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Description of x-ray reflection and diffraction from periodical multilayers and superlattices
by the eigenwave method
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The analytical solution of recurrent equations for amplitudes of electromagnetic field is found for description
of x-ray reflection and diffraction from periodical multilayered media. The method proposed uses the Bloch
eigenwaves approach for periodical structure, which reduces considerably the computer time required for
simulation of diffracted/reflected x-ray intensity and, therefore, accelerates the fitting trial-and-error procedure
for sample model parameters. Numerical examples and fit results for experimental x-ray data are provided to
demonstrate the effectiveness of method. A new parameter describing the fluctuation of superlattice period is
introduced and its influence on experimental data interpretation is discussed.
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I. INTRODUCTION

In recent decade, a numerous analytical methods
techniques have been developed and reported for calcula
of x-ray reflectivity, diffraction, and diffuse scattering spec
~see, for example Ref. 1!. However, increasing demand fo
the x-ray methods from industry and science emphasizes
problem of algorithm improvements, both in accelerati
and precision aspects. This task is especially important w
the experimental data from complex samples have to
fastly and accurately fitted by theoretical models.

The multilayers and superlattices, consisting of la
number of repeating periods of basic thin layers, make u
wide class of samples in semiconductor and nanotechno
industries. For investigation of these structures x-ray me
ods are proved to be very advantageous. In general case
solution of Maxwell’s equations for x-ray wave field in mu
tilayers is reduced to the system of recurrent equations,
scalar ones for reflectivity,2 and matrix ones for diffraction.3

The theoretical interpretation of experimental x-ray da
based on the transfer matrices,3 delivers convenient formal
ism to solve general recurrent equations for multilaye
structures in both reflectivity2 and diffraction4 cases. For pe-
riodical structures, using the powers of the transfer matrix
basic element of superlattice~SL!, the time of calculation
can be considerably reduced.5 However, this technique re
quires the calculation of high powers of matrices, which
also time-consuming procedure because of the numbe
numerical operations exponentially increases with the nu
ber of SL elements. There are several approximated meth
for reduction of calculation time, for example, kinematic
approach and single-reflection approximation,1 but they do
not provide sufficient precision for thick SL’s and superla
tices with large number of layers. Thus, the developmen
methods reducing the calculation time for x-ray reflectiv
and diffraction from periodical multilayered structures is
actual task of applied x-ray physics.

The method proposed in this paper utilizes the possib
to express the Bloch eigenwaves of one-dimensional peri
cal infinite layer stack through the solutions of x-ray scatt
0163-1829/2003/68~23!/235307~10!/$20.00 68 2353
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ing problem within the single basic element composing
superlattice period.6 For superlattice with limited number o
periods these Bloch eigenwaves can further be used a
with the boundary conditions for whole layer stack. Th
results in analytical expression for the electromagnetic fi
and integral reflection coefficient in any point of samp
with no need to solve the recurrent equations. This appro
is further called in this paper a ‘‘method of eigenwave
~MEW!. In the present paper, the effectiveness of MEW
analyzed for calculation of x-ray reflectivity~XRR! and
high-resolutions x-ray diffraction~HRXRD! intensities from
superlattices. Comparison of MEW with other approach
demonstrates the essential time reduction for calculation
fitting of x-ray intensities. The paper is arranged as follow
In Sec. II the analytical solution for reflection coefficie
from bilayered periodical superlattice is found. The results
calculations coincide with the numerical solution of the sa
problem by Parratt’s equations, however, the advantage
MEW is the considerable acceleration of the simulation p
cess. In Sec. III, the superlattice with arbitrary basic perio
cal element is considered. The combination of Parratt’s
cursive equations with MEW is used to achieve the b
performance of simulation technique. We discuss also in
section a possible application of obtained solutions for sim
lation and fitting of diffuse x-ray scattering from superla
tices with rough interfaces. A parameter for characterizat
of superlattice period fluctuation is also introduced to obt
a closer fit of theory and experiment. In Sec. IV, MEW a
proach is extended to description of x-ray diffraction fro
superlattices. The diffraction process inside basic period
element of superlattice is calculated by matrix method,4 and
the evolution of diffraction into entire superlattice is d
scribed by MEW.

II. MEW FOR X-RAY REFLECTIVITY FROM TWO-
COMPONENT SUPERLATTICE

Let us consider the reflection of monochromatic x-r
beam with certain polarization and wave numberk52p/l
from a multilayered structure consisting ofN layers grown
on substrate. The structure is assumed to be a superla
©2003 The American Physical Society07-1
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composed of multiple repetition of basic layer period, co
sisting of two layers@see Fig. 1~a!# and the x rays impinge
the sample at the incidence anglea. In x-ray reflectometry,
the lateral dimension of a layer is supposed to be infin
which results in~i! conservation of lateral component o
wave vector, and~ii ! dependence of wave field on solelyz
component of wave vector. For the problem considered
this paper, the following variables, defined through the p
mittivity e, are essential for description of scattering proc

kz05k sina, kzm5kAem2cos2a,

kz15kAe12cos2a, kz25kAe22cos2a,

e t5nt
25~12d t1 ib t!

