View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

PHYSICAL REVIEW B 68, 235307 (2003

Description of x-ray reflection and diffraction from periodical multilayers and superlattices
by the eigenwave method
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The analytical solution of recurrent equations for amplitudes of electromagnetic field is found for description
of x-ray reflection and diffraction from periodical multilayered media. The method proposed uses the Bloch
eigenwaves approach for periodical structure, which reduces considerably the computer time required for
simulation of diffracted/reflected x-ray intensity and, therefore, accelerates the fitting trial-and-error procedure
for sample model parameters. Numerical examples and fit results for experimental x-ray data are provided to
demonstrate the effectiveness of method. A new parameter describing the fluctuation of superlattice period is
introduced and its influence on experimental data interpretation is discussed.
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[. INTRODUCTION ing problem within the single basic element composing the
superlattice periol.For superlattice with limited number of
In recent decade, a numerous analytical methods angeriods these Bloch eigenwaves can further be used along
techniques have been developed and reported for calculatioMith the boundary conditions for whole layer stack. This
of x-ray reflectivity, diffraction, and diffuse scattering spectraresults in analytical expression for the electromagnetic field
(see, for example Ref.)1However, increasing demand for and integral reflection coefficient in any point of sample,
the x-ray methods from industry and science emphasizes tﬁ_gith no need to splve _the recurrent equations. T_his approach
problem of algorithm improvements, both in accelerationS further called in this paper a “method of eigenwaves”
and precision aspects. This task is especially important whefMEW)- In the present paper, the effectiveness of MEW is

the experimental data from complex samples have to bﬁir;lyrzeesilL]:(t)igncsa!?Lrj:;tigi?frgiti)é_(:a)ll?;(ER]‘E)C;L\;Z%);EZ)S f?ggq
fastly and accurately fitted by theoretical models. superlattices. Comparison of MEW with other approaches

The multilayers and superlattices, consisting of large o : .
number of repeating periods of basic thin layers, make up ge_monstrates 'Fhe es;_enual time redu.ctlon for calculation and
; . ) itting of x-ray intensities. The paper is arranged as follows.

ywde cllass of se_lmple:_s |n_sem|conductor and nanotechnolo% Sec. Il the analytical solution for reflection coefficient
industries. For investigation of these structures x-ray meth.,, pijavered periodical superlattice is found. The results of
ods are proved to be very gdvantageous. In genera_l case, tBﬁlculations coincide with the numerical solution of the same
solution of Maxwell’'s equations for x-ray wave field in mul- problem by Parratt's equations, however, the advantage of
tilayers is reduced to the system of recurrent equations, thgiEw is the considerable acceleration of the simulation pro-
scalar ones for reflectivityand matrix ones for diffractiod.  cess. In Sec. IlI, the superlattice with arbitrary basic periodi-
The theoretical interpretation of experimental x-ray datacal element is considered. The combination of Parratt’s re-
based on the transfer matricedelivers convenient formal- cursive equations with MEW is used to achieve the best
ism to solve general recurrent equations for multilayeredperformance of simulation technique. We discuss also in this
structures in both reflectivifyand diffractiorf cases. For pe- section a possible application of obtained solutions for simu-
riodical structures, using the powers of the transfer matrix folation and fitting of diffuse x-ray scattering from superlat-
basic element of superlattigSL), the time of calculation tices with rough interfaces. A parameter for characterization
can be considerably reducedowever, this technique re- of superlattice period fluctuation is also introduced to obtain
quires the calculation of high powers of matrices, which isa closer fit of theory and experiment. In Sec. IV, MEW ap-
also time-consuming procedure because of the number gfroach is extended to description of x-ray diffraction from
numerical operations exponentially increases with the numsuperlattices. The diffraction process inside basic periodical
ber of SL elements. There are several approximated methoddement of superlattice is calculated by matrix metfagd

for reduction of calculation time, for example, kinematical the evolution of diffraction into entire superlattice is de-
approach and single-reflection approximatiobyt they do  scribed by MEW.

not provide sufficient precision for thick SL's and superlat-

tices with large number of layers. Thus, the development of |, \iEw FOR X-RAY REELECTIVITY EROM TWO-

methqu re.ducing the galgulation t.ime for x-ray reflec.tivity COMPONENT SUPERLATTICE
and diffraction from periodical multilayered structures is an
actual task of applied x-ray physics. Let us consider the reflection of monochromatic x-ray

The method proposed in this paper utilizes the possibilitpeam with certain polarization and wave number2/\
to express the Bloch eigenwaves of one-dimensional periodirom a multilayered structure consisting Nf layers grown
cal infinite layer stack through the solutions of x-ray scatter-on substrate. The structure is assumed to be a superlattice
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The same conditions at the boundary between the layers

