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Abstract

The various mechanisms of X-ray radiation from relativistically charged particles in a crystal are analyzed from a

common point of view, based on quantum electrodynamics in a medium. Parametric X-rays (PXR), diffraction radia-

tion (DR) and coherent bremsstrahlung (CB) lead to different contributions to the amplitude of the radiation process

but because of their interference they cannot be considered separately in the radiation intensity. The role of the dynam-

ical diffraction effects and the coherent bremsstrahlung is considered to be dependent on the crystal parameters and

particle energy. The conception of the high resolution parametric X-rays (HRPXR) is introduced and the universal

radiation distribution, which can simplify the analysis of the results for this case is also considered. The possible appli-

cations of HRPXR are discussed.
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1. Introduction

In the last decade a series of problems con-
nected with X-ray production from relativistically
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charged particles (more specifically, electrons) in

a crystal were discussed by many authors. These

problems can be divided into the following groups:
(1) the role of the dynamical diffraction effects in

these processes; (2) the contributions of the vari-

ous radiation mechanisms to the total intensity

and (3) which applications of the X-ray radiation

from the relativistic electrons in a crystal could

be most essential?
ed.
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Meanwhile, it seems important to recall that

analogous questions have already been considered

quite long ago in a series of publications of Bary-

shevsky, Feranchuk and co-authors. In particular,

the general theory of X-ray radiation from relativ-
istic electrons in a crystal taking into account the

various mechanisms of the photon production

and their dynamical diffraction have been formu-

lated in [1]. The influence of dynamical effects on

the formation of the fine structure of the PXR

peaks was considered for the forward direction

[2,3], for a highly asymmetrical case [4], for degen-

erate diffraction in the case of backward Bragg
geometry [5]. The possible advantages and short-

ages of the PXR as the source of X-rays in com-

parison with other radiation mechanisms in the

same wavelength range were discussed in [6]. It

has also been shown that PXR could be mainly

important for spectral sensitive applications, that

is, for the cases where only high spectral intensity

in the narrow wavelength range is important.
Some non-trivial physical problems of such type

are considered in [7–9] and a series of them have

been described in detail in [10,11].

It is essential to note that the above mentioned

results concerning PXR features were theoretical

predictions made before the experimental confir-

mation. Some of them initiated the first observa-

tions of the PXR peaks [12] and their angular
distribution [13]. A simplified model for the

description of the PXR characteristics was sug-

gested in [14]. At present there are a lot of experi-

mental works in this field (see [15–17] for recent

ones and references therein) and most of their re-

sults are in qualitative agreement with the predic-

tions of [14] with a rather small deviation in their

quantitative details. Essential contribution to the
detailed analysis of this phenomenon was made

in many theoretical works (for example, [18–24]

and references therein).

The series of qualitatively different experimental

works which has appeared recently (for example,

[25]) can openup an essentially new side in the

PXR investigations and applications. The two-

crystal schemes of the detector was used for very
high energy resolution of the emitted photon

spectrum. In some sense this is analogous to the

essential extension of the applications of the
conventional diffractometry due to high resolution

X-ray diffraction (HRXRD) which is now very

important part of modern semiconductor and

nanostructure technology [26]. Therefore it be-

comes necessary to discuss in more detail the gen-
eral approach for description of dynamical effects

in the formation of X-ray spectra from charged

particles in crystals. The fine structure of such

spectra can be considered as a high resolution

parametric X-radiation (HRPXR) and it should

be represented in some universal form as was done

for the kinematical PXR [14]. It will help us to

analyze the experimental data and consider possi-
ble applications of HRPXR.

The present report is organized as follows. In

Section 2 we will shortly discuss the special dia-

grammatic technique for calculating amplitudes

of any radiation process in a crystal when interac-

tion of the photons and charged particles with the

medium is considered without the perturbation

theory. The electron wave function and the radia-
tion wave field in a crystal are calculated in Section

3. The relation between the amplitudes of various

radiation processes is considered in Section 4.