2, ~1!

wherez axis is a perpendicular inward normal to the sam
surface; the values 12d t andb t are the real and imaginar
components7 of refractive indexnt , t50,m,1,2 for vacuum,
substrate, and layers, respectively. Let us denote byd1 and
d2 the thicknesses of the layers, thend5d11d2 is the su-
perlattice period. The general solution of Maxwell’s equ
tions for two layers in the period with numberl ( l 50 corre-
sponds to vacuum! is

El~x,z!5eikx cosaC l~z!;

C l~z!5T1le
ikz1(z2 ld)1R1le

2 ikz1(z2 ld),

ld<z< ld1d1 ,

C l~z!5T2le
ikz2(z2 ld)1R2le

2 ikz2(z2 ld),

ld1d1<z<~ l 11!d. ~2!

The condition of wave field continuity at the boundary b
tween the layers 1 and 2 within thel period of SL

T1le
ikz1d11R1le

2 ikz1d15T2le
ikz2d11R2le

2 ikz2d1,

kz1@T1le
ikz1d12R1le

2 ikz1d1#5kz2@T2le
ikz2d12R2le

2 ikz2d1#
~3!

is used to express the reflection and transmission coeffici
in second layer via the corresponding parameters of the
layer:

FIG. 1. Sketch of the wave fields for~a! bilayered and~b!
L-layered superlattices.
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T2l5b11T1l1b12R1l , R2l5b21T1l1b22R1l ,

b115
kz21kz1

2kz2
ei (kz12kz2)d1, b125

kz22kz1

2kz2
e2 i (kz11kz2)d1,

b215
kz22kz1

2kz2
ei (kz11kz2)d1, b225

kz21kz1

2kz2
e2 i (kz12kz2)d1.

~4!

The same conditions at the boundary between the layel
and l 11 result in

T1(l 11)5g11T2l1g12R2l , R1(l 11)5g21T2l1g22R2l ,

g115
kz21kz1

2kz1
eikz2d, g125

kz12kz2

2kz1
e2 ikz2d,

g215
kz12kz2

2kz1
eikz2d, g225

kz21kz1

2kz1
e2 ikz2d. ~5!

To make an expression more clear, the (232) transfer ma-
trix M̂ can be introduced,3 which defines the transformatio
of transmission and reflection coefficients by a single la
of the basic period of superlattice

T1(l 11)5M11T1l1M12R1l , R1(l 11)5M21T1l1M22R1l ,

M115b11g111b21g12, M125b12g111b22g12,

M215b11g211b21g22, M225b12g211b22g22. ~6!

If the phase of wave field is defined in accordance w
Eq. ~2!, then the transfer matrix does not depend on indel
numbering the superlattice layers. This fact makes it poss
to use the powers of matrixM̂ for calculation of full transfer
matrix of superlattice.5 Such an approach reduces the calc
lation time in comparison with the direct solution of recu
rent equations. However, MEW simplifies this solution ev
more because it expresses the total reflection coefficien
analytical form. To derive this form, the two-compone
eigenvectorsA(s)5(T(s),R(s)); s51,2 of matrixM̂ has to be
introduced

M̂A(s)5lsA
(s),

l1,25
M111M22

2
6A~M112M22!

2

4
1M12M21,

R(s)5nsT
(s)5

ls2M11

M12
T(s). ~7!

The wave fields determined by coefficients~7! create a basis
of eigenwaves~EW! in infinite periodical layer stack. If the
eigenvalues are indexed in such a way thatul1u,ul2u, the
valuesT(s) then represent the amplitudes of EW, which a
excited in the finite stack by the incident plane wave. To fi
these amplitudesT(s), the boundary conditions have to b
7-2
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DESCRIPTION OF X-RAY REFLECTION AND . . . PHYSICAL REVIEW B68, 235307 ~2003!
used at the interfaces superlattice/vacuum and superla
substrate. The wave field at first interface is represented
superposition of eigenwaves:

C1~z!5T(1)@eik1zz1n1e2 ik1zz#1T(2)@eik1zz1n2e2 ik1zz#.
~8!

The continuity of this wave field at the surfacez50 results
in equations

11R0~a!5T(1)~11n1!1T(2)~11n2!,

kz0@12R0~a!#5kz1@T(1)~12n1!1T(2)~12n2!#, ~9!

where R0(a) is the integral reflection coefficient from th
entire superlattice. Because of Eq.~7! for EW, the reflection
and transmission coefficients in the last layer with numbeN
are
rs
ti-
ns
la
o

i
ns
b

23530
e/
a

T1N5l1
NT(1)1l2

NT(2), R1N5n1l1
NT(1)1n2l2

NT(2),

T2N5b11T1N1b12R1N , R2N5b21T1N1b22R1N .
~10!