FIG. 1. Sketch of the wave fields fa@) bilayered and(b) ~ andl+1 resultin
L-layered superlattices.
Tig+ny=vTat viRo,  Rigry=voaTa+ v2oRa
composed of multiple repetition of basic layer period, con-

sisting of two layerdsee Fig. 1a)] and the x rays impinge _kptky oik K1 — Ky ik

d —
the sample at the incidence angte In x-ray reflectometry, Y= 2K, 2N Y= 2K, € '
the lateral dimension of a layer is supposed to be infinite,
which results in(i) conservation of lateral component of k.. —k K.+ k
I . At 22 _ik..d _nhz2 zl  _ik_.d
wave vector, andii) dependence of wave field on solety yere 22 yzz—Te 22¢, 5)
z1 z1

component of wave vector. For the problem considered in
this paper, the following variables, defined through the perTo make an expression more clear, the<(?) transfer ma-
mittivity e, are essential for description of scattering Proces$yiy X1 can be introducedwhich defines the transformation

T _ of transmission and reflection coefficients by a single layer
kpp=ksina, kym=kyem—coSa, of the basic period of superlattice
ka=kVer—coSa, kp=ke,—cosa, Tig+)=MuTy+ MRy, Rygeny=MaTy+MRy,
_ 2 Cn2
&=n=(1=6+iB)", D M11=BuyutBariz,  M2=Bryut B2yiz

wherez axis is a perpendicular inward normal to the sample
surface; the values-1 6, and B; are the real and imaginary

gabms??zgg?t:r?; rl(:‘;r:fst',vreeg:)ii?\;él; Loertnulsz d;?12)¥gbe;unnc]’ If the phase of wave field i_s defined in accordanc_e with
d, the thicknesses of the layers, therd;+d, is the su- Eq. (2), _then the transfe_r matrix does_ not depend on mlde_x
. ; A ) numbering the superlattice layers. This fact makes it possible
perlattice period. The general solution of Maxwell's equa- ~ .
tions for two layers in the period with numbke¢l =0 corre- to use the powers lof matrid for calculation of full transfer
sponds to vacuujris matrix _of sqperlattlcé._Such an appro_ach reduc_es the calcu-
lation time in comparison with the direct solution of recur-
E|(x,2) = kX cosap, (7): rent equations. _However, MEW simplifies this solution even
more because it expresses the total reflection coefficient in
analytical form. To derive this form, the two-component

eigenvectorA® = (T R®): s=1,2 of matrixM has to be

M= B11Yart B21v22, Moo= B12va1t Bazvze-  (6)

W (2)= Tlleikzl(zfld) + Rlle*ikzl(zfld),

ld<z<ld+d, introduced
W (2) =T pel 219 4 R, e iKe(z—1), MA® =) A®),
ld+d,<z=<(1+1)d. 2 Mut+My  [(My—Mp)?
' 1257 5 * 2 + MMy,
The condition of wave field continuity at the boundary be-
tween the layers 1 and 2 within tteperiod of SL NERY
, _ , , RO =5 T =25 _"1l4(s) )
T1|e|kZ1dl+ Rlle—lkzldl: T2|e|k22dl+ R2|e_|k22dl, S M 12

ikppdy ~ikyydq7— ik _ ~ik,d The wave fields determined by coefficieqts create a basis
Kaal Ty €727 = Rye et = kgl T2 = Rye 22 1(]3) of eigenwavegEW) in infinite periodical layer stack. If the
eigenvalues are indexed in such a way that <|\,|, the
is used to express the reflection and transmission coefficientaluesT(® then represent the amplitudes of EW, which are
in second layer via the corresponding parameters of the firgxcited in the finite stack by the incident plane wave. To find
layer: these amplitude3®, the boundary conditions have to be
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used at the interfaces superlattice/vacuum and superlattice/ T1N=)\’1\'T(1)+ )\QT(Z), RlNzyl)\'IlT(l)Jr,,z)\gT(Z),
substrate. The wave field at first interface is represented as a
superposition of eigenwaves: Ton=pBulint Br2Rin,  Ron=pB21Tint B22Ran -

Vi(2)=TH[e*1?+ pie~ "1z + T e+ pe 7], 10

(8)  The boundary conditions at interfaze=Nd, where wave
field is only defined by transmission coefficien{,,, com-
plete the equations system for four unknown variatitgs
T, 7@ and Teyy

The continuity of this wave field at the surfaze-0 results
in equations

1+ Ry(@)=TO(1+ )+ TO(1+ vy), TousV=T gy 2204 R 0 K20
su ’

Kool 1—Ro(a@) 1=Ky [TO(1— ) + T (1-1,)], (9)