The special scale, dimensionless parameters and

universal curves for the analysis of HRPXR are

introduced in Section 5 and possible applications

of HRPXR are discussed.
2. Quantum electrodynamics in crystals

We will calculate the cross-sections of various

electromagnetic processes in a crystal on the basis

of the special representation of quantum electro-

dynamics (QED) [1]. The system of units with

the Plank constant �h and the light velocity c

�h ¼ c ¼ 1;

and the fine structure constant e2 ’ 1/137. Let us

also select the ranges of the electron energy E

and the photon frequency x which are most essen-

tial for the problem considered

E P 50 MeV; x � 2–20 keV:

According to [6], the electron energy in

this range is optimal for X-ray production in a

crystal.
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It is clear that recoil effects are not important in

radiation processes with such ratios of photon and

electron energies and classical formulas are also

applicable. But it will be shown below that the

QED approach is more preferable because: (a)
actually the quantum calculations are not more

complicated than classical ones but remain correct

for any energies, (b) it permits one to make classi-

fication of various radiation processes clearer and

(c) it does not necessiate solving the inhomoge-

neous Maxwell equations in order to calculate

the radiation intensity as taking place in classical

electrodynamics.
The quantum description of the electromagnetic

processes in a crystal is based on the following rep-

resentation of the Hamiltonian of the system:bH ¼ bH e;c þ bH c;c þ bH e;c; ð1Þ
which differs from the vacuum QED [27], because

the Hamiltonians for the electron and photon sub-

systems include both the operators bH e, bH c of the

free fields and the coherent potentials of their

interaction with a crystal. Therefore, the second

quantization of these fields is based not on the vac-

uum plane waves but on the one-particle eigen-

functions of the operators bH e;c, bH c;c.
Particularly, the wave functions W�

E ð~rÞ for the

electron states with the energy E and other quan-

tum numbers m are defined as the solutions of the

Dirac equation

ð~a~̂pÞ þ bmþ Uð~rÞ � E
h i

W�
mEð~rÞ ¼ 0: ð2Þ

Here ai, b are Dirac�s matrices; ~̂p ¼ �i~» is the

momentum operator; index (±) corresponds to
the wave functions including asymptotically out-

going (ingoing) spherical waves which are used

for the electrons in the initial (final) states [1,27].

Potential Uð~rÞ describes the coherent interaction

of the electron with the periodical field of a crystal

and can be expressed through the amplitudes of its

elastic scattering at the atom of the crystal unit cell

[28]:

Uð~rÞ ¼
X
~h

U~he
i~h~rHðzÞHðL� zÞ;

U~h ¼ � 4pe2

h2X

X
j

½Zj � F jð~hÞ
ei
~h~Rje�W jð~hÞ; ð3Þ
where ~h is the reciprocal lattice vector; ~Rj is the

coordinate of the atom with index j in the cell;

Zj, F jð~hÞ are its nucleus charge and atomic

scattering factor correspondingly; e�W jð~hÞ is the

Debye–Waller factor and X is the volume of the
unit cell.

It is important to note that the known forms of

QED in a medium (for example, Farry representa-

tion [27]) were usually considered without taking

into account the finite size of the medium. In our

approach the full set of the states for QED in the

crystal should be constructed for the finite thick-

ness L of the crystal which we took into account
by means of the Heaviside functions H(z) and

H(L � z) in formula (3) and the corresponding

boundary conditions for the wave functions.

In turn, the stationary states of the electromag-

netic field with frequency x and quantum numbers

l in the crystal are defined by the vector potentials
~A

�
lxð~rÞ which are the solutions of the Maxwell

equations with the periodical permittivity of the
crystal [1]:

�ijð~r;xÞ ¼ dij þ vijð~r;xÞHðzÞHðL� zÞ: ð4Þ

The susceptibility vijð~r;xÞ is well known for

X-ray wavelengths [26]:

vijð~r;xÞ ¼ dij

X
~h

v~he
i~h~r;

v~h ¼ � 4pe2

mx2X

X
j

½F jð~hÞ þ f 0ðxÞ þ if 00ðxÞ


� ei
~h~Rje�W jð~hÞ; ð5Þ

with the f 0 and f00 as the anomalous dispersion cor-

rections. The entire data base for the calculation of

v~h was described recently in the paper [29].