The boundary conditions at interfacez5Nd, where wave
field is only defined by transmission coefficientTsub, com-
plete the equations system for four unknown variablesR0 ,
T(1), T(2), andTsub

Tsube
ikzsNd5T(2N)e

ikz2d1R(2N)e
2 ikz2d,

kzmTsube
ikzmNd5kz2@T(2N)e

ikz2d2R(2N)e
2 ikz2d#. ~11!

The equations system@~9!–~11!# delivers the expression
for R0(a), which is, in fact, the analytical solution of th
recurrent Parratt’s equations for the whole stack of the lay
R0~a!52
kz1@12n11PN~12n2!#2kz0@11n11PN~11n2!#

kz1@12n11PN~12n2!#1kz0@11n11PN~11n2!#
,

PN52S l1

l2
D N~kzm2kz2!~b111b12n1!eikz2d1~kzm1kz2!~b211b22n1!e2 ikz2d

~kzm2kz2!~b111b12n2!eikz2d1~kzm1kz2!~b211b22n2!e2 ikz2d
. ~12!
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Figure 2 shows simulated by formula~12! x-ray reflectiv-
ity from (Si/Ge)60 superlattice with the thickness of laye
d1510 nm, d2520 nm on Si substrate. The curve is iden
cal to the one calculated by recurrent Parratt’s equatio2

However, the computer time required for these both simu
tions is essentially different, especially when the number
superlattice periods is large~see inset in Fig. 2!. The numeri-

FIG. 2. X-ray reflectivity from (Si/Ge)60 superlattice on the S
substrate simulated both by Parratt’s equations and MEW. I
shows the ratio of the computer times required for simulations
Parratt’s equations (tP) and MEW (tMEW) as a function SL periods
number.
.
-
f

cal solution of the Parratt’s equations2 involves.4(4)N op-
erations, which increases the simulation time exponentia
When the powers of matrices are used for calculation
R0(a), the time increases as a power law with increasingN
Ref. 5, whereas the use of Eq.~12! makes the number o
operations to be independent ofN. This advantage of MEW
is even more pronounced for the experimental data fitt
routines, which simulate the x-ray reflectivity many tim
during the trial-and-error procedure.

III. MEW FOR X-RAY REFLECTIVITY FROM
SUPERLATTICE WITH ARBITRARY STRUCTURE OF

THE BASIC PERIOD

The technique presented in preceeding section can be
applied to complicated sample models, for example, to
superlattice, the basic period of which consists ofL layers
with thicknessesdj , j 51, . . . ,L; so that the total basic pe
riod is

(
j

dj5d,

and refraction indicesnj @Fig. 1~b!#. This kind of sample
model describes both the superlattices with basic period c
taining more than two layers and bilayer superlattices w
intermediate graded interfaces, which yield in this case pa
sitic artificial interlayers. For these samples, the combin
technique can be used: numerical solution for recurrent eq
tions with (232) transfer matrixM̂L for basic period is

et
y
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FERANCHUK, FERANCHUK, MINKEVICH, AND ULYANENKOV PHYSICAL REVIEW B 68, 235307 ~2003!
supplemented with MEW approach for analytical calculat
of total reflection coefficientR0(a).

The wave field within thej layer of the first basic period is
defined by Eq.~2! with coefficientsTj ,Rj following from the
equations2 @the sketch of wave fields in sublayers of the ba
period is shown in Fig. 1~b!#

T1,j 115
1

t j 11,j
@T1,je

i (kz( j 11)2kz j)zj1R1,j r j 11,je
i (kz( j 11)1kz j)zj #,

R1,j 115
1

t j 11,j
@T1,j r j 11,je

2 i (kz( j 11)1kz j)zj

1R1,je
2 i (kz( j 11)2kz j)zj #,

t j 11,j5
2kz j

kz j1kz( j 11)
, r j 11,j5

kz j2kz( j 11)

kz j1kz( j 11)
,

kz, j5kAnj
22cos2a. ~13!

To find the eigenwaves of the system, the transfer matrixM̂L
has to be calculated for basic period. By the definition, t
matrix gives a relation between the coefficientsT1,(L11)
5T2,1,R1,(L11)5T2,1 and parametersT1 ,R1 for wave fields
C j inside the superlattice. The formal solution of this pro
lem can be found by successive iterative solution of E
~13!, and the result is presented in compact matrix form1

C1,(L11)5C2,15F̂LQ̂L
21F̂L21Q̂L21

21 . . . F̂2Q̂2
21F̂1C1,1,

Qj5
1

t j 11,j
S 1 r j 11,j

r j 11,j 1 D , F j5S e2 ikz jzj 0

0 eikz jzj
D .

~14!

Despite of formal simplicity of this solution, the real calc
lation of matrixM̂ involves the calculation of the products o
2L (232) matrices, i.e.,.4(8)L operations. The more ef
fective algorithm is based on scalar Parratt’s equatio2

which reduces the operations number down to.4(4)L

Xj5
Rj

Tj
5e22ikz j

r j , j 111Xj 11e2ikz( j 11)zj

11r j , j 11Xje
2ikz( j 11)zj

. ~15!