KomT sub€ 2™ 9=Ko[ T(anye 22— Ronye 29 (12)
where Ro(«) is the integral reflection coefficient from the

entire superlattice. Because of E@) for EW, the reflection The equations systefi{9)—(11)] delivers the expression
and transmission coefficients in the last layer with numYyer for Ry(«), which is, in fact, the analytical solution of the
are recurrent Parratt’s equations for the whole stack of the layers

Ka[l—vi+Pn(1—v2) ] —Kyo[1+ v+ Py(1+2,)]
Ka[l— v+ Py(1—v) [+ K[ 1+ v+ Py(1+2v0)]’

Ro(a)=—

(12

b (M)N(kzm—kzz)(ﬁlﬁ‘/312V1)eik12d+(kzm+kzz)(ﬁzﬁﬁzz”l)e_ikzzd
N__ N . _ .
N2/ (Kom=Kg2) (Bra+ B1av2) €729+ (Kymt Kpo) (Bor+ Bogvp) e *e2d

Figure 2 shows simulated by formul&2) x-ray reflectiv-  cal solution of the Parratt's equatidriavolves=4(4)N op-

ity from (Si/Ge)g, superlattice with the thickness of layers erations, which increases the simulation time exponentially.
d,;=10 nm, d,=20 nm on Si substrate. The curve is identi- When the powers of matrices are used for calculation of
cal to the one calculated by recurrent Parratt’s equationsRo(@), the time increases as a power law with increasing
However, the computer time required for these both simulaRef. 5, whereas the use of E(Ll2) makes the number of
tions is essentially different, especially when the number oPperations to be independent Nf This advantage of MEW
superlattice periods is largeee inset in Fig. 2 The numeri- is even more pronounced for the experimental data fitting
routines, which simulate the x-ray reflectivity many times
during the trial-and-error procedure.

10' - ' ' )
@ g 2 . MEW FOR X-RAY REFLECTIVITY FROM
103 10 SUPERLATTICE WITH ARBITRARY STRUCTURE OF
o THE BASIC PERIOD
107 5
> The technique presented in preceeding section can be also
s 100 applied to complicated sample models, for example, to the
E superlattice, the basic period of which consistsLofayers
§ 10° ] with thicknessesl;, j=1,...L; so that the total basic pe-
riod is
1x10° 4
2 di=d,
1x10° J
0 1 2 3 4 and refraction indices); [Fig. 1(b)]. This kind of sample
a (deg) model describes both the superlattices with basic period con-

taining more than two layers and bilayer superlattices with

FIG. 2. X-ray reflectivity from (Si/Ge), superlattice on the Si . di ded i f hich vield in thi
substrate simulated both by Parratt's equations and MEW. lnsé{]terme late graded interfaces, which yield in this case para-

shows the ratio of the computer times required for simulations by'SitiC e}rtificial interlayers. For t_hese samples, the combined
Parratt's equationst§) and MEW (yey,) as a function SL periods technique can be used: numerical §o|utlon for recurrent equa-
number. tions with (2x2) transfer matrixM_ for basic period is
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supplemented with MEW approach for analytical calculation 10' L . L . L
of total reflection coefficienRy(«).

The wave field within th¢ layer of the first basic period is
defined by Eq(2) with coefficientsT; ,R; following from the
equation$[the sketch of wave fields in sublayers of the basic
period is shown in Fig. (b)]

1 . .
_ Ky(i + 1)~ Kz1)Zi Ky v 1y+Ky ) Zi
'|'1,j+1—,[]_+lj [Ty e'kairn=ka)Zi+ Ry jry g €' Kei+n ez,

Ryj +1:t__[Tl,j rippje Kairn Tk
j+1j

+ lee*i(kz(ju)*kzj)zj],

10-! T 1 L) 1 Ll
0 1 2 3 4 5 6
- 2Ky ) K=Ky a (deg)
LT T TN T
Kajt i) Kaj+Ke(j 1) FIG. 3. Simulated  x-ray  reflectivity  from
(AlAs/GaAs/InAs/GaSh), superlattice on the GaAs substrate. In-
Ky j= k\/njz—COSZCY- (13 sert shows the ratio of the computer times required for simulation

) by Parratt's equationg §) and MEW (t\e\w) as the function of SL
To find the eigenwaves of the system, the transfer madix ~ periods number.
has to be calculated for basic period. By the definition, this
matrix gives a relation between the coefficients ; 1) 1 ( el (kzj=kg(j +1))7 ri+l,jei(kzj+kz(j+1))zj)

=T51,RyL+1)=T21 and parameter$,,R, for wave fields A,—:
W, inside the superlattice. The formal solution of this prob-
lem can be found by successive iterative solution of Egs. 1

!

tis1 rj+ljei(kzj+kz(j+1))zj e 1(kgj=ky(j+ 1))