The Hamiltonian bH e;c for the interaction be-
tween the electron and electromagnetic fields in a

crystal has the same form as in the vacuum QED

[27]

bH e;c ¼ e

Z
d~r bW

ð~rÞð~a~̂Að~rÞÞ bWð~rÞ; ð6Þ

but with the field operators which are represented

as a series in the annihilation and creation opera-
tors corresponding to the states W�

mEð~rÞ, ~A
�
lxð~rÞ in-

stead of the plane waves [11]:
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bWð~rÞ ¼
X

m

½bmW
�
mEð~rÞ þ bþm Wþ

mE
;

~̂Að~rÞ ¼
X

l

½al
~A

�
lxð~rÞ þ aþl~A

þ
lx
:

ð7Þ

Analogously to the vacuum QED, the ampli-

tude of any electromagnetic process in the crystal,

homogenous media or in some external field can

be calculated by means of the perturbation theory
on the operator bH e;c. It leads to the same form of

the diagrammatic representation for these ampli-

tudes but with some change of the physical sense

of the lines on the diagrams: instead of thin lines

corresponding to the plane waves in the vacuum

QED, one should use thick lines which define the

wave functions of the particle or the photon taking

into account in some non-perturbative way their
interaction with the media. Each diagram uses

the same vertex as for the vacuum QED. If one

does not consider the many-photon processes,

the Feynman diagrams of the first order are most

essential and are actually enough to calculate the

cross-section of any known electromagnetic pro-

cess. Some examples of the diagrams are shown

in Fig. 1. In particular, diagram (a) corresponds
to the vacuum QED and this process, evidently,

is forbidden because of the conservation laws of

momentum and energy [27]. But for all other dia-

grams the conservation law for momentum does

not fulfilled because of the external potential and

they describe the amplitudes of the real physical

processes: Fig. 1(b) defines the Cherenkov radia-

tion in the homogeneous media with the constant
refraction index n; Fig. 1(c) corresponds to the
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Fig. 1. Feynman diagrams for quantum electrodynamics in

media.
synchrotron radiation from the electron in the

magnetic field ~H ; Fig. 1(d) can be used for calcula-

tion of the PXR amplitude; Fig. 1(e) describes the

amplitude as the coherent bremsstrahlung as the

radiation from the channeled particles and Fig.
1(f) corresponds to the most general case of the

radiation in a crystal.

The rules for identification of the diagram with

the analytical expression for the amplitude of the

concrete process are the same as in vacuum QED

except momentum conservation. As for example,

the analytical expression for the amplitude corre-

sponding to Fig. 1(f) is as follows [1]:

Mfi ¼ dðE � E1 � xÞT fi;

T fi ¼
Z

d~r ðW�
m1E1

Þð~a~A�
lxÞ

ðWþ
mEÞ: ð8Þ

The considered sketch for the QED in media is

sufficient to make clear the technique of the calcu-

lations for the sections.
3. Analytical expressions for the wave function

and vector potential

Certainly, Eq. (8) is not the full solution of the

problem considered because one should find the

appropriate expression for the electron and pho-

ton eigenstates. In the general case one should

use some approximation for the solution of the

corresponding equations but it is important that

these equations are homogeneous in the consid-
ered quantum approach [10,11] as distinct from

the classical calculation [30].

Let us find firstly the electron wave function as

the solution of Eq. (2). The following condition is

fulfilled for real crystals:

kUð~rÞk � 1 eV; kUð~rÞk � E: ð9Þ

Eq. (2) can be ‘‘squared’’ in order to exclude the

most of the spinor operators [27] and with an accu-

racy of (U/E)2 it leads to

�D þ m2 � E2 þ 2EUð~rÞ � ið~a~»ÞUð~rÞ
h i

WEð~rÞ ¼ 0:

ð10Þ
In the first stage we should find the stationary

states in the infinite crystal and can use for this
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calculation the perturbation theory (PT) because

of the condition (9)

WEð~rÞ � W0 þ
X
~h6¼0

W~h � ei~p~r 1þ
X
~h6¼0

bB~he
i~h~r

24 35vE;

bB~h ¼ � 2E þ ð~a~hÞ
2ð~p~hÞ þ h2

U~h;

pz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � m2 � p2?

q
; ð11Þ

with vE as the bispinor corresponding to the free

electron [27].