To use these equations for calculation of matrixM̂ , the
boundary conditions forXj have to be changed. In reflecto
metry, the boundary conditionsXL50, RL50, T051 are
usually used for the structure containingL layers. However,
in the considered case here the initial transmission and
flection coefficients are not directly related. The most con
nient way to calculate the transition matrixM̂ seems to be
above-mentioned matrix method. If phases of the wave fie
in the first layer of basic period are defined as in Eq.~2!, then
matrix M̂ depends no longer on the repetition number
basic periods, and Eq.~14! is modified. The recurrent equa
tions ~13! being resulted from the transformation of vecto
(Tj ,Rj ) are represented then by matrices
23530
c

s

-
s.

,

e-
-

s

f

Âj5
1

t j 11,j
S ei (kz j2kz( j 11))zj r j 11,je

2 i (kz j1kz( j 11))zj

r j 11,je
i (kz j1kz( j 11))zj e2 i (kz j2kz( j 11))zj

D ,

B̂j5
1

t j 11,j
S eikz jzj r j 11,je

2 ikz jzj

r j 11,je
ikz jzj e2 ikz j

D . ~16!

The matricesB̂j have to be used at both interfaces of ba
period to eliminate the phase in the matrixM̂ at the interface
between the basic periods. Finally, the resulting transit
matrix is

M̂5B̂LÂL21ÂL22 . . . Â2B̂1 . ~17!

To satisfy the continuity conditions~11! for wave fields at
the interface between bottommost basic layer and subst
the amplitudesTN,L andRN,L have to be expressed throug
the amplitudesTN,1 andRN,1 by means of the matrix

M̂L215ÂL21ÂL22 . . . Â2B̂1 . ~18!

Further calculations are analogous to two-component c
described in the preceeding section. In particular, the eig
valuesl1,2 and their eigenvectors follow from Eqs.~6! and
~7!, if the elements of the matrixM̂ in Eq. ~17! are used. The
equations for amplitudes resulting from the boundary con
tions for wave fields at the surface of superlattice and at
interface between superlattice and substrate are then wr
as

11R0~a!5T1,11R1,15T(1)~11n1!1T(2)~11n2!,

kz0@12R0~a!#5kz1@T1,12R1,1#

5kz1@T(1)~12n1!1T(2)~12n2!#,

~19!

FIG. 3. Simulated x-ray reflectivity from
(AlAs/GaAs/InAs/GaSb)40 superlattice on the GaAs substrate. I
sert shows the ratio of the computer times required for simula
by Parratt’s equations (tP) and MEW (tMEW) as the function of SL
periods number.
7-4
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Tsube
ikzsNd5TN,LeikzLd1RN,Le2 ikzLd,

kzmTsube
ikzmNd5kzL@TN,LeikzLd2RN,Le2 ikzLd#. ~20!

The amplitudes within the arbitraryn period of SL are
expressed through the amplitudes inside the first period
the following analytical formulas

Tn,15l1
(n21)T(1)1l2

(n21)T2),
it
ce
e

th

t
o
ul
be
m
th
ce

er
o
ti
ti
ou
.
W

f-
rla
la

l

23530
y

Rn,15n1l1
(n21)T(1)1n2l2

(n21)T(2),

Rn,L
~1,2!5~M̂L21!21Tn,11n (1,2)~M̂L21!22Rn,1 ,

Tn,L
~1,2!5~M̂L21!11Tn,11n (1,2)~M̂L21!12Rn,1 , ~21!

wheren is assumed to be equal toN when the amplitudes are
substituted in Eq.~20!. The formula~12! for parameterPN is
then slightly transformed to
R0~a!52
kz1@12n11PN~12n2!#2kz0@11n11PN~11n2!#

kz1@12n11PN~12n2!#1kz0@11n11PN~11n2!#
,

PN52S l1

l2
D N~kzm2kzL!~TL

(1)eikzLd1~kzm1kzL!RL
(1)e2 ikzLd

~kzm2kzL!TL
(2)eikzLd1~kzm1kzL!RL

(2)e2 ikzLd
,

RL
(1,2)5~M̂L21!211n (1,2)~M̂L21!22, TL

(1,2)5~M̂L21!111n (1,2)~M̂L21!12. ~22!
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Figure 3 demonstrates the simulated x-ray reflectiv
curves from the multicomponent superlatti
(AlAs/GaAs/InAs/GaSb)40 on the GaAs substrate, wher
the layer thicknesses are equal to (10/20/5/10)40 nm, respec-
tively. The comparison of required computer time for bo
straightforward Parratt’s approachtP and MEW techniquetM
as the function of repetition period is presented in the inse
Fig. 3. In some cases the calculation time is reduced fr
several seconds to the fraction of seconds for single sim
tion by using MEW. At first sight, this reduction seems to
not in principal for real applications because absolute co
putation time is relatively short. However, in most cases,
treatment of x-ray experimental data from real superlatti
requires the fitting of many parameters~thickness, rough-
ness, electron density, lattice mismatches, etc.!, which often
are approximately known from growth conditions. Moreov
possible aperiodicity of SL structure and large number
layers in the stack even aggravate the situation. The effec
fitting procedures minimizing the cost function, e.g., gene
algorithms or simulating annealing, also require tens of th
sands single simulations to find a nonambiguous solution
this case, the speeding up of calculations by using ME
plays essential role in software performance.