(13), and the result is presented in compact matrix form gj:

e‘kzifj r ;+1,j¢*ikzjzj s
tj+1,j j+1,jelkzjzj e—Iij
_ —& A1 A—1 A A1 R
V= V2r=PLQUPL-aQu 5y - P2Qy "y, The matricesB; have to be used at both interfaces of basic

1 _ o ikuiz 0 period to eliminate the phase in the matkixat the interface
_ 1 ( J+1'J) _( _ ) between the basic periods. Finally, the resulting transition
Gogj\ljegy 1) 0 e'kzi? matrix is
(14
M:BLAL*IAL*Z' . 'AZBl' (17)

Despite of formal simplicity of this solution, the real calcu-
lation of matrixM involves the calculation of the products of To satisfy the continuity conditionél1) for wave fields at

2L (2% 2) matrices, i.e.=4(8)" operations. The more ef- the interface between bottommost basic layer and substrate,
fective algorithm is based on scalar Parratt's equations,the amplitudesTy, andRy have to be expressed through

which reduces the operations number downr=té(4)- the amplitudesTy ; andRy ; by means of the matrix
x.:&:e*Ziij rJ',jJrl"'Xj+1ezlikz(”1)Zj . (15 Mi_1=AL_1AL ... AB;. (18
y 1+rj,j+1Xjez'kZ(J+l>Zi Further calculations are analogous to two-component case,

R described in the preceeding section. In particular, the eigen-
To use these equations for calculation of matkx the  values\;, and their eigenvectors follow from Eqg) and

boundary conditions foX; h_aye to be changed. In reflecto- (7), if the elements of the matrid in Eq.(17) are used. The
metry, the boundary condition¥, =0, R =0, To=1 are  gquations for amplitudes resulting from the boundary condi-
usually used for the structure containibdayers. However,  tjons for wave fields at the surface of superlattice and at the
in the considered case here the initial transmission and renterface between superlattice and substrate are then written
flection coefficients are not directly related. The most convexg

nient way to calculate the transition matfi# seems to be

above-mentioned matrix method. If phases of the wave fields 1+ Rg(@)=Ty 1+ Ry 1= TO(1+ )+ T@(1+1,),

in the first layer of basic period are defined as in &), then

matrix M depends no longer on the repetition number of  Ko[1—Ro(@)]=kz[T11— Ry 4]

basic periods, and Eq14) is modified. The recurrent equa- _ 1 2

tions (13) being resulted from the transformation of vectors =ka[TH(L=r) +TO(L=2y)],
(T;,R;) are represented then by matrices (19
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TsubeikZSNd: TN'LeikZLd'f' RN’Le_ikZLd, Rn,l: Vl)\g_n_ 1)T(l)+ Vz)\(zn_l)T(z),

I(Zm-l—subeikszd:kZL[TN,LeikZLd_ RN,LeiikZLd]' (20) RE%LZ)Z(ML,]_)Z]_T“']_"‘ V(l,Z)(ML*l)ZZRn,ll

The amplitudes within the arbitrang period of SL are

(1,2) _ (7 \/
expressed through the amplitudes inside the first period by Toi" =ML )uTaat v (M- 1R 1, (21

the following analytical formulas wheren is assumed to be equal when the amplitudes are
substituted in Eq(20). The formula(12) for parametePy is
—y(n-1 -1 ;
T =AM HTO AP IT2), then slightly transformed to

Ka[1l=v1+PnN(1—vp) ] =Kyl 14+ v+ Py(1+v,) ]

RO T T 11+ Pu(L— 1) Kol 1+ w1+ Py(1 1 1)