It is well known for this problem that PT is
unapplicable for the special geometry when the

particle momentum is perpendicular to some sets

of the reciprocal lattice vector ð~p~hÞ � 0. This case

corresponds to the electron channeling and the

non-perturbative method should be used for the

solution of Eq. (2) taking into account the zone

spectrum for the transversal movement [10,31].

But the special case of the channeling is not essen-
tial for our consideration and we will further sup-

pose that ð~p~hÞ 6¼ 0 and approximation (11) can be

simplified because of the condition

2ð~p~hÞ � h2: ð12Þ

The next step is to use the continuity conditions

for the wave function on the crystal boundaries

z = 0, z = L. Calculation leads to the following

results:

Wð�Þ
E � ei~p~r 1þ uð�Þ

E ð~rÞ
h i

vE;

uðþÞ
E ¼

X
~h6¼0

bB~he
i~h~rfChðzÞHðzÞHðL� zÞ

þ ChðLÞHðz� LÞg;
ChðzÞ ¼ 1� exp½ið~ph � pz � hzÞz
;

~ph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � m2 � ð~p? �~h?Þ2

q
;

uð�Þ
E ¼

X
~h6¼0

bB�~he
�i~h~r C�hðz� LÞHðzÞHðL� zÞf

þC�hð�LÞHð�zÞg: ð13Þ

It should be noted that the non-perturbed plane

wave includes the functions Wð�Þ
E from the left and

right sides of the crystal correspondingly.
An analogous problem for the vector potential
~A

�
lxð~rÞ should be solved taking into account the dif-

fraction of the emitted photon and the standard

boundary conditions for the field on the interfaces

of the crystal. In the case of the function ~A
þ
lxð~rÞ it

is equivalent to the conventional X-ray diffraction

problem [26]. The function ~A
�
lxð~rÞ with another

asymptotic can be calculated bymeans of relation [1]

~A
�
~kxð~rÞ ¼ ~A

þ
�~kxð~rÞ

h i
ð14Þ

which is the analog of the well known ‘‘reciprocity

theorem’’. So, we can refer to the results of the

dynamical diffraction theory [26] without discus-

sion of the details. As for example and in order

to introduce the necessary notations, here we write

the expression only for ~A
þ
lxð~rÞ calculated in the

two-beam approximation and for the Bragg

boundary conditions [26], corresponding to the

experiment [25]. The vector potentials for other

cases were described in [1,10] and for many-beam

diffraction in [22]. Fig. 2 shows the distribution

of the primary ~A~k and diffraction ~A~k wave

fields and their normalized analytical representa-

tions are

~A
ðþÞs
~kx ð~rÞ � ~A~k þ~A~h

¼
ffiffiffiffiffiffi
2p
x

r
ei
~k~r
n
ð~es þ~eshei

~h~rDshðLÞÞHð�zÞ

þð~esDs0ðL� zÞ
þ~eshei

~h~rDshðL� zÞÞHðzÞHðL� zÞ

þ~esDs0ðLÞHðz� LÞz
o
;

Ds0ðzÞ ¼ �
X2
l¼1

c0ls exp ix�ls
L
c0

� �
;

DshðzÞ ¼ b
X2
l¼1

chls exp ix�ls
L
c0

� �
: ð15Þ

Here we use the standard notations from the

dynamical diffraction theory [26]: ~es, ~esh; s = 1,2

are the polarization vectors for the primary and

diffraction waves; c0 ¼ ð~k~NÞ=k with ~N as the unit

vector of the normal to the crystal surface;

b = c0/ch; ch ¼ ð~kh~NÞ=kh; ~kh ¼~k þ~h (Fig. 2). The

solutions of the dispersion equation which defines

the refraction of the waves in a crystal are
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expressed by means of the components of the sus-
ceptibility (5) and has the following form [25]:

�ls ¼
1

4

�
�aB þ v0ðb þ 1Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�aB þ v0ðb � 1Þ
2 þ 4bC2

svhv�h

q �
;

Cs ¼ cos 2hB; sin hB ¼ h
2k

; aB ¼ 2~k~hþ h2

k2
:

ð16Þ

The dimensionless value aB is very important
for the diffraction theory, in our case it character-

izes the deviation of the wave vector of the emitted

photon from the exact Bragg condition corre-

sponding to aB = 0. Additional parameters in Eq.