Calculation time is also important for simulation of di
fuse x-ray scattering caused by rough interfaces in supe
tices. Distorted-wave Born approximation used for calcu
tion of diffuse scatter expresses the diffuse intensityI (a,b)
through the matrix elements of potentialV̂ describing the
rough interfaces and incidentC in at anglea and reflected
Cout at angleb wave fields calculated for ideal SL~see, for
example, Ref. 1!:

I ~a,b!.u^C in~a!uV̂uCout~b!&u2.

Each wave field contains the set of 2NL amplitudesTi(a),
Ri(a) or Ti(b), Ri(b), and the application of analytica
y
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,
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formulas~21! instead of numerical solution of Parratt’s equ
tions reduces considerably the simulation time for calcu
tion of diffusely scattered intensity in dependence on ang
a andb.

The second seeming argument against the deman
MEW is that Eqs.~21! for amplitudes are valid for the cas
of ideal SL periodicity only. The superlattices with regular
~due to strain, for example! or irregularly~due to nonstability
of growth conditions! fluctuating basic periods are quite
typical sample in nanocoating and semiconductor scie
and industry. Whereas the deformation of SL period can
taken into account directly by Parratt’s equations, the av
aging over the SL period fluctuations is complicated task.8 In
the framework of MEW, this effect is taken into account b
renormalization of the transfer matrix of basic period as,
example, the averaging of atomic vibrations in dynami
diffraction theory results in the Debye-Waller factor for x-ra
susceptibility. The transfer matrixM̂ ( l ) and two-component
vector A l5(Tl ,Rl) both depend on the period numberl,
therefore the recurrent formula containing these vectors
two successive SL periods can be introduced instead of
~7! for eigenvalues.

M̂ ( l )A l5A( l 11) . ~23!

To introduce a parameter for description of abov
mentioned fluctuations, the transfer matrixM̂L

( l ) has to be
reinterpreted on the basis of formal scattering theory.9 From
this point of view, the matrix elements can be considered
elements of scattering operatorŜ( l )(z) defined with the func-
tions of initial i and finalf states

~M̂L
( l )! i f 5~Ŝ! i f 5E

zl

zl 11
dze2 ik f (z2 ld)ŜL~z2 ld !eiki (z2 ld).

~24!
7-5
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The matrix elements~24! are shown above to be indepe
dent on indicesl, in the case10 of ideal superlattice. In rea
superlattices, the period thickness has a statistical fluc
tionsd l , and thuszl5 ld1d l , d l!1. As a result, the trans
fer matrix obtains an additional random-phase coefficien

~M̂L
( l )! i f 5~M̂L! i f e

i (ki2kf )d l, ~25!

which is absent in matrixM̂L , corresponding to ideal peri
odicity. The coherent part of the transfer matrix can be
rived by averaging over the statistical distribution of rando
phases, in the same way as for coherent polarizability
crystal7

~M̂L
( l )! i f 5^~M̂L! i f e

i (ki2kf )d l&1~V̂L
( l )! i f ;

~V̂L
( l )! i f [~M̂L

( l )! i f 2^~M̂L! i f e
i (ki2kf )d l&.

In particular case of negligible vertical correlation of i
terfacial roughness~which sometimes can be essential f
interpretation of diffuse x-ray scattering11!, the coherent par
of matrix elements in Eq.~26! obtains an additional factor
which does not depend onl. Assuming the Gaussian distr
bution of period fluctuations with root mean square~rms!
sd , and averaging Eq.~26! over the fluctuations, we arrive
at

^~M̂L
( l )! i f &5e21/2sd

2(kf2ki )
2
~M̂L! i f . ~26!

The exponential factor reduces the amplitude of elastic s
tering of the wave field by SL basic period analogously
Debye-Waller factor for crystallographic unit cell derived f
x-ray polarizability of the crystal.7 This result causes th
renormalization of matrix elements~18!

^M11&5M11, ^M12&5M12e
21/2sd

2(kzL1kz1)2
,

^M22&5M22, ^M21&5M21e
21/2sd

2(kzL1kz1)2
. ~27!

Then the analytical solution of Eq.~23! for coherent wave is

A l5~ls!
lA(s)

with eigenvaluesls , determined from equation:

^M̂ &A(s)5lsA
(s). ~28!