N(Kgm— ko) (TDER2L9+ (K, it JRDe Kard
(Kzm—kz) TR0+ (Kt k) RPR Kt

A
SR

RM= (M )1+ va2(Mi1)2,  TE=(M_1) 11+ va(M_1)1,. (22

Figure 3 demonstrates the simulated x-ray reflectivityformulas(21) instead of numerical solution of Parratt’s equa-
curves from the multicomponent superlattice tions reduces considerably the simulation time for calcula-
(AlAs/GaAs/InAs/GaSh), on the GaAs substrate, where tion of diffusely scattered intensity in dependence on angles
the layer thicknesses are equal to (10/20/5{3@)n, respec- « andp.
tively. The comparison of required computer time for both The second seeming argument against the demand of
straightforward Parratt's approathand MEW techniqué,, MEW is that Eqs.(21) for amplitudes are valid for the case
as the function of repetition period is presented in the inset irof ideal SL periodicity only. The superlattices with regularly
Fig. 3. In some cases the calculation time is reduced fronfdue to strain, for exampler irregularly(due to nonstability
several seconds to the fraction of seconds for single simulasf growth condition$ fluctuating basic periods are quite a
tion by using MEW. At first sight, this reduction seems to betypical sample in nanocoating and semiconductor science
not in principal for real applications because absolute comand industry. Whereas the deformation of SL period can be
putation time is relatively short. However, in most cases, thdéaken into account directly by Parratt's equations, the aver-
treatment of x-ray experimental data from real superlatticesiging over the SL period fluctuations is complicated thsk.
requires the fitting of many parametethickness, rough- the framework of MEW, this effect is taken into account by
ness, electron density, lattice mismatches,) etehich often  renormalization of the transfer matrix of basic period as, for
are approximately known from growth conditions. Moreover,example, the averaging of atomic vibrations in dynamical
possible aperiodicity of SL structure and large number ofdiffraction theory results in the Debye-Waller factor for x-ray
layers in the stack even aggravate the situation. The effectiveysceptibility. The transfer matrik ") and two-component
fitting procedures minimizing the cost function, e.g., geneticyector A,=(T,,R,) both depend on the period numbkr
algorithms or simulating annealing, also require tens of thoutherefore the recurrent formula containing these vectors in
sands single simulations to find a nonambiguous solution. lwo successive SL periods can be introduced instead of Eq.
this case, the speeding up of calculations by using MEW7) for eigenvalues.
plays essential role in software performance.

f Calculation tlm_e is also important fo_r S|mulat|qn of dif- M(l)AI:A(Hl)- (23)

use x-ray scattering caused by rough interfaces in superlat-
tices. Distorted-wave Born approximation used for calcula-
tion of diffuse scatter expresses the diffuse intenkty, 3)

through the matrix elements of potentlﬁl describing the
rough interfaces and incident;, at anglea and reflected
W, at angleB wave fields calculated for ideal Skee, for
example, Ref. I

To introduce a parameter for description of above-
mentioned fluctuations, the transfer matik{’ has to be
reinterpreted on the basis of formal scattering thédfyom

this point of view, the matrix elements can be considered as
elements of scattering operalfé(#)(z) defined with the func-
tions of initial i and finalf states

(e, 8)=[(Win(@)|V[¥ou( 8))I2 o T e -
M e e v IKf(Z2— _I 1K (Z— .
Each wave field contains the set o2 amplitudesT;(«), (MU= (St Ll dze Su(z-ldje

Ri(a) or Ti(B), Ri(B), and the application of analytical (24
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The matrix element&4) are shown above to be indepen- 10" y— T T T T T
dent on indiced, in the cas¥ of ideal superlattice. In real
. . . .. 100.! o Experiment 1
superlattices, the period thickness has a statistical fluctua ! - - - Theory (Nevot-Croce)
tions 8, and thus;=1d+ &, &<<1. As a result, the trans- 107 i —— Theory (VEW, fluctuations) 1
fer matrix obtains an additional random-phase coefficient P ”
€ 107 L
DY — i(ki—kg) S 2 E
(M) =(Mp);pel k02, 29 2 ] ]
which is absent in matri>k\7l|_, corresponding to ideal peri- g 10° ]
odicity. The coherent part of the transfer matrix can be de- z
rived by averaging over the statistical distribution of random '@ 1x10° 1
phases, in the same way as for coherent polarizability of& 085
crystal = 10y L
. . . . 107 4 ]
(MO =((M)pe' R0y 1+ (VD) ; 104,?
- - - . 0 2 4 8 8 10
(VE)ir=(MD)ie = ((Mp)ipe k02, o, deg

In particular case of negligible vertical correlation of in- FIG. 4. Measureddots and simulated by MEW with Nevot-
,terfaCIal rQUghneS,S;Wh'Ch sometlme§ can be essential forCroce exponent, corresponding to the rms of interface roughness
mterprgtaﬂon of dlﬁgse X-ray scat'gerlﬁg the gqherent part o, =0.25 nm(dashed ling and by MEW with the rms of period
of matrix elements in Eq(26) obtains an additional factor, fjcyationsey=0.25 nm (solid line) for x-ray reflectivities from
which does not depend dnAssuming the Gaussian distri- (wjAl,0)4, superlattice with layer thicknesses (1.2/4.8)nm on
bution of period fluctuations with root mean squdres)  the Si substrate.