(15) were appeared because of the boundary condi-

tion and in the Bragg case considered they are de-

fined as follows:

c01ð2Þs

¼ 2�2ð1Þs�v0

2ð�2ð1Þs�v0Þ�2ð�1ð2Þs�v0Þexp½ixð�2ð1Þs� �1ð2ÞsÞL=c0

;

ch1ð2Þs

¼ �bCsvh

2ð�2ð1Þs�v0Þ�2ð�1ð2Þs�v0Þexp½ixð�2ð1Þs� �1ð2ÞsÞL=c0

:

ð17Þ
Formulas (11)–(17) for eigenfunctions look a

little bit inconvenient because of the different rep-

resentations inside and outside of the crystal. But
we stress that all these parts of the functions

should be taken into account while calculating

the matrix element (8) in order to describe all
essential radiation processes. As for example, the

method used recently in [20] for the dynamical ef-

fects in PXR does not permit one to describe the

so-called diffraction transition radiation [25] which

can be considered actually as the part of the PXR
amplitude (see Section 4).
4. Intensity of the PXR + CBS radiation

The number of photons emitted within the spec-

tral interval dx and with the angular spread dX
from one electron in the crystal is expressed
through the matrix element (8) by means of the

standard rules of QED [27]

o
2N

oxoX
¼ x2

Z
jT fij2dðE � E1 � xÞ d~p1

ð2pÞ6
; ð18Þ

where the integration over the E1,~p1 as the energy
and momentum of the electron in the final state is

supposed.

As was qualitatively illustrated in our papers

[1,14] the angular distribution from the relativistic

electron is separated actually to the narrow peak

with an angular width Dh � m/E along the electron

velocity and to the set of non-overlapping peaks

(reflexes) with the analogous angular widths along
the directions corresponding to the various reci-

procal lattice vectors ~h and each of these reflexes

can be analyzed independently. Fig. 3 shows those

three diagrams which give the contribution to one

of such side reflexes. Fig. 3(a) corresponds to the

diffraction of the emitted photon that is to

the amplitude of PXR. Fig. 3(b) and (c) describes

the amplitudes of CBS conditioned by the diffrac-
tion of the electron in the initial or the final states

correspondingly. This representation makes the

physical difference between the processes clearer
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in both cases there is quite a big momentum trans-

fer when producing the photon with the wave vec-

tor (~k þ~h), but in the PXR case, the recoil is

received by the crystal during the photon diffrac-

tion and in the CBS process it is compensated by
the change in the electron momentum due to the

diffraction by the crystallographic planes with the

reciprocal lattice vector (�~h). It is interesting to

note that the electron diffraction itself cannot be

resolved for the considered relativistic energy E

(all of them are in the very small cone along the

electron velocity) but one can see its secondary ef-

fect as the CBS peaks. This is possible because the
small scattering angle for electrons leads to the

large angle for the emitted photons due to the con-

dition E � m.

The wave functions corresponding to the lines

of the diagrams from Fig. 3 for the Bragg geome-

try considered are defined by Eqs. (11) and (15). A

not very complicated calculation of the matrix ele-

ments with the average over the initial electron
spin states and the summation over its final ones

[27] leads to the following expression (the intensi-

ties of the photons with different polarization

s = 1,2 can be considered separately):

o2Nhs

oxoX
¼ e2x

4p2
ð~ehs~vhÞ2jMPXR þMCBSj2;

MPXR ¼
X2
l¼1

chls
1

q0h
� 1

qlhs

 !
½expðiqlhsL=c1Þ � 1
;

MCBS ¼ �U�~h

ð~v~hÞ
½expðiq0hL=c1Þ � 1


q0h
;

~vh ¼ ~vþ
~h
x

 !
; q0h ¼ ½x � ð~v~k�hÞ
=v;