Figure 4 shows how the parametersd , taking into ac-
count the fluctuation of SL period, influences the formati
of the coherent SL peaks. The experimental measurem
~dots! from superlattice (W/Al2O3)64 on the Si substrate
with the nominal layer thicknesses (1.2/1.9)64 nm have been
taken by using Bruker D8 DISCOVER x-ray diffractomet
in conventionalu22u geometry using knife edge collimato
and antiscattering detector slit at CuKa radiation. The first
simulation ~dashed! is carried out on the MEW basis fo
superlattice with constant periodicity and taking into acco
interface roughness by Nevot-Croce12 exponent~this curve is
equivalent to Parratt’s simulations!

r̄ j 11,j5r j 11,je
22kjkj 11sr

2
,
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where the valuesr j 11,j are defined in Eq.~13! and parameter
s r is the rms of interface roughness.

In general case, the imperfection of interfaces descri
by s r is not reduced to the fluctuation of layers thickness
defined by parametersd . The interface roughness can b
approached by thickness fluctuation only in the case of ra
large in-plane correlation length. Essentially different impa
of both parameters on the fitting of experimental data is de
onstrated in Fig. 4. The values r has been roughly fitted a
0.25 nm and equal for all interfaces, and the reflectivity h
been convoluted with resolution function describing the li
ited angular resolution of detector. The second simulat
~solid line! is done by using MEW with integral SL perio
fluctuations@Eq. ~27!# with the samesd50.25 nm. In both
cases, the same roughness rmss r andsd influences the am-
plitude of SL peaks in different way, however, the latter a
proach explains the experiment better. It should be noted
Fig. 4 represents only the qualitative fit; the influence

incoherent matrix (V̂L
( l )) i f in recurrent Eq.~23! on the phase

of the transfer matrix seems to have been taken into acc
to reach better fit on the wings of SL peaks. However, t
study is out of the scope of the present work.

IV. MEW FOR HIGH-RESOLUTION X-RAY DIFFRACTION
FROM SUPERLATTICES

The superlattices consisting of crystalline layers a
widely used in modern semiconductor industry, and hig
resolution x-ray diffraction is one of the most effective tec
niques for their investigations. The parameters characteriz
the sample, e.g., layer thicknesses, doping concentrati
lattice deformation, lattice mismatch and others, are obtai

FIG. 4. Measured~dots! and simulated by MEW with Nevot-
Croce exponent, corresponding to the rms of interface roughn
s r50.25 nm ~dashed line! and by MEW with the rms of period
fluctuationssd50.25 nm ~solid line! for x-ray reflectivities from
(W/Al2O3)64 superlattice with layer thicknesses (1.2/1.9)6 4 nm on
the Si substrate.
7-6
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from x-ray measurements in various experimental geo
etries, including extremely asymmetrical and grazin
incidence diffraction. Theoretical interpretation of these d
requires a considerable computer resources that make
optimization of calculation algorithm for HRXRD very ac
tual problem. In the same way as for x-ray reflectivity, t
application of MEW for high-resolution x-ray diffraction i
based on the analytical calculation of interference betw
the waves scattered from equivalent layers of superlat
period. However, the x-ray scattering from crystalline stru
ture involves more complicated than in reflectometry trans
matrices, which possess a higher rank in this case.

The theory presented below assumes that the superla
consists of repeatingN times basic SL periods, composed
L monocrystal layers. The difference in crystallograph
structure of these layers can be caused either by diffe
elemental composition of layers or gradiental lattice def
mation of single layer due to the external forces. There
few ways to calculate the transfer matrixM̂L for x-ray dif-
fraction from the crystalline layers. Takagi-Taupin13 formal-
ism, being relatively simple in realization, gives a solution
approximation of slow variation of crystalline structure
layers stack. In opposite, the matrix formalism14 of dynami-
cal diffraction theory delivers an exact solution for trans
matrix M̂L , and here we use this approach along with
notations adopted in Ref. 14. The wave field with cert
polarization (s or p) inside the layern is described by the
wave field

Dn~r !5eiknr@D0n1Dhne
ihnr#, ~29!

herekn andkhn5kn1hn are the wave vectors of transmitte
and diffracted by reciprocal lattice vectorhn waves in n
layer. The notations used below are shown in Fig. 5. T

FIG. 5. Sketch of the wave fields for crystalline superlattice.
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amplitudesD0n ,Dhn are assumed to be constant within t
layer and satisfy to the equations of dynamical diffracti
theory

~kn
22k2!D0n5kn

2@x0
nD0n1x2h

n Dhn#,

~khn
2 2k2!Dhn5kn

2@x0
nDhn1xh

nD0n#, ~30!

with Fourier componentsx0
n ,xh

n of x-ray polarizability forn
layer. Using the notations of Fig. 6 for vector component

kz5kg0 , khz5kgh , hzn5kcn , kzn5kun ,

the parameterun , determining the effective refraction inde
for x-ray diffraction, follows from the equation:14

~un
22g0

22x0
n!@~un1cn!22gh

22x0
n#2x2h

n xh
n50,

gh
25~g01c!21a. ~31!