o4, and averaging Eq26) over the fluctuations, we arrive

at
where the values; . ;; are defined in Eq.13) and parameter

<(|\7|(Ll))if>:e—l/zag(kf—ki)Z(ML)”_ (26) o, is the rms of interfacg roughngss. . .
In general case, the imperfection of interfaces described
The exponential factor reduces the amplitude of elastic scaby «, is not reduced to the fluctuation of layers thicknesses,
tering of the wave field by SL basic period analogously toyefined by parametesy. The interface roughness can be
Debye-Waller factor for crystallographic unit cell derived for 55n0ached by thickness fluctuation only in the case of rather
x-ray polarizability of the crystal. This result causes the large in-plane correlation length. Essentially different impact
renormalization of matrix element48) of both parameters on the fitting of experimental data is dem-
onstrated in Fig. 4. The value, has been roughly fitted as
0.25 nm and equal for all interfaces, and the reflectivity has
B _ 1202, )2 been convoluted with resolution function describing the lim-
(M) =Mg;, (M2)=Mpe™ "det™). (27)  jtaq angular resolution of detector. The second simulation
Then the analytical solution of E¢R3) for coherent wave is  (solid line) is done by using MEW with integral SL period
fluctuations[Eq. (27)] with the samesy=0.25 nm. In both
Ai=(\g)'A cases, the same roughness wmsand o4 influences the am-
plitude of SL peaks in different way, however, the latter ap-
proach explains the experiment better. It should be noted that
<|\7|>A(s):)\SA(s)_ (29) Fig. 4 representsAonIy the qualitative fit; the influence of
incoherent matrix‘(/(L'))if in recurrent Eq(23) on the phase
Figure 4 shows how the paramete, taking into ac-  of the transfer matrix seems to have been taken into account

of the coherent SL peaks. The experimental measurementg,qy is out of the scope of the present work.

(dot9 from superlattice (W/AIO3)gs ON the Si substrate
with the nominal layer thicknesses (1.2/%9hm have been
taken by using Bruker D8 DISCOVER x-ray diffractometer
in conventionald— 26 geometry using knife edge collimator
and antiscattering detector slit at ICy radiation. The first
simulation (dashed is carried out on the MEW basis for The superlattices consisting of crystalline layers are
superlattice with constant periodicity and taking into accountwidely used in modern semiconductor industry, and high-
interface roughness by Nevot-Crd€exponentthis curve is  resolution x-ray diffraction is one of the most effective tech-

<M11>:Mlly <M12>:Mlze_l/20§(kZL+kZl)2'

with eigenvalues\q, determined from equation:

IV. MEW FOR HIGH-RESOLUTION X-RAY DIFFRACTION
FROM SUPERLATTICES

equivalent to Parratt’s simulations niques for their investigations. The parameters characterizing
. 5 the sample, e.g., layer thicknesses, doping concentrations,
Fip1j=Tjc1 2kiaor, lattice deformation, lattice mismatch and others, are obtained
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107 L 1 L 1 . 1 . 1 1 L 1

10° 4 ::
10° 4 Jw
10* { SL with random 2
107  Period fluctuatio 12
Z=0 Ty
v, 1 R b
i : 10° 4
n 1
+q(-11)+q(-12)+ (1)*q(_‘) XL hL dL -%' 107 4
» s § 1074
'8 = E 10°4
= E 1X1041
& : 1x10° 4
zZ a 10° 4
: 107
: 10° 4
- 10° 4
. 10" T T T T T T T T T T T T
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W FIG. 6. The simulations of x-ray diffraction from
zZ, (GelSil Sj Gy ) 100 perfect superlattice on the Si substrate both by

the recursive method and MEW are indistinguishdldever curve.
FIG. 5. Sketch of the wave fields for crystalline superlattice.  Inset shows the ratio of the computer times required for simulation
by recursive methodtg) and MEW {yey) as the function of SL
periods number. Upper curve shifted vertically for clarity by a fac-

from x-ray measurements in various experimental geomtor of 10 shows the simulated x-ray diffraction from the same

etries, including extremely asymmetrical and grazing-

incidence diffraction. Theoretical interpretation of these dat sui)er::]ittlce with - randomly fluctuating basic SL - period,

requires a considerable computer resources that makes an

optimization of calculation algorithm for HRXRD very ac-

tual problem. In the same way as for x-ray reflectivity, the

application of MEW for high-resolution x-ray diffraction is

based on the analytical calculation of interference between

the waves scattered from equivalent layers of superlattice

period. However, the x-ray scattering from crystalline struc-

ture involves more complicated than in reflectometry transfer ) ) o n \

matrices, which possess a higher rank in this case. (Khn=k“)Dnn=Ky[ xoDnnt xnDonl, (30)
The theory presented below assumes that the superlattice

consists of repeatinty times basic SL periods, composed of with Fourier componentsyg, xp, of x-ray polarizability forn