~k�h ¼~k �~h; qlhs ¼ ½x � ð~v~k�hlsÞ
=v;
~k�hls ¼~k �~hþ x�ls

~N=c0: ð19Þ

Only the leading terms in a power series of the

parameters U/E and h/E are taken into account

in MCBS. The values L0h = 1/q0h and Llhs = 1/qlhs

are known as the radiation coherent lengths for

the vacuum and crystal correspondingly. The

PXR matrix element actually includes the coherent
superposition of both coherent lengths. It was sug-

gested in some papers (for example, [25]) to
consider the contribution, which is proportional

to L0h and conditioned by the crystal boundary,

as a special radiation mechanism (diffraction tran-

sition radiation). But it seems to us that such a sep-

aration is not very rigorous in the radiation
intensity and we further consider MPXR as the sin-

gle amplitude of the process conditioned by the

diffraction of the emitted photons in a crystal.

One can see from formula (19) that the total

radiation intensity is defined by the interference

of the PXR and CBS amplitudes. This phenome-

non was firstly discussed theoretically in [32]. A

more detailed calculation and analysis of the spec-
tral-angular distribution of both radiation mecha-

nisms were fulfilled in [33]. The theory and

experimental investigation of PXR and CBS inter-

ference were also considered in [34].

All the above-mentioned results were referred to

the case of relativistic electrons. However, as was

shown in our paper [35], the PXR and CBS interfer-

ence is the most essential for the non-relativistic
electrons when the angular distribution for both

radiation mechanisms are undistinguishable. For-

mula (19) coincides with the results from [32,34] in

the corresponding limit cases E� m but it can

actually be used in the entire range of the electron

energy, even in the case x � E considered in [35].

Besides, it takes into account the crystal boundaries

which lead to the term q�1
0h omitted in the above-

mentioned papers. This contribution corresponds

to the diffraction transition radiation (DR) and

may be essential in some range of angles (see Section

5). If the radiation of the hard photon (x � E� m)

should be calculated, the refraction and diffraction

of the electromagnetic field are unessential. In this

case only the amplitude MCBS is important in (19)

and it leads to well known results [37].
In this paper the case of ultrarelativistic elec-

trons is of interest and it is possible to find the sim-

ple analytical estimation for the relative

contributions of both the intensities. The ampli-

tude MPXR is the most essential in the spectral

(Dx/x) and angular (Dh) intervals where the wave
vector of the emitted photon satisfies the Bragg

condition. In this case the parameters in formulas
(16) and (17) are estimated as

aB ’ Dx=x ’ jv~hj; jchlsj ’ 1:
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In this narrow range the PXR contribution to

the angular-spectral distribution has an order of

the magnitude

o2N
oxoX

� �
PXR

� e2

4p
ð~ehs~vhÞ2xL2

0h: ð20Þ

At the same time its contribution to the integral

intensity of the reflex is defined as follows [14]:

NPXR � e2

4p
jvhj

2

sin2hB

xBLa½1� expð�L=LaÞ
; ð21Þ

where La is the crystal absorption length for the X-

rays with a frequency xB = h/sinhB, corresponding
to the Bragg frequency in the PXR reflex [14].

The analogous estimations for the CBS contri-

bution leads to

o2N
oxoX

� �
CBS

� e2

4p
ð~ehs~vhÞ2xL2

0h

U~h

h

���� ����2;
U~h

h

���� ���� 6 10�2;

NCBS �
e2

4p
m2

E2

U~h

h

���� ����2xLa½1� expð�L=LaÞ
: ð22Þ

This means that the maximal spectral intensity
of PXR is of several orders larger than the analo-

gous one for CBS, but CBS can give a noticeable

contribution to the integral intensity of the reflex.

If one takes into account Eqs. (3) and (5) for the

components of the potential and susceptibility

the ratio of the CBS and PXR intensities in the

same reflex can be calculated

n ¼ NCBS

NPXR

� Z � F ð~hÞ
F ð~hÞ

" #2
m2

Eh

� �2
1

16sin4hB

: ð23Þ

In other words, the CBS contribution should be

taken into account in the following electron energy

range:

E 6
Z � F ð~hÞ
F ð~hÞ

�����
����� m2

4hsin2hB

� �
: ð24Þ

This estimation is in qualitative agreement with

the results of [34]. It also shows that in the consid-

ered energy range (E P 50 MeV) in this work this

radiation mechanism is not very important except

the case of the high-order harmonics when the
atomic scattering factor F ð~hÞ can be exponentially

small.

