2)

−∞ < z1 < ∞, 0 < r2 < ∞, ≤ φ < 2π, u2
0 − u2

1 − u2
2 − u2

3 = ρ2,

where ua, a = 0, 1, 2, 3 are coordinates in the ambient four-dimensional pseudo-Euclidean space.

In the limit when ρ →∞, ρr1 → r, ρz1 → z, the spatial part of the line element (1) reduces

to that of Euclidean space in which r, z are cylindrical coordinates:

dS2 = c2dt2 − (dr2 + r2dφ2 + dz2). (3)

The vector potential of the uniform magnetic field in the flat space with metrics (3) can be

written in the form

At = Ar = Az = 0, Aφ = −Br2

2
. (4)

The generalization of this potential to the Lobachevsky space reads [6]

Ar1 = Az1 = 0, Aφ1 = −Bρ2(cosh r1 − 1). (5)

The corresponding magnetic field is

Fφ1r1 = Bρ2 sinh r1. (6)

Besides the coordinates r1, z1, φ1 (2), usually named hyperbolic, there are some other coor-

dinate systems in Lobachevsky space, which have the cylindrical coordinate system of Euclidean

space as their limit. We consider here two such systems. First one is the cylindrical coordinate

system:

u0 = ρ cosh z2 cosh r2, u1 = ρ sinh r2 cos φ2,

u2 = ρ sinh r2 sin φ2, u3 = ρ cosh r2 sinh z2, (7)

−∞ < z2 < ∞, 0 < r2 < ∞, ≤ φ < 2π.
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The line element in Lobachevsky space is here

dl2 = ρ2(dr2
2 + sinh2 r2dφ2

2 + cosh2 r2dz2
2),

and in the limit ρ →∞, ρr2 → r, ρz2 → z, we get the metrics of Euclidean space in cylindrical

coordinates.

Expressions for nonzero components of potential and electromagnetic field are

Aφ2 = −Bρ2 ln cosh r2, Fφ2r2 = Bρ2 tanh r2. (8)

We also consider the horospheric coordinate system in Lobachevsky space defined by rela-

tions

u0 =
ρ

2
[ez3 + (r2

3 + 1)e−z3 ], u1 = ρr3e
−z3 cos φ3,

u2 = ρr3e
−z3 sin φ3, u3 =

ρ

2
[ez3 + (r2

3 − 1)e−z3 ], (9)

−∞ < z3 < ∞, 0 < r3 < ∞, 0 ≤ φ < 2π.

Metrics of Lobachevsky space in coordinates r3, z3, φ3 takes the form

dl2 = ρ2[e−2z3(dr2
3 + r2

3dφ2
3) + dz2

3 ],

and in the limit ρ →∞, ρr3 → r, ρz3 → z, it also goes over into the metrics of Euclidean space

in cylindrical coordinates.

Nonzero components of potential and electromagnetic field are found to be

Aφ = −ρ2Br2

2
, Fφr = ρ2Br. (10)

Electromagnetic fields and potentials (8) and(10) were found by close analogy with approach

of paper [6], but Maxwell equations were solved in different coordinate systems. As a result, we

obtained different magnetic fields in the Lobachevsky space which reduce to the same uniform

magnetic field in Euclidean space when ρ →∞.

Besides the coordinates in the Lobachevsky space which reduce in the limit ρ →∞ to the

cylindrical coordinates of Euclidean space, we also consider a coordinate system which goes over

in the same limit into the Cartesian one. It is defined as follows:

u0 =
1

2
(ez + (1 + x2

3 + y2
3)e

−z3), u1 = x3e
−z3 ,

u2 = ye−z3 , u3 =
1

2
(ez3 − (1− x2

3 − y2
3)e

−z3), (11)

−∞ < z3 < ∞, 0 < r3 < ∞, 0 ≤ φ < 2π,

and the line element is

dl2 = ρ2[e−2z3(dx2
3 + dy2

3) + dz2
3 ].
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Coordinates x3, y3 are related to the horospheric coordinates r3, φ3 as

x3 = r3 cos φ3, y3 = r3 sin φ3.

Transforming potential (10) to the coordinates x3, y3, z3 we find

Ax3 = −Bρ2y3

2
, Ay3 =

Bρ2x3

2
, Az3 = 0, Fx3y3 = −Bρ2. (12)

3. The quantum mechanical problem for a particle in a magnetic

field in the Lobachevsky space

Here we consider the quantum mechanical problem for a particle in a magnetic field.

The Schrödinger equation in the Robertson – Walker metric

dS2 = (dx0)2 + gkldxkdxl, g = det gkl.

in the presence of magnetic field is (we use units such that ~ = M = 1)

i∂tΨ = HΨ, H =
1

2

[(
i√−g

∂k

√−g +
e

c
Ak

)
(−gkl)

(
i∂l +

e

c
Al

)]
Ψ. (13)

In the hyperbolic coordinate system (2) Hamiltonian (13) with potential (5) is

H = − 1

2ρ2 cosh2 z1

[
1

sinh r1

∂

∂r1

sinh r1
∂

∂r1

− 1

sinh2 r1

(
i

∂

∂φ1

+
2eBρ2

c
sinh

r2
1

2

)2

− ∂

∂z1

cosh2 z1
∂

∂z1

]
. (14)

Solutions of the Schrödinger equation (14) were found in ([6]). Here we note that with