The variablea defines a deviation of the vectork from the
exact Bragg condition at the top layer interface of basic
perlattice period, and the amplitudes of transmitted and
fracted waves are connected by expressions

Dhn
j 5vn

j D0n
j , vn

j 5@~un
j !22g0

22x0
n#/x2h

n . ~32!

The evolution of wave field inside the basic period
superlattice is determined by the system of equations for
plitudesD0n

j , which follows from the continuity condition
for the wave fields at the boundaries of layers~interfaces!.

FIG. 6. The simulations of x-ray diffraction from
(Ge/Si/Si0.8Ge0.2)100 perfect superlattice on the Si substrate both
the recursive method and MEW are indistinguishable~lower curve!.
Inset shows the ratio of the computer times required for simula
by recursive method (tR) and MEW (tMEW) as the function of SL
periods number. Upper curve shifted vertically for clarity by a fa
tor of 105 shows the simulated x-ray diffraction from the sam
superlattice with randomly fluctuating basic SL period,sL

51 nm.
7-7
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The solution for this equation system for arbitrary expe
mental geometry is represented4 by product of 2L (434)
matricesŜn and F̂n :

Ŝ05S 1 0 1 0

0 1 0 1

g0 0 2g0 0

0 gh 0 2gh

D ,

Ŝn5S 1 1 1 1

vn
1 vn

2 vn
3 vn

4

un
1 un

2 un
3 un

4

wn
1 wn

2 wn
3 wn

4

D ,

~ F̂n! i j 5d i j exp@ ikun
j ~zn112zn!#, wn

j 5vn
j ~un

j 1cn!.
~33!

In conventional dynamical diffraction theory, the approx
mate solution of dispersion equation, Eq.~31!, is used, which
is reduced in this case to the second-order equation, and
matricesSn have a dimension (232). The exact solution of
dispersion equation and complete matrices~33! have to be
used for the grazing-incidence~-exit! geometry,14 and for the
diffraction from superlattices with short period, when sat
lite peaks are located far from the exact Bragg condition15

The numerical problems arise for superlattices with la
number of periodsN, where multiple production of (434)
matrices has to be done.14 These problems are caused
operations with matrices, the elements of which grow ex
nentially with the increasing value ofN. In order to avoid
these difficulties, new algorithm was suggested in Ref.
when the matrices are divided into the blocks of (232). The
four-wave amplitudesD0n

j being combined into two two-

component vectorsT̄n5(D0n
1 ;D0n

2 ), R̄n5(D0n
1 ;D0n

2 ) are
then related by the equations analogous to Parratt’s on14

This algorithm provides the required accuracy for arbitra
number of superlattice periods, however, increases twice
computation time in comparison with conventional mat
method. The MEW is shown to improve the accuracy as w
as reduce the time of calculation.

To construct the transition matrixM̂L for basic period,
four components of wave field innth layer are denoted as th
four-vectorD̄n . The spacial phase of wave field amplitud
in every layer has to be equal at the entrance interface
layer. Using the matrices~33!, the boundary conditions fo
amplitudes in basic period are written as a system ofL vector
equations

Ŝ1F̂1D̄15Ŝ2D̄2 , . . . , ŜLF̂LD̄15Ŝ1D̄L11 . ~34!

Then the matrixM̂L follows straightforward from Eqs.~34!

M̂L5X̂LX̂L21 . . . X̂1 , X̂k5Ŝk11
21 ŜkF̂k . ~35!
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Let us now introduce the normalized four-compone
eigenvectorsC̄s and eigenvaluesls , enumerated in natura
order of solutions for the equation

M̂LC̄s5lsC̄
s, s51, . . . ,4, (

i 51

4

~C i
s!* ~C i

s!51,

ul1u,ul2u,ul3u,ul4u. ~36!

The matrixM̂L is not self-conjugated due to the absor
tion in the crystals, and therefore its eigenvectors do
satisfy the conditions of completeness and orthogona
making the eigenvalues complex valued. The MEW te
nique using these eigenwaves is realized in the same wa
in Eq. ~31!. First, the wave field in the topmost layer of th
basic period has to be represented as a linear superpositi
the eigenvectors with coefficients defined by continuity
the vacuum wave field vectorĒ5(1,0,Er ,Eh) at the sample
surface

D̄1
(1)5(

s51

4

AsC̄
s, Ŝ0Ē5Ŝ1D̄1

(1)5Ŝ1(
s51

4

AsC̄
s. ~37!

The evolution of wave field throughN periods of superlattice
is calculated algebraically

D̄1
(N11)5~M̂ !ND̄1

(1)5(
s51

4

~ls!
NAsC̄

s. ~38!