The accurate analysis of the contributions of

PXR, CBS and their interference to the integral

intensity of the reflex is connected with the numer-

ical integration on the basis of formula (19). Fig. 4

shows the contributions of PXR alone and totally
(PXR + DR + CBS) to the integral intensity of the

reflex for the experimental conditions correspond-

ing to those in [36]. The intensity of the reflex in

the Bragg backward geometry was calculated as

the function of the angle w between the electron

velocity~v and the crystal surface normal ~N in the

vicinity of w = 0 [36]. One can see that the effect

of CBS is almost negligible for the electron energy
E = 85 MeV but becomes important for E =

30 MeV.
5. Analysis of the dynamical diffraction effects in

the case of HRPXR

In this section we will analyze the general for-
mula (19) in the narrow angular-spectral range

where the dynamical effects could appear. As was

mentioned above the CBS matrix element can be

omitted in this case. Let us also introduce for the

PXR reflex (~h) the special coordinate system where

the frequency x and the angles h, u of the emitted

photons are counted relatively to the vector ~kB
when the Bragg condition (aB = 0) is satisfied ex-
actly. In these variables the photon wave vector
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~k with an accuracy of jv~hj 6 10�5 can be written as

[11]:

~k ¼~kB þ d~k;

d~k ¼ dx~nB þ xBhð~nx cosu þ~ny sinuÞ;
dx ¼ x � xB; ~kB ¼ xB~vþ~h;

xB ¼ h
2vj sin hBj

; ~nB ¼
~kB
kB

; hB ¼ 1

2
d~v~nB ; ð25Þ

and the unit vectors ~nxk½~v~h
; ~nyk½~nx~nB
 are in the

plane perpendicular to ~nB.
One can express the most essential values in Eq.

(19) by means of these variables with the same

accuracy:

aB ¼ 4
dx
xB

sin2hB

cos 2hB

� 2h sinu tan 2hB;

c0 ¼ ð~v~NÞ; c1 ¼ ð~nB~NÞ;

q0h ¼
1

2
xB½h2 þ h2

ph
;

qlhs ¼
1

2
xB½h2 þ h2

ph � 2�ls
;

ð~ehs~vhÞ2 ¼ h2ms;

m1ð2Þ ¼ sin2uðcos2uÞ;

h2
ph ¼

m2

E2
þ h2

sc þ h2
M : ð26Þ

Analogously to the model [14] we have intro-

duced here the value h2
ph in order to take into ac-

count qualitatively the influence of the electron

multiple scattering (h2
sc) and the crystal mosaicity

(h2
M ) on the formation of the PXR reflex.
Eq. (19) can be used for any crystal thickness L.

Particularly, if L < Lext ’ (xBv0)
�1 (Lext is the

extinction length), this formula takes the same

form as in the kinematical diffraction theory which

was analyzed earlier in our paper [14]. Therefore in

this paper we consider the opposite case L > Lext

when the dynamical effects are supposed to be

essential for HRPXR analogously to the conven-
tional high resolution X-ray diffraction (HRXRD)

[26]. Moreover, in order to make more clear the

specific features of the HRPXR peaks let us con-

sider the case of the thick crystal with

L > Labs ’ ð2xBIv0Þ
�1

(Labs is the absorption

length) when the oscillation structure of the dif-

fraction peaks does not appear [26].
With this supposition the only root with

I�ls > 0 of Eq. (16) is essential and Eq. (19) is

essentially simplified

o2Nhs

oxoX

¼ e2

xBp2
h2 bCsmsv~h

2�1ð2Þ �v0

���� ����2 1

h2þh2
ph

� 1

h2þh2
ph�2�1ð2Þs

�����
�����
2

;

ð27Þ

where the index 1(2) for various x, h should be

chosen in dependence on the sign of I�ls. We also

stress that the analytical integration on the azi-

muth angle u cannot be made in the general case
because the value aB depends on this variable.

This formula shows that there are two essen-

tially different angular and spectral scales for char-

acterization of the structure of the PXR reflex.