Hamiltonian (14) commute operators

J1 = sin φ1
∂

∂r1

+ coth r1 cos φ1
∂

∂φ1

− iBρ2 sinh r1 cos φ1

cosh r1 + 1
,

J2 = cos φ1
∂

∂r1

− coth r1 sin φ1
∂

∂φ1

+
iBρ2 sinh r1 sin φ1

cosh r1 + 1
, J3 =

∂

∂φ1

− iBρ2, (15)

with commutation relations of generators of group O(2,1)

[J1, J2] = −J3, [J2, J3] = J1, [J3, J1] = J2. (16)

In the cylindrical coordinate system (7) Hamiltonian (13) with potential (8) is

− 1

2ρ2

[
1

sinh r2 cosh r2

∂

∂r2

sinh r2 cosh r2
∂

∂r2

− 1

sinh2 r2

(
i

∂

∂φ2

− 2eBρ2

c
ln cosh r2

)2

+
1

cosh2 r2

∂2

∂z2
2

]
. (17)
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After substitution

Ψ = e−iEteimφ2eikz2R2(r2)

we obtain equation

− 1

sinh r2 cosh r2

d

dr2

sinh r2 cosh r2
dR2

dr2

+
1

sinh2 r2

(
m +

eB

c
ρ2 ln cosh r2

)2

R2 −
(

k2

cosh2 r2

+ 2Eρ2

)
R2 = 0.

This equation could not be solved in terms of known functions.

In the horospherical coordinate system (9) Hamiltonian (13) with potential (10) is

H =
e2z3

ρ2

[
− 1

r3

∂

∂r3

r3
∂

∂r3

+
1

r2
3

(
i

∂

∂φ3

− eBρ2r2
3

2c

)2

− ∂

∂z3

e−2z3
∂

∂z3

]
. (18)

With Hamiltonian (18) commute operators

P1 = cos φ3
∂

∂r3

− 1

r3

sin φ3
∂

∂φ3

+
iBρ2r3 sin φ3

2
,

P2 = sin φ3
∂

∂r3

+
1

r3

cos φ3
∂

∂φ3

− iBρ2r3 cos φ3

2
, L3 =

∂

∂φ3

.

The substitution

Ψ = e−iEteimφ3Z3(z3)R3(r3)

leads to separation of variables, and we obtain differential equations

d

dz3

e−2z3
dZ3

dz3

+ 2Eρ2e−2z3Z3 = λZ3, (19)

− 1

r3

d

dr3

r3
dR3

dr3

+
1

r2
3

(
m− eBρ2r2

3

2c

)2

R3 = λR3. (20)

By substitution x = i
√

λez the equation (19) is reduced to the Bessel equation

d2Z3(x)

dx2
− 1

x

dZ3(x)

dx
+

(
1 +

2Eρ2

x2

)
Z3(x) = 0

with solutions

Z3(x) = C1xJ√
1−2Eρ2(x) + C2xY√

1−2Eρ2(x).

In the equation (20) we denote eBρ2/c = B1 and introduce a new variable y = B1r
2
3/2.

Then equation takes the form

y
d2R3(y)

dy2
+

dR3(y)

dy
− 1

4

(
y +

m2

y
− 2(B1m + λ)

B1

)
R3(y) = 0. (21)
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We set in (21) R3(y) = y|m/2|e−y/2F (y) and obtain a confluent hypergeometric equation [8]

y
d2F

dy2
+ (|m|+ 1− y)

dF

dy
−

( |m| −m

2
− λ

2B1

)
F (y) = 0,

which has solutions Φ(α, γ; y) with

α =
|m| −m

2
− λ

2B1

, γ = |m|+ 1.

Requirement of finiteness of solutions of radial equation (20) leads to the quantization rule for

separation constant λ

λ = B1(|m| −m + 2n + 1), n = 0, 1, 2, ... .

In order to find solutions of Schrödinger equation in the coordinates (11) we take the vector

potential in the form

Ay3 = Bρ2x3, Ax3 = Az3 = 0, (22)

which can be obtained from (12) by a gauge transformation. Then the Hamiltonian takes the

form

H =
e2z3

ρ2

[
− ∂2

∂x2
+

(
i

∂

∂y
+

eBρ2

c

)2

− ∂

∂z3

e−2z3
∂

∂z3

]
.

Separation of variables is carried out by using the substitution Ψ = e−iEteipy3X(x3)Z(z3), and

separated equations are

d

dz3

e−2z3
dZ3

dz3

+ 2Eρ2e−2z3Z3 = λ′Z3, (23)

−d2X

dx2
+

(
p− eBρ2x

c

)2

X = λ′X. (24)

Equation (23) is identical to (19). In the equation (24) we introduce a new variable u =√
B1(x− p/B1). Then we obtain the harmonic oscillator equation

d2X(u)

du2
− u2X(u) +

λ′

B1

= 0. (25)

As is well known, from finiteness of solutions of equation (25) follows the quantization rule

λ′ = B1(2n + 1), n = 0, 1, 2, ... .

Conclusion

By solving Maxwell equations in different coordinate systems in the Lobachevsky space

one may obtain alternative generalizations of the notion of the uniform magnetic field. All the

fields found in this way have the same flat space limit. In some cases, problem of the motion of

charged particles in these fields can be solved exactly. The found solutions may be of interest

for modelling physical interactions in various fields.
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