L monocrystal layers. The difference in crystallographic'@Yer- Using the notations of Fig. 6 for vector components

structure of these layers can be caused either by different

elemental composition of layers or gradiental lattice defor- ke=Kvo,  Knz=Kvn, Nzn=kin,  Kkzn=kup,

mation of single layer due to the external forces. There arg, o parameteu, , determining the effective refraction index
few ways to calculate the transfer matik, for x-ray dif-  for x-ray diffraction, follows from the equatiol:
fraction from the crystalline layers. Takagi-Taupifiormal-

ism, bemg r_elatlvely S|mplel in realization, gives a solution in (Ur21_ yg_xg)[(unJr )2 —
approximation of slow variation of crystalline structure of

layers stack. In opposite, the matrix formal¥érof dynami- 2 2y 31
cal diffraction theory delivers an exact solution for transfer Y= (vt )"+ (31)

matrix M_, and here we use this approach along with there yariablea defines a deviation of the vectirfrom the
notations adopted in Ref. 14. The wave field with certaing, .t gragg condition at the top layer interface of basic su-
polarization ¢ or m) inside the layen is described by the  heriattice period, and the amplitudes of transmitted and dif-
wave field fracted waves are connected by expressions

amplitudesDy,, ,Dy,, are assumed to be constant within the
layer and satisfy to the equations of dynamical diffraction
theory

(kﬁ_kZ)DOn:kﬁ[XBDOn_FXrlhDhn]a

—x0l = x"nxn=0,

Dy(r)=€"“"[Don+ Dpae™"], (29 Dhn=viDbn,  vh=[(up)?= %5~ xol/x2p. (32

The evolution of wave field inside the basic period of
herek, andk,,=k,+ h,, are the wave vectors of transmitted superlattice is determined by the system of equations for am-
and diffracted by reciprocal lattice vectdy, waves inn  plitudesD},,, which follows from the continuity condition
layer. The notations used below are shown in Fig. 5. Thdor the wave fields at the boundaries of layérgerfaces.
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The solution for this equation system for arbitrary experi- Let us now introduce the normalized four-components
mental geometry is representedly product of 2. (4x4)  eigenvectorsP® and eigenvalues., enumerated in natural

matricesS, andF,: order of solutions for the equation
4
! 0 MU=, s=1...4, 3 (V)R (¥=1,
=
So= 0 - o |
o o [Nl <[Na| <[Ng[<[N4]. (36)
O »wm 0O = .
The matrixM | is not self-conjugated due to the absorp-
1 1 1 1 tion in the crystals, and therefore its eigenvectors do not
1 2 3 4 satisfy the conditions of completeness and orthogonality,
& | Un Un Un Un making the eigenvalues complex valued. The MEW tech-
Sn= ul oudoud ut)’ nique using these eigenwaves is realized in the same way as
1 .2 .3 .4 in Eq. (31). First, the wave field in the topmost layer of the
Wn Wn Wn Wn

basic period has to be represented as a linear superposition of
the eigenvectors with coefficients defined by continuity of
(Fo)ij= gjexdikul(zy 1=z, wh=vl(ul+y,). the vacuum wave field vectd&=(1,0E, ,E;,) at the sample

(33)  surface

In conventional dynamical diffraction theory, the approxi- o 4 . - o
mate solution of dispersion equation, Egl), is used, which DIP=> AW SE=5DP=5> AW (37)
is reduced in this case to the second-order equation, and the s=1 s=1
matricesS,, have a dimension (2). The exact solution of
dispersion equation and complete matri¢g83) have to be The evolution of wave field througN periods of superlattice
used for the grazing-incidenceexit) geometry** and for the  is calculated algebraically
diffraction from superlattices with short period, when f%tel-
lite peaks are located far from the exact Bragg condition. — P —
Thepnumerical problems arise for superlattiggs with large D(lNﬂ):('Vl)ND(ll):SZl (N AW, (38)
number of period$\, where multiple production of (44)
matrices has to be dorf&.These problems are caused by The wave field of x-ray beam in substrate is defined by four-
operations with matrices, the elements of which grow expoyector D= (D$"?,D$"?,0,0). The amplitudes of the waves
nentially with the increasing value df. In order to avoid reflected from the bottom interface of the substrate are as-
these difficulties, new algorithm was suggested in Ref. 14 med to be zero due to the damping out of wave fields
when the matrices are divided into the blocks 0&(2). The  within the thick sampleE, andE, define the amplitudes of
four-wave amplitudeDy, being combined into two two- reflected and diffracted waves in vacud.
component vectorsﬂ=(D$n ;D3 §n=(Dén;DSn) are The conditions of continuity at the interface between su-
then related by the equations analogous to Parratt’'s Ynes perlattice and substrate has to be applied to the four-vector
This algorithm provides the required accuracy for arbitraryE(LN), determining the wave field amplitude in the bottom-
number of superlattice periods, however, increases twice thgost layer of the stackFig. 5)
computation time in comparison with conventional matrix
method. The MEW is shown to improve the accuracy as well ) A-lae1a SINGD) A& =& e =(N)
as reduce the time of calculation. DIV=F_"S "SiDy 7, SauP=SF.D{7. (39