The wave field of x-ray beam in substrate is defined by fo
vector D̄5(D1

sub,D2
sub,0,0). The amplitudes of the wave

reflected from the bottom interface of the substrate are
sumed to be zero due to the damping out of wave fie
within the thick sample,Er andEh define the amplitudes o
reflected and diffracted waves in vacuum.14

The conditions of continuity at the interface between s
perlattice and substrate has to be applied to the four-ve
D̄L

(N) , determining the wave field amplitude in the bottom
most layer of the stack~Fig. 5!

D̄L
(N)5F̂L

21ŜL
21Ŝ1D̄1

(N11) , ŜsubD̄5ŜLF̂LD̄L
(N) . ~39!

As a result, the system of equations for eight unknown v
ues (Er ,Eh ,As ,D1,2

sub) can be written as

~Ŝ1
21Ŝsub! i j D j

sub5(
s51

4

~ls!
NAsC i

s ,

~Ŝ1
21Ŝ0! i j Ej5(

s51

4

AsC i
s . ~40!

The orthogonality condition for eigenvectors~36! cannot
be used for solution of these equations@see discussion afte
7-8
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DESCRIPTION OF X-RAY REFLECTION AND . . . PHYSICAL REVIEW B68, 235307 ~2003!
Eq. ~36!#. However, this system can be solved in gene
form, if four components of four eigenvectors are conside
as (434) matrix

C i
s→~Ĉ! i

s .

Then the valuesAs can be excluded from Eqs.~40! using the
reverse matrixĈ21

~Ŝ1
21Ŝ0! i j Ej5(

s51

4

~ls!
2N~Ĉ! i

s~Ĉ21! j
s~Ŝ1

21Ŝsub! jkDk
sub.

~41!

In order to avoid the exponentially increasing terms, the n
malized matrix can be defined

~Q̂! i j 5(
s51

4 S l1

ls
D N

~Ĉ! i
s~Ĉ21! j

s , ~42!

and Eq.~41! is written then in the following form

Ē5
1

l1
N
ẐD̄sub, Ẑ5Ŝ0

21Ŝ1Q̂Ŝ1
21Ŝsub, ~43!

and the exponentially increasing value (l1)2N is canceled in
expression for amplitudeEh ,

Eh5
Z22Z412Z42Z21

Z11Z222Z12Z21
. ~44!

Thus, the following problems of x-ray diffraction simula
tion are solved on the basis of MEW:~i! the time of calcu-
lation depends no longer on repetition periodN, ~ii !
numeri1cal algorithm operates with only finite values. Figu
6 shows the spectrum for the superlattice with crystall
layers (Ge/Si/Si0.8Ge0.2)100 with the thicknesses~30/20/10!
nm, respectively, on the Si substrate. The curve has b
simulated both by the recursive method14 and MEW. Evi-
dently, the results are undistinguishable because both m
ods are exact. However, MEW decreases drastically the
culation timetM in comparison with timetR , required for
recursive method, especially for multiperiodical superlattic
~inset on Fig. 6!. Method of eigenwaves permits to natural
introduce an important integral characteristics of super
tices, viz. rms fluctuationsL of basic period. The fluctua
tions are usually caused by imperfections of interfaces or/
by statistical fluctuations of sample growth conditions~tem-
perature, etc.!. Similarly to reflectivity case~27!, MEW takes
into account period fluctuations by Debye-Waller factor
nondiagonal elements of averaged transition matrix^M̂L&:
23530
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^~M̂L! i j &5~M̂L! i j e
21/2sL

2k2(u1
i
2uL

j )2
~45!

with the solutionsun
i of Eq. ~31!.

The period fluctuations result in the reshaping of SL pe
in the same way as it was described in Sec. III for reflec
metry. Upper curve in the Fig. 6 shows the simulated x-
diffraction from the same superlattice with period fluctuati
sL51 nm. The introduction of this parameter may be ess
tial for the fitting accuracy in some cases. The structure
SL peaks is formed due to the interference of waves, s
tered from one-dimensional periodical layers stack, a
therefore the positions of peaks are defined by averaged
period and do not depend on period fluctuation.16 Simulta-
neously, if the nondiagonal matrix elements~45! are taken
into account, the spectral width of the peaks changes as
as the integral photon number in the peaks. Therefore,
success of the fitting of experimental measurements fr
superlattice with fluctuating period essentially depends
convolution of theoretical intensity with instrumental fun
tion of detector, however, this problem is out of the scope
present work.

V. CONCLUSIONS

The effective method for simulation of x-ray intensi
scattered from the periodical superlattices is described.
essential advantage of proposed technique is independ
of calculation time on the total number of repetition perio
of SL. This permits to speed up the sample parameter fit
procedure~trial-and-error methods! used for experimenta
data treatment in modern nanotechnology. The method
delivers the analytical expression for wave fields in all t
layers of multilayered structure without solving of recurre
equations. This is essential in the cases when wave fields
used for calculation of matrix elements of perturbation o
erator. For example, these wave fields can be used for s
lation of diffusely scattered x-ray intensity by means
distorted-wave Born approximation,1 or for calculation of
x-ray radiation spectra from electrons.17
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