One of them (low resolution scale – LRS) is de-

fined by the angular dependence of the radiation

coherent length:

ðdhÞ2 6 jv~hj; ðdhÞLRS 6

ffiffiffiffiffiffiffi
jv~hj

q
� 10�2–10�3:

ð28Þ
In the scope of LRS one can integrate Eq. (27)

over one of the variable (h or x) and find the uni-

versal forms of distributions have been considered

earlier in [14] and have been investigated in many

experiments. Actually these distributions are not
dependent on the dynamical effects and their

amplitudes are defined by the value Labs. An anal-

ogous picture takes place in the conventional low

resolution diffraction when the intensity of the re-

flex is also proportional to Labs [26].

But there is also a high resolution scale (HRS)

in Eq. (27) which is defined by the Bragg condition

for the emitted photons, that is,

jaBj 6 jv~hj; ðdhÞHRS ’
dx
xB

6 jv~hj � 10�5–10�6:

ð29Þ
Certainly, the experimental investigation of

such a thin structure of the PXR reflex should be

connected with the two-crystal detector technique
which is widely used in modern HRXRD but

was firstly applied recently [25] for HRPXR

analysis.
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Therefore it is actual to consider the most essen-

tial features of the distribution (27). It proves that

analogously to the kinematical PXR theory [14]

and the conventional dynamical diffraction theory

[26] this distribution can be represented in some
universal form. Let us introduce new variables

having the scale of the order of unity:

gs ¼
�baB þ v0ðb � 1Þ

js
;

xs ¼
h2 þ h2

ph

js
;

js ¼ 2Cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bv~hv�~h

p
: ð30Þ

In these variables, the distribution of the PXR

photons can be represented as

o3Nhs

ogs oxs ou
¼ e2m2s

4p2b sin hB

Iðgs; xsÞ; ð31Þ

with little bit different scales but the same universal

function I(g,x) for both polarizations:

I ¼ x� uph
x2jg þ signðgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
j2

� 1� x

x� g � signðgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
� u0

�����
�����
2

;

uph ¼
h2
ph

js
; u0 ¼

v0

js
; x > uph; �1 < g < 1:

ð32Þ

Here the function sign(g) is (+1) for g > 0 and

(�1) for g < 0. Analogously to HRXRD the scans

of the distribution on the dimensionless variables

for HRPXR can be realized by various experimen-

tal scans both on angles and frequency.

Fig. 5 shows the characteristic form of the uni-

versal function I(g,x). One can see that it includes
the well known Darvin step [26] conditioned by the

second factor in (32) and a more narrow Cheren-

kov peak due to the last term in (32). The ratio

of amplitudes of these peaks depend on the values

x, uph, u0.

It is easy to estimate by means of Eq. (32) the

maximal dimensionless spectral intensity for PXR:
o3Nhs

ogs oxs ou

� �
max

’ e2m2s
4p2b sin hB

Q2;

Q ¼ Rv0

Iðv0 � jsÞ
� 10–100; ð33Þ

which is achieved in the very narrow spectral range

dx
x

’ Iv0 � 10�6–10�7:
6. Conclusions

In this paper, we have investigated in detail the

role of the dynamical effects for high resolution
parametric X-radiation. The general formulae for

description of this phenomenon and other radia-

tion mechanisms in the same wavelength range

are obtained. These expressions are also repre-

sented in a simplified analytical form which can

make more clear the qualitative features of the ef-

fects considered and find the optimal conditions

for their observation.
High spectral intensity of HRPXR could open

new directions for application of such radiation
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for crystal and nanostructure analysis. In particu-

lar, the estimation for the spectral intensity of the

synchrotron radiation (SR) from one electron,

analogous to (33), leads to the value e2/2p [6,35],

which can be essentially less than for HRPXR.
Certainly, in most cases the integral number of

SR photons from the storage ring with a great

electron current is much larger than the quantity

of PXR quanta from linear accelerators with a

quite small average current. But the applications

of HRPXR as the X-ray source for structural anal-

ysis could be of interest for spectral-sensitive

experiments where the spectral density of the radi-
ation in the narrow spectral range is necessary.

Some of the possible applications in this field are

considered in [5–9].
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