To construct the transition matrikl, for basic period,
four components of wave field inth layer are denoted as the As a result, the system of equations for eight unknown val-

- i i
four-vectorD,,. The spacial phase of wave field amplitudesU€S € En As,D3%) can be written as
in every layer has to be equal at the entrance interface of

4

layer. Using the matrice&33), the boundary conditions for o 4
amplitudes in basic period are written as a systern wéctor (Sl‘lssub)ij DJ-S”b= > (AINAPS,
equations s=1
SED.=S.D. SED.—-&Dn. 4
SlFlDIZSZDZI ey SLFLD]_:S]_DL 1- (34) A_q4nA
’ (8 ISO)”'EJ:; AVS. (40)
Then the matrixVl, follows straightforward from Eqs(34)
oA . . ©  aq o a The orthogonality condition for eigenvecto(36) cannot
Mi=X X1 Xy, Xe=Si 1 SkFw- (35 e used for solution of these equatidsse discussion after
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Eg. (36)]. However, this system can be solved in general MY = (M) e V2otkeuy —ul)? 45
form, if four components of four eigenvectors are considered (ML) =My 49
as (4x4) matrix

Vo (1)?. with the sqlutionsu'n of Eq. (3D). _ .
The period fluctuations result in the reshaping of SL peaks
Then the values can be excluded from Eqe40) using the  in the same way as it was described in Sec. Il for reflecto-
reverse matrixp 1 metry. Upper curve in the Fig. 6 shows the simulated x-ray
4 diffraction from the same superlattice with period fluctuation
A_1a NS 1is, A 1A o_=1 nm. The introduction of this parameter may be essen-
(S lS‘O)iJEJ:SZJl () NS, lSSub)ikDEUD' tial for the fitting accuracy in some cases. The structure of
(41)  SL peaks is formed due to the interference of waves, scat-
) ) ) ) tered from one-dimensional periodical layers stack, and
In order to avoid the exponentially increasing terms, the nory,arefore the positions of peaks are defined by averaged SL

malized matrix can be defined period and do not depend on period fluctuatidSimulta-
4NN neously, if the nondiagonal matrix elemeri#) are taken

(Q)i=> <_1) (I)sd-bys, (42)  into account, the spectral width of the peaks changes as well

P ' as the integral photon number in the peaks. Therefore, the

success of the fitting of experimental measurements from

superlattice with fluctuating period essentially depends on

1 convolution of theoretical intensity with instrumental func-

= —NZDS”b, 2=5,15,05; 'S5, (43)  tion of detector, however, this problem is out of the scope of
1 present work.

and Eq.(41) is written then in the following form

and the exponentially increasing value ] N is canceled in

expression for amplitudg,,, V. CONCLUSIONS

ZooZa1— 2oy The effective method for simulation of x-ray intensity
hzzllzzz_leZ21- (44 scattered from the periodical superlattices is described. The
essential advantage of proposed technique is independence
Thus, the following problems of x-ray diffraction simula- of calculation time on the total number of repetition periods
tion are'solved on the basis of MEW) the time of calcu- of SL. This permits to speed up the sample parameter fitting

’ procedure(trial-and-error methodsused for experimental

lation _depends no longer on repetition peridd (”.) data treatment in modern nanotechnology. The method also
numerilcal algorithm operates with only finite values. F'gl.”edelivers the analytical expression for wave fields in all the
qayers of multilayered structure without solving of recurrent
eequations. This is essential in the cases when wave fields are
Used for calculation of matrix elements of perturbation op-

Erator. For example, these wave fields can be used for simu-

layers (Ge/SilSigGe, ) 100 With the thicknesse$30/20/10
nm, respectively, on the Si substrate. The curve has be
simulated both by the recursive metfibénd MEW. Evi-
dently, the results are undistinguishable because both met
ods are exact. However, MEW decreases drastically the ca istorted-wave Born approximatidner for calculation of
culatlo_n timety, in comparison with timetg, required for_ x-ray radiation spectra from electrohs.

recursive method, especially for multiperiodical superlattices
(inset on Fig. 6 Method of eigenwaves permits to naturally
introduce an important integral characteristics of superlat-
tices, viz. rms fluctuatioro; of basic period. The fluctua-
tions are usually caused by imperfections of interfaces or/and The authors thank M. LyubchenkBruker AXS) for mea-

by statistical fluctuations of sample growth conditidt&m-  surements. This work is supported by Bruker AXS GmbH
perature, etg. Similarly to reflectivity casé27), MEW takes  and International Science and Technology CefBant No.
into account period fluctuations by Debye-Waller factor inB-626). The authors thank M. LyubchenkBruker AXS) for
nondiagonal elements of averaged transition matii ): measurements.

tion of diffusely scattered x-ray intensity by means of
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